Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into embodied cognition and mental imagery from aphantasia

Abstract

Mental representations allow humans to think about, remember and communicate about an infinite number of concepts. A key question within cognitive psychology is how the mind stores and accesses the meaning of concepts. Embodied theories propose that concept knowledge includes or requires simulations of the sensory and physical interactions of one’s body with the world, even when a concept is subsequently processed in a context unrelated to those interactions. However, the nature of these simulations is highly debated and their mechanisms underspecified. Insight into whether and how simulations support concept knowledge can be derived from studying related mental representations, such as mental imagery. In particular, research into the inability to form mental imagery, known as aphantasia, can advance understanding of mental imagery and mental simulations. In this Review, we provide an overview of embodied theories of cognition, review research in mental imagery and consider how simulation and mental imagery might overlap. We then synthesize the growing aphantasia literature and discuss how aphantasia can be used to test predictions derived from theories of embodied cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modal and amodal concept knowledge.
Fig. 2: Contingency table of imagery type.
Fig. 3: Relationship between aphantasia, mental imagery and sensorimotor simulation.

Similar content being viewed by others

References

  1. Pearson, J., Naselaris, T., Holmes, E. A. & Kosslyn, S. M. Mental imagery: functional mechanisms and clinical applications. Trends Cogn. Sci. 19, 590–602 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zeman, A. Z. J. et al. Loss of imagery phenomenology with intact visuo-spatial task performance: a case of ‘blind imagination’. Neuropsychologia 48, 145–155 (2010).

    Article  PubMed  Google Scholar 

  3. Zeman, A., Dewar, M. & Della Sala, S. Lives without imagery — congenital aphantasia. Cortex 73, 378–380 (2015). This article is among the first to describe and characterize congenital aphantasia, the lifelong absence of mental imagery.

    Article  PubMed  Google Scholar 

  4. Wilson, M. Six views of embodied cognition. Psychon. Bull. Rev. 9, 625–636 (2002).

    Article  PubMed  Google Scholar 

  5. Barsalou, L. W. Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008). This article describes the theoretical foundation of embodied cognition as it relates to several cognitive processes and reviews the empirical literature testing embodied theories of cognition.

    Article  PubMed  Google Scholar 

  6. Mahon, B. Z. & Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. J. Physiol.-Paris 102, 59–70 (2008).

    Article  PubMed  Google Scholar 

  7. Ostarek, M. & Bottini, R. Towards strong inference in research on embodiment — possibilities and limitations of causal paradigms. J. Cogn. 4, 1–21 (2020). This article critiques empirical evidence for embodied conceptual processing and proposes methodological approaches to better understand the causal relationship between sensory experience and conceptual processing.

    Google Scholar 

  8. Dawes, A. J., Keogh, R., Robuck, S. & Pearson, J. Memories with a blind mind: remembering the past and imagining the future with aphantasia. Cognition 227, 105192 (2022).

    Article  PubMed  Google Scholar 

  9. Fodor, J. A. The Language of Thought Vol. 5 (Harvard Univ. Press, 1975).

  10. Pylyshyn, Z. Computation and cognition: issues in the foundations of cognitive science. Behav. Brain Sci. 3, 111–169 (1980).

    Article  Google Scholar 

  11. Anderson, J. R. Arguments concerning representations for mental imagery. Psychol. Rev. 85, 249–277 (1978).

    Article  Google Scholar 

  12. Pylyshyn, Z. W. What the mind’s eye tells the mind’s brain: a critique of mental imagery. Psychol. Bull. 80, 1–24 (1973).

    Article  Google Scholar 

  13. Zwaan, R. A. The immersed experiencer: toward an embodied theory of language comprehension. Psychol. Learn. Motiv. 44, 35–62 (2004).

    Article  Google Scholar 

  14. Meteyard, L., Cuadrado, S. R., Bahrami, B. & Vigliocco, G. Coming of age: a review of embodiment and the neuroscience of semantics. Cortex 48, 788–804 (2012). This article describes the spectrum of theories related to embodied and non-embodied semantic representation, linking behavioural and neural evidence with the theories.

    Article  PubMed  Google Scholar 

  15. Collins, A. M. & Loftus, E. F. A spreading-activation theory of semantic processing. Psychol. Rev. 82, 407 (1975).

    Article  Google Scholar 

  16. Quillian, M. R. Word concepts: a theory and simulation of some basic semantic capabilities. Behav. Sci. 12, 410–430 (1967).

    Article  PubMed  Google Scholar 

  17. Quillian, R. A revised design for an understanding machine. Mech. Transl. 7, 17–29 (1962).

    Google Scholar 

  18. Patterson, K. & Lambon Ralph, M. A. in Neurobiology of Language Ch. 61 (eds Hickok, G. & Small, S. L.) 765–775 (Academic, 2016).

  19. Barsalou, L. W., Santos, A., Simmons, W. K. & Wilson, C. D. in Symbols, Embodiment, and Meaning (eds De Vega, M., Glenberg, A. M. & Graesser, A. C.) 245–283 (Oxford Univ. Press, 2008).

  20. Connell, L. What have labels ever done for us? The linguistic shortcut in conceptual processing. Lang. Cogn. Neurosci. 34, 1308–1318 (2019).

    Article  Google Scholar 

  21. Paivio, A. Imagery and Verbal Processes (Holt, Rinehart and Winston, 1971).

  22. Paivio, A. Mental imagery in associative learning and memory. Psychol. Rev. 76, 241–263 (1969).

    Article  Google Scholar 

  23. Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H. & Yap, M. J. Visual word recognition of single-syllable words. J. Exp. Psychol.-Gen. 133, 283–316 (2004).

    Article  PubMed  Google Scholar 

  24. Barsalou, L. W. Perceptual symbol systems. Behav. Brain Sci. 22, 577–660 (1999).

    Article  PubMed  Google Scholar 

  25. Glenberg, A. M. & Gallese, V. Action-based language: a theory of language acquisition, comprehension, and production. Cortex 48, 905–922 (2012).

    Article  PubMed  Google Scholar 

  26. Brysbaert, M., Warriner, A. B. & Kuperman, V. Concreteness ratings for 40 thousand generally known English word lemmas. Behav. Res. Methods 46, 904–911 (2014).

    Article  PubMed  Google Scholar 

  27. Lynott, D., Connell, L., Brysbaert, M., Brand, J. & Carney, J. The lancaster sensorimotor norms: multidimensional measures of perceptual and action strength for 40,000 English words. Behav. Res. Methods 52, 1271–1291 (2020).

    Article  PubMed  Google Scholar 

  28. Pexman, P. M., Muraki, E., Sidhu, D. M., Siakaluk, P. D. & Yap, M. J. Quantifying sensorimotor experience: body-object interaction ratings for more than 9,000 English words. Behav. Res. Methods 51, 453–466 (2019).

    Article  PubMed  Google Scholar 

  29. Balota, D. A. et al. The English Lexicon Project. Behav. Res. Methods 39, 445–459 (2007).

    Article  PubMed  Google Scholar 

  30. Siakaluk, P. D., Pexman, P. M., Aguilera, L., Owen, W. J. & Sears, C. R. Evidence for the activation of sensorimotor information during visual word recognition: the body–object interaction effect. Cognition 106, 433–443 (2008).

    Article  PubMed  Google Scholar 

  31. Sidhu, D. M., Kwan, R., Pexman, P. M. & Siakaluk, P. D. Effects of relative embodiment in lexical and semantic processing of verbs. Acta Psychol. 149, 32–39 (2014).

    Article  Google Scholar 

  32. Pecher, D., Zeelenberg, R. & Barsalou, L. W. Verifying different-modality properties for concepts produces switching costs. Psychol. Sci. 14, 119–124 (2003).

    Article  PubMed  Google Scholar 

  33. Pecher, D., Zeelenberg, R. & Barsalou, L. W. Sensorimotor simulations underlie conceptual representations: modality-specific effects of prior activation. Psychon. Bull. Rev. 11, 164–167 (2004).

    Article  PubMed  Google Scholar 

  34. Dove, G. Three symbol ungrounding problems: abstract concepts and the future of embodied cognition. Psychon. Bull. Rev. 23, 1109–1121 (2016).

    Article  PubMed  Google Scholar 

  35. Louwerse, M. M. Symbol interdependency in symbolic and embodied cognition. Top. Cogn. Sci. 3, 273–302 (2011).

    Article  PubMed  Google Scholar 

  36. Glenberg, A. M. & Kaschak, M. P. Grounding language in action. Psychon. Bull. Rev. 9, 558–565 (2002).

    Article  PubMed  Google Scholar 

  37. Stanfield, R. A. & Zwaan, R. The effect of implied orientation derived from verbal context on picture recognition. Psychol. Sci. 12, 153–156 (2001).

    Article  PubMed  Google Scholar 

  38. Morey, R. D. et al. A pre-registered, multi-lab non-replication of the action-sentence compatibility effect (ACE). Psychon. Bull. Rev. 29, 613–626 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Winter, A. The action–sentence compatibility effect (ACE): meta-analysis of a benchmark finding for embodiment. Acta Psychol. 230, 103712 (2022).

    Article  Google Scholar 

  40. Muraki, E. J. & Pexman, P. M. Simulating semantics: are individual differences in motor imagery related to sensorimotor effects in language processing? J. Exp. Psychol. Learn. Mem. Cogn. 47, 1939–1957 (2021).

    Article  PubMed  Google Scholar 

  41. Zwaan, R. A. & Pecher, D. Revisiting mental simulation in language comprehension: six replication attempts. PLoS ONE 7, e51382 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beveridge, M. E. L. & Pickering, M. J. Perspective taking in language: integrating the spatial and action domains. Front. Hum. Neurosci. 7, 577 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hargreaves, I. S., White, M., Pexman, P. M., Pittman, D. & Goodyear, B. G. The question shapes the answer: the neural correlates of task differences reveal dynamic semantic processing. Brain Lang. 120, 73–78 (2012).

    Article  PubMed  Google Scholar 

  44. Tousignant, C. & Pexman, P. Flexible recruitment of semantic richness: context modulates body–object interaction effects in lexical-semantic processing. Front. Hum. Neurosci. 6, 7 (2012).

    Article  Google Scholar 

  45. van Dam, W. O., van Dijk, M., Bekkering, H. & Rueschemeyer, S.-A. Flexibility in embodied lexical-semantic representations. Hum. Brain Mapp. 33, 2322–2333 (2012).

    Article  PubMed  Google Scholar 

  46. Reifegerste, J., Meyer, A. S., Zwitserlood, P. & Ullman, M. T. Aging affects steaks more than knives: evidence that the processing of words related to motor skills is relatively spared in aging. Brain Lang. 218, 104941 (2021).

    Article  PubMed  Google Scholar 

  47. Simonsen, H. G., Lind, M., Hansen, P., Holm, E. & Mevik, B. H. Imageability of Norwegian nouns, verbs and adjectives in a cross-linguistic perspective. Clin. Linguist. Phon. 27, 435–446 (2013).

    Article  PubMed  Google Scholar 

  48. Ibáñez, A. et al. Ecological meanings: a consensus paper on individual differences and contextual influences in embodied language. Preprint at OSF https://osf.io/ej5y3/ (2022).

  49. Andrews, M., Vigliocco, G. & Vinson, D. Integrating experiential and distributional data to learn semantic representations. Psychol. Rev. 116, 463–498 (2009).

    Article  PubMed  Google Scholar 

  50. Banks, B., Wingfield, C. & Connell, L. Linguistic distributional knowledge and sensorimotor grounding both contribute to semantic category production. Cogn. Sci. 45, e13055 (2021).

    Article  PubMed  Google Scholar 

  51. Henningsen-Schomers, M. R., Garagnani, M. & Pulvermüller, F. Influence of language on perception and concept formation in a brain-constrained deep neural network model. Philos. Trans. R. Soc. B Biol. Sci. 378, 20210373 (2023).

    Article  Google Scholar 

  52. Barsalou, L. W. Challenges and opportunities for grounding cognition. J. Cogn. 3, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ostarek, M. & Huettig, F. A task-dependent causal role for low-level visual processes in spoken word comprehension. J. Exp. Psychol. Learn. Mem. Cogn. 43, 1215–1224 (2017).

    Article  PubMed  Google Scholar 

  54. Kuhnke, P., Beaupain, M. C., Arola, J., Kiefer, M. & Hartwigsen, G. Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neurosci. Biobehav. Rev. 144, 104994 (2022). This article reports a meta-analysis examining the role of modal regions in conceptual processing.

    Article  PubMed  Google Scholar 

  55. Gallese, V. Mirror neurons and the social nature of language: the neural exploitation hypothesis. Soc. Neurosci. 3, 317–333 (2008).

    Article  PubMed  Google Scholar 

  56. Pulvermüller, F. Semantic embodiment, disembodiment or misembodiment? In search of meaning in modules and neuron circuits. Brain Lang. 127, 86–103 (2013).

    Article  PubMed  Google Scholar 

  57. Barsalou, L. W. On staying grounded and avoiding quixotic dead ends. Psychon. Bull. Rev. 23, 1122–1142 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Barsalou, L. W. Establishing generalizable mechanisms. Psychol. Inq. 30, 220–230 (2019).

    Article  Google Scholar 

  59. Bottini, R., Morucci, P., D’Urso, A., Collignon, O. & Crepaldi, D. The concreteness advantage in lexical decision does not depend on perceptual simulations. J. Exp. Psychol. Gen. 151, 731–738 (2022).

    Article  PubMed  Google Scholar 

  60. Boulenger, V. et al. Word processing in Parkinson’s disease is impaired for action verbs but not for concrete nouns. Neuropsychologia 46, 743–756 (2008).

    Article  PubMed  Google Scholar 

  61. Buccino, G. et al. Processing graspable object images and their nouns is impaired in Parkinson’s disease patients. Cortex 100, 32–39 (2018).

    Article  PubMed  Google Scholar 

  62. García, A. M. et al. Parkinson’s disease compromises the appraisal of action meanings evoked by naturalistic texts. Cortex 100, 111–126 (2018).

    Article  PubMed  Google Scholar 

  63. García, A. M. et al. How language flows when movements don’t: an automated analysis of spontaneous discourse in Parkinson’s disease. Brain Lang. 162, 19–28 (2016).

    Article  PubMed  Google Scholar 

  64. Nistico, R. et al. The embodiment of language in tremor-dominant Parkinson’s disease patients. Brain Cogn. 135, 103586 (2019).

    Article  PubMed  Google Scholar 

  65. Trumpp, N. M., Kliese, D., Hoenig, K., Haarmeier, T. & Kiefer, M. Losing the sound of concepts: damage to auditory association cortex impairs the processing of sound-related concepts. Cortex 49, 474–486 (2013).

    Article  PubMed  Google Scholar 

  66. Kim, J. S., Elli, G. V. & Bedny, M. Knowledge of animal appearance among sighted and blind adults. Proc. Natl Acad. Sci. USA 116, 11213–11222 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lewis, M., Zettersten, M. & Lupyan, G. Distributional semantics as a source of visual knowledge. Proc. Natl Acad. Sci. USA 116, 19237–19238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nanay, B. Multimodal mental imagery. Cortex 105, 125–134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pearson, J. The human imagination: the cognitive neuroscience of visual mental imagery. Nat. Rev. Neurosci. 20, 624–634 (2019). This article provides an overview of the neural bases of visual imagery.

    Article  PubMed  Google Scholar 

  70. Pearson, J. & Westbrook, F. Phantom perception: voluntary and involuntary nonretinal vision. Trends Cogn. Sci. 19, 278–284 (2015).

    Article  PubMed  Google Scholar 

  71. Kwok, E. L., Leys, G., Koenig-Robert, R. & Pearson, J. Measuring thought-control failure: sensory mechanisms and individual differences. Psychol. Sci. 30, 811–821 (2019).

    Article  PubMed  Google Scholar 

  72. Jeannerod, M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14, S103–S109 (2001).

    Article  PubMed  Google Scholar 

  73. Willems, R. M., Toni, I., Hagoort, P. & Casasanto, D. Neural dissociations between action verb understanding and motor imagery. J. Cogn. Neurosci. 22, 2387–2400 (2009).

    Article  Google Scholar 

  74. Connell, L. & Lynott, D. Do we know what we’re simulating? Information loss on transferring unconscious perceptual simulation to conscious imagery. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1218–1232 (2016).

    Article  PubMed  Google Scholar 

  75. Pearson, J. & Kosslyn, S. M. The heterogeneity of mental representation: ending the imagery debate. Proc. Natl Acad. Sci. USA 112, 10089–10092 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kosslyn, S. M., Ganis, G. & Thompson, W. L. Neural foundations of imagery. Nat. Rev. Neurosci. 2, 635–642 (2001).

    Article  PubMed  Google Scholar 

  77. Keogh, R. & Pearson, J. The perceptual and phenomenal capacity of mental imagery. Cognition 162, 124–132 (2017).

    Article  PubMed  Google Scholar 

  78. Pearson, J., Clifford, C. W. G. & Tong, F. The functional impact of mental imagery on conscious perception. Curr. Biol. 18, 982–986 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Brascamp, J. W., Knapen, T. H. J., Kanai, R., Van Ee, R. & Van Den Berg, A. V. Flash suppression and flash facilitation in binocular rivalry. J. Vis. 7, 12 (2007).

    Article  Google Scholar 

  80. Chang, S., Lewis, D. E. & Pearson, J. The functional effects of color perception and color imagery. J. Vis. 13, 4–4 (2013).

    Article  PubMed  Google Scholar 

  81. Kosslyn, S. M. Scanning visual images: some structural implications. Percept. Psychophys. 14, 90–94 (1973).

    Article  Google Scholar 

  82. Kosslyn, S. M. Information representation in visual images. Cognit. Psychol. 7, 341–370 (1975).

    Article  Google Scholar 

  83. Kosslyn, S. M. Can imagery be distinguished from other forms of internal representation? Evidence from studies of information retrieval times. Mem. Cognit. 4, 291–297 (1976).

    Article  PubMed  Google Scholar 

  84. Parsons, L. M. Imagined spatial transformations of one’s hands and feet. Cognit. Psychol. 19, 178–241 (1987).

    Article  PubMed  Google Scholar 

  85. Shepard, R. N. & Metzler, J. Mental rotation of three-dimensional objects. Science 171, 701–703 (1971).

    Article  PubMed  Google Scholar 

  86. Shepard, S. & Metzler, D. Mental rotation: effects of dimensionality of objects and type of task. J. Exp. Psychol. Hum. Percept. Perform. 14, 3–11 (1988).

    Article  PubMed  Google Scholar 

  87. Kosslyn, S. M. & Pomerantz, J. R. Imagery, propositions, and the form of internal representations. Cognit. Psychol. 9, 52–76 (1977).

    Article  Google Scholar 

  88. Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C. & de Lange, F. P. Shared representations for working memory and mental imagery in early visual cortex. Curr. Biol. 23, 1427–1431 (2013).

    Article  PubMed  Google Scholar 

  89. Stokes, M., Thompson, R., Cusack, R. & Duncan, J. Top-down activation of shape-specific population codes in visual cortex during mental imagery. J. Neurosci. 29, 1565–1572 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Harrison, S. A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kosslyn, S. M. et al. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999).

    Article  PubMed  Google Scholar 

  92. Cui, X., Jeter, C. B., Yang, D., Montague, P. R. & Eagleman, D. M. Vividness of mental imagery: individual variability can be measured objectively. Vis. Res. 47, 474–478 (2007).

    Article  PubMed  Google Scholar 

  93. Dijkstra, N., Zeidman, P., Ondobaka, S., van Gerven, M. A. J. & Friston, K. Distinct top-down and bottom-up brain connectivity during visual perception and imagery. Sci. Rep. 7, 5677 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bensafi, M., Rinck, F., Schaal, B. & Rouby, C. Verbal cues modulate hedonic perception of odors in 5-year-old children as well as in adults. Chem. Senses 32, 855–862 (2007).

    Article  PubMed  Google Scholar 

  95. Djordjevic, J., Zatorre, R. J., Petrides, M., Boyle, J. A. & Jones-Gotman, M. Functional neuroimaging of odor imagery. NeuroImage 24, 791–801 (2005).

    Article  PubMed  Google Scholar 

  96. Bunzeck, N., Wuestenberg, T., Lutz, K., Heinze, H. J. & Jancke, L. Scanning silence: mental imagery of complex sounds. NeuroImage 26, 1119–1127 (2005).

    Article  PubMed  Google Scholar 

  97. Hubbard, T. L. Auditory imagery: empirical findings. Psychol. Bull. 136, 302–329 (2010).

    Article  PubMed  Google Scholar 

  98. Schmidt, T. T., Ostwald, D. & Blankenburg, F. Imaging tactile imagery: changes in brain connectivity support perceptual grounding of mental images in primary sensory cortices. NeuroImage 98, 216–224 (2014).

    Article  PubMed  Google Scholar 

  99. Schmidt, T. T. & Blankenburg, F. The somatotopy of mental tactile imagery. Front. Hum. Neurosci. 13, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yoo, S.-S., Freeman, D. K., McCarthy, J. J. & Jolesz, F. A. Neural substrates of tactile imagery: a functional MRI study. NeuroReport 14, 581–585 (2003).

    Article  PubMed  Google Scholar 

  101. Gerardin, E. Partially overlapping neural networks for real and imagined hand movements. Cereb. Cortex 10, 1093–1104 (2000).

    Article  PubMed  Google Scholar 

  102. Hardwick, R. M., Caspers, S., Eickhoff, S. B. & Swinnen, S. P. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci. Biobehav. Rev. 94, 31–44 (2018).

    Article  PubMed  Google Scholar 

  103. Linke, A. C. & Cusack, R. Flexible information coding in human auditory cortex during perception, imagery, and STM of complex sounds. J. Cogn. Neurosci. 27, 1322–1333 (2015).

    Article  PubMed  Google Scholar 

  104. Plailly, J., Delon-Martin, C. & Royet, J. P. Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Hum. Brain Mapp. 33, 224–234 (2012).

    Article  PubMed  Google Scholar 

  105. Alemanno, F. et al. Action-related semantic content and negation polarity modulate motor areas during sentence reading: an event-related desynchronization study. Brain Res. 1484, 39–49 (2012).

    Article  PubMed  Google Scholar 

  106. Bechtold, L., Ghio, M., Lange, J. & Bellebaum, C. Event-related desynchronization of mu and beta oscillations during the processing of novel tool names. Brain Lang. 177–178, 44–55 (2018).

    Article  PubMed  Google Scholar 

  107. Moreno, I., de Vega, M. & León, I. Understanding action language modulates oscillatory mu and beta rhythms in the same way as observing actions. Brain Cogn. 82, 236–242 (2013).

    Article  PubMed  Google Scholar 

  108. Moreno, I. et al. Brain dynamics in the comprehension of action-related language. a time-frequency analysis of mu rhythms. NeuroImage 109, 50–62 (2015).

    Article  PubMed  Google Scholar 

  109. Niccolai, V. et al. Grasping hand verbs: oscillatory beta and alpha correlates of action-word processing. PLoS ONE 9, e108059 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. van Elk, M., van Schie, H. T., Zwaan, R. A. & Bekkering, H. The functional role of motor activation in language processing: motor cortical oscillations support lexical-semantic retrieval. NeuroImage 50, 665–677 (2010).

    Article  PubMed  Google Scholar 

  111. Cayol, Z., Rotival, C., Paulignan, Y. & Nazir, T. A. “Embodied” language processing: mental motor imagery aptitude predicts word-definition skill for high but not for low imageable words in adolescents. Brain Cogn. 145, 105628 (2020).

    Article  PubMed  Google Scholar 

  112. McKelvie, S. J. & Demers, E. G. Individual differences in reported visual imagery and memory performance. Br. J. Psychol. 70, 51–57 (1979).

    Article  PubMed  Google Scholar 

  113. Bonnet, C. et al. Kinesthetic motor-imagery training improves performance on lexical-semantic access. PLoS ONE 17, e0270352 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pecher, D., van Dantzig, S. & Schifferstein, H. N. J. Concepts are not represented by conscious imagery. Psychon. Bull. Rev. 16, 914–919 (2009).

    Article  PubMed  Google Scholar 

  115. Speed, L. J. & Majid, A. An exception to mental simulation: no evidence for embodied odor language. Cogn. Sci. 42, 1146–1178 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Keogh, R., Pearson, J. & Zeman, A. in Handbook of Clinical Neurology vol. 178 (eds. Barton, J. J. S. & Leff, A.) 277–296 (Elsevier, 2021). This chapter provides a review of the extremes of visual imagery and current research on aphantasia and hyperphantasia.

  117. Dance, C. J., Ipser, A. & Simner, J. The prevalence of aphantasia (imagery weakness) in the general population. Conscious. Cogn. 10, 103243 (2022).

    Article  Google Scholar 

  118. Zeman, A. et al. Phantasia — the psychological significance of lifelong visual imagery vividness extremes. Cortex 130, 426–440 (2020).

    Article  PubMed  Google Scholar 

  119. Milton, F. et al. Behavioral and neural signatures of visual imagery vividness extremes: aphantasia versus hyperphantasia. Cereb. Cortex Commun. 2, tgab035 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Farah, M. J., Hammond, K. M., Levine, D. N. & Calvanio, R. Visual and spatial mental imagery: dissociable systems of representation. Cognit. Psychol. 20, 439–462 (1988).

    Article  PubMed  Google Scholar 

  121. Marks, D. F. Visual imagery differences in the recall of pictures. Br. J. Psychol. 64, 17–24 (1973).

    Article  PubMed  Google Scholar 

  122. Dance, C. J., Ward, J. & Simner, J. What is the link between mental imagery and sensory sensitivity? Insights from aphantasia. Perception 50, 757–782 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Dawes, A. J., Keogh, R., Andrillon, T. & Pearson, J. A cognitive profile of multi-sensory imagery, memory and dreaming in aphantasia. Sci. Rep. 10, 10022 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Keogh, R. Visual working memory in aphantasia: retained accuracy and capacity with a different strategy. Cortex 143, 237–253 (2021).

    Article  PubMed  Google Scholar 

  125. Wicken, M., Keogh, R. & Pearson, J. The critical role of mental imagery in human emotion: insights from fear-based imagery and aphantasia. Proc. R. Soc. B Biol. Sci. 288, 20210267 (2021).

    Article  Google Scholar 

  126. Bainbridge, W. A., Pounder, Z., Eardley, A. F. & Baker, C. I. Quantifying aphantasia through drawing: those without visual imagery show deficits in object but not spatial memory. Cortex 135, 159–172 (2021).

    Article  PubMed  Google Scholar 

  127. Monzel, M., Keidel, K. & Reuter, M. Imagine, and you will find — lack of attentional guidance through visual imagery in aphantasics. Atten. Percept. Psychophys. 83, 2486–2497 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Keogh, R. & Pearson, J. The blind mind: no sensory visual imagery in aphantasia. Cortex 105, 53–60 (2018).

    Article  PubMed  Google Scholar 

  129. Kay, L., Keogh, R., Andrillon, T. & Pearson, J. The pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength. eLife 11, e72484 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Visser, I. et al. Improving the generalizability of infant psychological research: the ManyBabies model. Behav. Brain Sci. 45, e35 (2022).

    Article  PubMed  Google Scholar 

  131. Takahashi, J. et al. Diversity of aphantasia revealed by multiple assessments of visual imagery, multisensory imagery, and cognitive style. Front. Psychol. 14, 1174873 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Blajenkova, O., Kozhevnikov, M. & Motes, M. A. Object-spatial imagery: a new self-report imagery questionnaire. Appl. Cogn. Psychol. 20, 239–263 (2006).

    Article  Google Scholar 

  133. Palermo, L., Boccia, M., Piccardi, L. & Nori, R. Congenital lack and extraordinary ability in object and spatial imagery: an investigation on sub-types of aphantasia and hyperphantasia. Conscious. Cogn. 103, 103360 (2022).

    Article  PubMed  Google Scholar 

  134. Jacobs, C., Schwarzkopf, D. S. & Silvanto, J. Visual working memory performance in aphantasia. Cortex 105, 61–73 (2018).

    Article  PubMed  Google Scholar 

  135. Monzel, M., Vetterlein, A. & Reuter, M. Memory deficits in aphantasics are not restricted to autobiographical memory — perspectives from the dual coding approach. J. Neuropsychol. 16, 444–461 (2022).

    Article  PubMed  Google Scholar 

  136. Fulford, J. et al. The neural correlates of visual imagery vividness — an fMRI study and literature review. Cortex 105, 26–40 (2018).

    Article  PubMed  Google Scholar 

  137. Speed, L. J. & Majid, A. Grounding language in the neglected senses of touch, taste, and smell. Cogn. Neuropsychol. 37, 363–392 (2020).

    Article  PubMed  Google Scholar 

  138. Hald, L. A., van den Hurk, M. & Bekkering, H. Learning verbs more effectively through meaning congruent action animations. Learn. Instr. 39, 107–122 (2015).

    Article  Google Scholar 

  139. James, K. H. & Swain, S. N. Only self-generated actions create sensori-motor systems in the developing brain. Dev. Sci. 14, 673–678 (2011).

    Article  PubMed  Google Scholar 

  140. Muraki, E. J., Siddiqui, I. A. & Pexman, P. M. Quantifying children’s sensorimotor experience: child body–object interaction ratings for 3359 English words. Behav. Res. Methods 54, 2864–2877 (2022).

    Article  PubMed  Google Scholar 

  141. Thill, S. & Twomey, K. E. What’s on the inside counts: a grounded account of concept acquisition and development. Front. Psychol. 7, 402 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Pexman, P. M. The role of embodiment in conceptual development. Lang. Cogn. Neurosci. 34, 1274–1283 (2019).

    Article  Google Scholar 

  143. Cortese, M. J. & Fugett, A. Imageability ratings for 3,000 monosyllabic words. Behav. Res. Methods Instrum. Comput. 36, 384–387 (2004).

    Article  PubMed  Google Scholar 

  144. Schock, J., Cortese, M. J. & Khanna, M. M. Imageability estimates for 3,000 disyllabic words. Behav. Res. Methods 44, 374–379 (2012).

    Article  PubMed  Google Scholar 

  145. Juhasz, B. J. & Yap, M. J. Sensory experience ratings for over 5,000 mono- and disyllabic words. Behav. Res. Methods 45, 160–168 (2013).

    Article  PubMed  Google Scholar 

  146. Brysbaert, M. & New, B. Moving beyond Kucera and Francis: a critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behav. Res. Methods 41, 977–990 (2009).

    Article  PubMed  Google Scholar 

  147. Hoffman, P., Lambon Ralph, M. A. & Rogers, T. T. Semantic diversity: a measure of semantic ambiguity based on variability in the contextual usage of words. Behav. Res. Methods 45, 718–730 (2013).

    Article  PubMed  Google Scholar 

  148. Shaoul, C. & Westbury, C. Exploring lexical co-occurrence space using HiDEx. Behav. Res. Methods 42, 393–413 (2010).

    Article  PubMed  Google Scholar 

  149. Pounder, Z. et al. Only minimal differences between individuals with congenital aphantasia and those with typical imagery on neuropsychological tasks that involve imagery. Cortex 148, 180–192 (2022).

    Article  PubMed  Google Scholar 

  150. Dance, C. J. et al. What is the relationship between aphantasia, synaesthesia and autism? Conscious. Cogn. 89, 103087 (2021).

    Article  PubMed  Google Scholar 

  151. Ganczarek, J., Żurawska-Żyła, R. & Rolek, A. “I remember things, but I can’t picture them.” What can a case of aphantasia tell us about imagery and memory? Psychiatr. Psychol. Klin. 20, 134–141 (2020).

    Article  Google Scholar 

  152. Keogh, R. & Pearson, J. Attention driven phantom vision: measuring the sensory strength of attentional templates and their relation to visual mental imagery and aphantasia. Philos. Trans. R. Soc. B Biol. Sci. 376, 20190688 (2021).

    Article  Google Scholar 

  153. Königsmark, V. T., Bergmann, J. & Reeder, R. R. The Ganzflicker experience: high probability of seeing vivid and complex pseudo-hallucinations with imagery but not aphantasia. Cortex 141, 522–534 (2021).

    Article  PubMed  Google Scholar 

  154. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J. & Clubley, E. The Autism-spectrum Quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 31, 5–17 (2001).

    Article  PubMed  Google Scholar 

  155. Blomkvist, A. Aphantasia: in search of a theory. Mind Lang. https://doi.org/10.1111/mila.12432 (2022).

  156. Blazhenkova, O. & Pechenkova, E. The two eyes of the blind mind: object vs. spatial aphantasia? Russ. J. Cogn. Sci. 6, 51–62 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.J.M. and P.M.P. conceptualized the paper. All authors contributed substantially to discussion of the content. E.J.M. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Emiko J. Muraki or Penny M. Pexman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Laura Bechtold, Leo Dutriaux and Jamie Ward for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraki, E.J., Speed, L.J. & Pexman, P.M. Insights into embodied cognition and mental imagery from aphantasia. Nat Rev Psychol 2, 591–605 (2023). https://doi.org/10.1038/s44159-023-00221-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00221-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing