Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct access to chiral aliphatic amines by catalytic enantioconvergent redox-neutral amination of alcohols

Abstract

Chiral aliphatic amines are privileged functionalities in pharmaceutical molecules and play an essential role as ligands and catalysts in organic synthesis. It is therefore important to develop efficient catalytic strategies to access aliphatic amines in an enantiopure form. Despite great advancement in asymmetric amination methods, including reductive amination and C–N cross coupling, direct access to diverse enantioenriched aliphatic amines from readily available feedstocks is still lacking. Herein, we demonstrate direct enantioconvergent amination of racemic secondary alcohols using a variety of aliphatic primary amines, under the cooperative catalysis of a chiral iridium complex with a chiral phosphoric acid. This strategy realizes a challenging catalytic redox-neutral cascade without the need for any stoichiometric reagent, offering a one-step conversion of feedstock substrates to valuable chiral aliphatic secondary amines in high yield and enantioselectivity. The use of this atom-economical carbon–nitrogen bond-forming strategy is illustrated by the enantioselective synthesis of commercial drugs and their analogues. Futhermore, we discovered an intriguing racemization pathway for chiral aliphatic amines, which delivers important guiding principles for redox-related stereoselective control in chiral amine synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance and synthesis of aliphatic amines.
Fig. 2: A general amination of alcohols using aliphatic amines with high catalytic efficiency.
Fig. 3: Asymmetric amination of racemic alcohols using aliphatic amines with product functionalization.
Fig. 4: Mechanistic aspects of asymmetric amination with concomitant racemization of the chiral amine product.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Nugent, T. C. (ed.) Chiral Amine Synthesis: Methods, Developments and Applications (Wiley-VCH, 2010).

  3. Kobayashi, S., Mori, Y., Fossey, J. S. & Salter, M. M. Catalytic enantioselective formation of C-C bonds by addition to imines and hydrazones: a ten-year update. Chem. Rev. 111, 2626–2704 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, Y., Hu, L., Li, Z. & Deng, L. Catalytic asymmetric umpolung reactions of imines. Nature 523, 445–450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hannedouche, J. & Schulz, E. Asymmetric hydroamination: a survey of the most recent developments. Chem. Eur. J. 19, 4972–4985 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Cabré, A., Verdaguer, X. & Riera, A. Recent advances in the enantioselective synthesis of chiral amines via transition metal-catalyzed asymmetric hydrogenation. Chem. Rev. 122, 269–339 (2022).

    Article  PubMed  Google Scholar 

  7. Tang, W. & Xiao, J. Asymmetric hydrogenation of imines via metal–organo cooperative catalysis. Synthesis 46, 1297–1302 (2014).

    Article  Google Scholar 

  8. Tian, Y., Hu, L. A., Wang, Y.-Z., Zhang, X. & Yin, Q. Recent advances on transition-metal-catalysed asymmetric reductive amination. Org. Chem. Front. 8, 2328–2342 (2021).

    Article  CAS  Google Scholar 

  9. Steinhuebel, D., Sun, Y., Matsumura, K., Sayo, N. & Saito, T. Direct asymmetric reductive amination. J. Am. Chem. Soc. 131, 11316–11317 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Tan, X. et al. Asymmetric synthesis of chiral primary amines by ruthenium-catalyzed direct reductive amination of alkyl aryl ketones with ammonium salts and molecular H2. J. Am. Chem. Soc. 140, 2024–2027 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kadyrov, R., Riermeier, T. H., Dingerdissen, U., Tararov, V. & Borner, A. The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of α-N-benzylamino acids. J. Org. Chem. 68, 4067–4070 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Barniol-Xicota, M., Leiva, R., Escolano, C. & Vázquez, S. Syntheses of cinacalcet: an enantiopure active pharmaceutical ingredient (API). Synthesis 48, 783–803 (2016).

    Article  CAS  Google Scholar 

  13. Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    Article  CAS  Google Scholar 

  15. Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cho, H., Suematsu, H., Oyala, P. H., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santana, C. G. & Krische, M. J. From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catal. 11, 5572–5585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corma, A., Navas, J. & Sabater, M. J. Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem. Rev. 118, 1410–1459 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Kwok, T., Hoff, O., Armstrong, R. J. & Donohoe, T. J. Control of absolute stereochemistry in transition-metal-catalyzed hydrogen borrowing reactions. Chem. Eur. J. 26, 12912–12926 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Reed-Berendt, B. G., Latham, D. E., Dambatta, M. B. & Morrill, L. C. Borrowing hydrogen for organic synthesis. ACS. Cent. Sci. 7, 570–585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parker, P. D., Hou, X. & Dong, V. M. Reducing challenges in organic synthesis with stereoselective hydrogenation and tandem catalysis. J. Am. Chem. Soc. 143, 6724–6745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Y., Lim, C. S., Sim, D. S., Pan, H.-J. & Zhao, Y. Catalytic enantioselective amination of alcohols by the use of borrowing hydrogen methodology: cooperative catalysis by iridium and a chiral phosphoric acid. Angew. Chem. Int. Ed. 53, 1399–1403 (2014).

    Article  CAS  Google Scholar 

  23. Rong, Z.-Q., Zhang, Y., Chua, R. H. B., Pan, H.-J. & Zhao, Y. Dynamic kinetic asymmetric amination of alcohols: from a mixture of four isomers to diastereo- and enantiopure α-branched amines. J. Am. Chem. Soc. 137, 4944–4947 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Pan, H.-J. et al. Catalytic diastereo- and enantioconvergent synthesis of vicinal diamines from diols through borrowing hydrogen. Angew. Chem. Int. Ed. 60, 18599–18604 (2021).

    Article  CAS  Google Scholar 

  25. Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M. & Turner, N. J. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 349, 1525–1529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, P. et al. Nickel-catalyzed N-alkylation of acylhydrazines and arylamines using alcohols and enantioselective examples. Angew. Chem. Int. Ed. 56, 14702–14706 (2017).

    Article  CAS  Google Scholar 

  27. Xu, R. et al. Anti-Markovnikov hydroamination of racemic allylic alcohols to access chiral γ-amino alcohols. Angew. Chem. Int. Ed. 59, 21959–21964 (2020).

    Article  CAS  Google Scholar 

  28. Peña-López, M., Neumann, H. & Beller, M. (Enantio)selective hydrogen autotransfer: ruthenium-catalyzed synthesis of oxazolidin-2-ones from urea and diols. Angew. Chem. Int. Ed. 55, 7826–7830 (2016).

    Article  Google Scholar 

  29. Lim, C. S., Quach, T. T. & Zhao, Y. Enantioselective synthesis of tetrahydroquinolines by borrowing hydrogen methodology: cooperative catalysis by an achiral iridacycle and a chiral phosphoric acid. Angew. Chem. Int. Ed. 56, 7176–7180 (2017).

    Article  CAS  Google Scholar 

  30. Xu, G. et al. Stereoconvergent, redox-neutral access to tetrahydroquinoxalines through relay epoxide opening/amination of alcohols. Angew. Chem. Int. Ed. 58, 14082–14088 (2019).

    Article  CAS  Google Scholar 

  31. Chamberlain, A. E. R., Paterson, K. J., Armstrong, R. J., Twin, H. C. & Donohoe, T. J. A hydrogen borrowing annulation strategy for the stereocontrolled synthesis of saturated aza-heterocycles. Chem. Commun. 56, 3563–3566 (2020).

    Article  CAS  Google Scholar 

  32. Liu, Y., Tao, R., Lin, Z.-K., Yang, G. & Zhao, Y. Redox-enabled direct stereoconvergent heteroarylation of simple alcohols. Nat. Commun. 12, 5035 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, G., Pan, J., Ke, Y.-M., Liu, Y. & Zhao, Y. Tandem catalytic indolization/enantioconvergent substitution of alcohols by borrowing hydrogen to access tricyclic indoles. Angew. Chem. Int. Ed. 60, 20689–20694 (2021).

    Article  CAS  Google Scholar 

  34. Peters, R. (ed.) Cooperative Catalysis: Designing Efficient Catalysts for Synthesis (Wiley-VCH, 2015).

  35. Jessop, P. G. Searching for green solvents. Green Chem. 13, 1391–1398 (2011).

    Article  CAS  Google Scholar 

  36. Noyori, R. & Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 30, 97–102 (1997).

    Article  CAS  Google Scholar 

  37. Guo, Q.-S., Du, D.-M. & Xu, J. The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines. Angew. Chem. Int. Ed. 47, 759–762 (2008).

    Article  CAS  Google Scholar 

  38. Klapars, A., Huang, X. & Buchwald, S. L. A general and efficient copper catalyst for the amidation of aryl halides. J. Am. Chem. Soc. 124, 7421–7428 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Fotsch, C. H. & Tasker, A. Phenylethanamine derivatives as calcium receptor modulating agents and their preparation, pharmaceutical compositions and use in the treatment of diseases. US patent WO 2008057282 (2007).

  40. Blackmond, D. G. ‘If pigs could fly’ chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Ed. 48, 2648–2654 (2009).

    Article  CAS  Google Scholar 

  41. Huang, Y. et al. A mechanistic investigation of an Iridium-catalyzed asymmetric hydrogenation of pyridinium salts. Tetrahedron 74, 2182–2190 (2018).

    Article  CAS  Google Scholar 

  42. Pan, H.-J. et al. Asymmetric transfer hydrogenation of imines using alcohol: efficiency and selectivity are affected by the hydrogen donor. Angew. Chem. Int. Ed. 55, 9615–9619 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Education of Singapore (grant nos. A-0004103-00-00 and A-8000055-00-00) and National University of Singapore (grant no. A-0008372-00-00). X.Q.N. acknowledges the Agency for Science, Technology and Research (A*STAR) for a PhD scholarship.

Author information

Authors and Affiliations

Authors

Contributions

X.Q.N. and C.S.L. performed most of the experiments, with support from M.W.L., T.T.Q. and B.-M.Y. on the catalyst and substrate preparation. Y.Z., J.W. and V.I. directed the project. Y.Z., X.Q.N. and C.S.L. cowrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Jie Wu or Yu Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Chao Wang, Xumu Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details and Sections I–X.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, X.Q., Lim, C.S., Liaw, M.W. et al. Direct access to chiral aliphatic amines by catalytic enantioconvergent redox-neutral amination of alcohols. Nat. Synth 2, 572–580 (2023). https://doi.org/10.1038/s44160-023-00264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00264-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing