Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drawing as a versatile cognitive tool

Abstract

Drawing is a cognitive tool that makes the invisible contents of mental life visible. Humans use this tool to produce a remarkable variety of pictures, from realistic portraits to schematic diagrams. Despite this variety and the prevalence of drawn images, the psychological mechanisms that enable drawings to be so versatile have yet to be fully explored. In this Review, we synthesize contemporary work in multiple areas of psychology, computer science and neuroscience that examines the cognitive processes involved in drawing production and comprehension. This body of findings suggests that the balance of contributions from perception, memory and social inference during drawing production varies depending on the situation, resulting in some drawings that are more realistic and other drawings that are more abstract. We also consider the use of drawings as a research tool for investigating various aspects of cognition, as well as the role that drawing has in facilitating learning and communication. Taken together, information about how drawings are used in different contexts illuminates the central role of visually grounded abstractions in human thought and behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drawing as a window into the visual system.
Fig. 2: Drawing from memory and knowledge.
Fig. 3: Drawing to learn.
Fig. 4: Drawing to communicate.

Similar content being viewed by others

References

  1. Schmandt-Besserat, D. How Writing Came About (Univ. Texas Press, 2010).

  2. Chrisomalis, S. Reckonings: Numerals, Cognition, And History (MIT Press, 2020).

  3. Gombrich, E. H. Art And Illusion: A Study In The Psychology Of Pictorial Representation (Phaidon, 1977).

  4. Gelb, I. J. A Study Of Writing (Univ. Chicago Press, 1963).

  5. Tversky, B. in Handbook Of Human Centric Visualization 3–40 (Springer, 2014).

  6. Hoffmann, D. L. et al. U–Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 359, 912–915 (2018).

    Article  PubMed  Google Scholar 

  7. Aubert, M. et al. Pleistocene cave art from Sulawesi, Indonesia. Nature 514, 223–227 (2014).

    Article  PubMed  Google Scholar 

  8. Couse, L. J. & Chen, D. W. A tablet computer for young children? Exploring its viability for early childhood education. J. Res. Technol. Educ. 43, 75–96 (2010).

    Article  Google Scholar 

  9. Berger, J. Selected Essays Of John Berger (Knopf Doubleday, 2008).

  10. Gibson, J. J. The ecological approach to the visual perception of pictures. Leonardo 11, 227–235 (1978). This theoretical paper explores the nature of picture perception and its relationship to the perception of natural scenes.

    Article  Google Scholar 

  11. Greenberg, G. Beyond resemblance. Phil. Rev. 122, 215–287 (2013).

    Article  Google Scholar 

  12. Goodman, N. Languages Of Art: An Approach To A Theory Of Symbols (Hackett, 1976).

  13. Hopkins, R. in Looking Into Pictures: An Interdisciplinary Approach To Pictorial Space (eds Hecht, H., Schwartz, R. & Atherton, M.) 145–165 (MIT Press, 2003).

  14. Bartlett, F. C. Remembering: A Study In Experimental And Social Psychology (Cambridge Univ. Press, 1995).

  15. Minsky, M. & Papert, S. A. Artificial intelligence progress report. MIT https://web.media.mit.edu/~minsky/papers/PR1971.html (1972).

  16. Kellogg, R. Analyzing Children’s Art (National Press Books, 1969).

  17. Kennedy, J. M. & Ross, A. S. Outline picture perception by the Songe of Papua. Perception 4, 391–406 (1975).

    Article  Google Scholar 

  18. Tversky, B. What do sketches say about thinking? In 2002 AAAI Spring Symp. Sketch Understanding Worksh. AAAI Technical Report SS-02-08, 148–151 (AAAI, 2002).

  19. Smith, A. D. et al. Non-lateralised deficits of drawing production in hemispatial neglect. Brain Cogn. 64, 150–157 (2007).

    Article  PubMed  Google Scholar 

  20. Shin, M.-S., Park, S.-Y., Park, S.-R., Seol, S.-H. & Kwon, J. S. Clinical and empirical applications of the Rey–Osterrieth complex figure test. Nat. Protoc. 1, 892–899 (2006).

    Article  PubMed  Google Scholar 

  21. De Leeuw, J. R. jsPsych: a JavaScript library for creating behavioral experiments in a web browser. Behav. Res. Methods 47, 1–12 (2015).

    Article  PubMed  Google Scholar 

  22. Jongejan, J., Rowley, H., Kawashima, T., Kim, J. & Fox-Gieg, N. Quick, Draw! Can a neural network learn to recognize doodling? Google http://quickdraw.withgoogle.com (2016).

  23. Fan, J. E., Yamins, D. L. & Turk-Browne, N. B. Common object representations for visual production and recognition. Cogn. Sci. 42, 2670–2698 (2018). This paper uses computational modelling and behavioural experiments to evaluate the hypothesis that the ability to produce and to recognize line drawings of objects rely on shared visual feature representations.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bainbridge, W. A. A tutorial on capturing mental representations through drawing and crowd-sourced scoring. Behav. Res. Methods 54, 663–675 (2022). This tutorial paper provides an overview of methods for collecting and analysing drawing data using crowdsourcing techniques.

    Article  PubMed  Google Scholar 

  25. Long, B., Fan, J., Chai, Z. & Frank, M. C. Parallel developmental changes in children’s drawing and recognition of visual concepts. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/5yv7x (2021).

    Article  Google Scholar 

  26. Harris, D. B. Children’s Drawings as Measures of Intellectual Maturity. A Revision and Extension of the Goodenough Draw-A-Man Test (Harcourt, Brace and World, 1963).

  27. Sitton, R. & Light, P. Drawing to differentiate: flexibility in young children’s human figure drawings. Br. J. Dev. Psychol. 10, 25–33 (1992).

    Article  Google Scholar 

  28. Bainbridge, W. A., Hall, E. H. & Baker, C. I. Drawings of real-world scenes during free recall reveal detailed object and spatial information in memory. Nat. Commun 10, 5 (2019). This paper employs drawing tasks and crowdsourced annotations to probe the contents of memory for visual scenes.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sangkloy, P., Burnell, N., Ham, C. & Hays, J. The sketchy database: learning to retrieve badly drawn bunnies. ACM Trans. Graph. 35, 1–12 (2016).

    Article  Google Scholar 

  30. Fan, J. E., Hawkins, R. D., Wu, M. & Goodman, N. D. Pragmatic inference and visual abstraction enable contextual flexibility during visual communication. Comput. Brain Behav. 3, 86–101 (2020). This paper proposes a computational model to explain variation in drawing production across communicative contexts.

    Article  Google Scholar 

  31. Fan, J. E., Dinculescu, M. & Ha, D. Collabdraw: an environment for collaborative sketching with an artificial agent. Proc. Conf. Creat. Cogn. https://doi.org/10.1145/3325480.3326578 (2019).

  32. Hawkins, R. D., Sano, M., Goodman, N. D. & Fan, J. E. Visual resemblance and interaction history jointly constrain pictorial meaning. Nat. Commun. 14, 2199 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bainbridge, W. A., Pounder, Z., Eardley, A. F. & Baker, C. I. Quantifying aphantasia through drawing: those without visual imagery show deficits in object but not spatial memory. Cortex 135, 159–172 (2021).

    Article  PubMed  Google Scholar 

  34. Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M. & Mainen, Z. F. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat. Neurosci. 17, 1455–1462 (2014).

    Article  PubMed  Google Scholar 

  35. Kennedy, A. The what, how, and why of naturalistic behavior. Curr. Opin. Neurobiol. 74, 102549 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chamberlain, R., Kozbelt, A., Drake, J. E. & Wagemans, J. Learning to see by learning to draw: a longitudinal analysis of the relationship between representational drawing training and visuospatial skill. Psychol. Aesthet. Creat. Arts 15, 76 (2021). This paper tracks changes in art students’ drawing and visuospatial skills over the course of several months while enrolled in a foundational drawing course.

    Article  Google Scholar 

  37. Schlegel, A. et al. The artist emerges: visual art learning alters neural structure and function. NeuroImage 105, 440–451 (2015).

    Article  PubMed  Google Scholar 

  38. Katz, J. S., Forloines, M. R., Strassberg, L. R. & Bondy, B. Observational drawing in the brain: a longitudinal exploratory fMRI study. Neuropsychologia 160, 107960 (2021).

    Article  PubMed  Google Scholar 

  39. Sayim, B. & Cavanagh, P. What line drawings reveal about the visual brain. Front. Hum. Neurosci. 5, 118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Daston, L. & Galison, P. Objectivity (Zone Books, 2010).

  41. Biederman, I. & Ju, G. Surface versus edge-based determinants of visual recognition. Cogn. Psychol. 20, 38–64 (1988).

    Article  PubMed  Google Scholar 

  42. Ishai, A., Ungerleider, L. G., Martin, A. & Haxby, J. V. The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12, 35–51 (2000).

    Article  PubMed  Google Scholar 

  43. Fan, J. E. et al. Relating visual production and recognition of objects in human visual cortex. J. Neurosci. 40, 1710–1721 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Snodgrass, J. G. & Vanderwart, M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J. Exp. Psychol. Hum. Learn. Mem. 6, 174 (1980).

    Article  Google Scholar 

  45. Walther, D. B., Chai, B., Caddigan, E., Beck, D. M. & Fei-Fei, L. Simple line drawings suffice for functional MRI decoding of natural scene categories. Proc. Natl Acad. Sci. USA 108, 9661–9666 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Walther, D. B. & Shen, D. Nonaccidental properties underlie human categorization of complex natural scenes. Psychol. Sci. 25, 851–860 (2014).

    Article  PubMed  Google Scholar 

  47. Berman, D., Golomb, J. D. & Walther, D. B. Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex. PLoS One 12, e0189828 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morgan, A. T., Petro, L. S. & Muckli, L. Scene representations conveyed by cortical feedback to early visual cortex can be described by line drawings. J. Neurosci. 39, 9410–9423 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sheng, H., Wilder, J. & Walther, D. B. Where to draw the line? PLoS ONE 16, e0258376 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marr, D. & Hildreth, E. Theory of edge detection. Proc. R. Soc. Lond. B 207, 187–217 (1980).

    Article  PubMed  Google Scholar 

  52. Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from human brain activity. Nature 452, 352–355 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H. S., Finkelstein, A., Funkhouser, T. & Rusinkiewicz, S. Where do people draw lines? In ACM SIGGRAPH 2008 (2008).

  54. Cole, F. et al. How well do line drawings depict shape? In ACM SIGGRAPH 2009 Papers (2009).

  55. Hertzmann, A. Why do line drawings work? A realism hypothesis. Perception 49, 439–451 (2020).

    Article  PubMed  Google Scholar 

  56. Hertzmann, A. The role of edges in line drawing perception. Perception 50, 266–275 (2021).

    Article  PubMed  Google Scholar 

  57. Eitz, M., Hays, J. & Alexa, M. How do humans sketch objects? ACM Trans. Graph. 31, 1–10 (2012).

    Google Scholar 

  58. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. Preprint at arXiv https://doi.org/10.48550/arXiv.1409.1556 (2014).

    Article  Google Scholar 

  59. Deng, J. et al. Imagenet: a large-scale hierarchical image database. In 2009 IEEE Conf. on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).

  60. Kriegeskorte, N. Deep neural networks: a new framework for modelling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015).

    Article  PubMed  Google Scholar 

  61. Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

    Article  PubMed  Google Scholar 

  62. Gross, C. G., Rocha-Miranda, C. D. & Bender, D. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

    Article  PubMed  Google Scholar 

  63. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  PubMed  Google Scholar 

  64. Malach, R., Levy, I. & Hasson, U. The topography of high-order human object areas. Trends Cogn. Sci. 6, 176–184 (2002).

    Article  PubMed  Google Scholar 

  65. Hung, C. P., Kreiman, G., Poggio, T. & DiCarlo, J. J. Fast readout of object identity from macaque inferior temporal cortex. Science 310, 863–866 (2005).

    Article  PubMed  Google Scholar 

  66. Yamins, D. L. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Güçlü, U. & van Gerven, M. A. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cadena, S. A. et al. Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS Comput. Biol. 15, e1006897 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schrimpf, M. et al. Brain-score: which artificial neural network for object recognition is most brain-like? Preprint at BioRxiv https://doi.org/10.1101/407007 (2020).

    Article  Google Scholar 

  70. Zhuang, C. et al. Unsupervised neural network models of the ventral visual stream. Proc. Natl Acad. Sci. USA 118, e2014196118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yu, Q. et al. Sketch-a-net: a deep neural network that beats humans. Int. J. Comput. Vis. 122, 411–425 (2017).

    Article  Google Scholar 

  72. Singer, J. J., Seeliger, K., Kietzmann, T. C. & Hebart, M. N. From photos to sketches-how humans and deep neural networks process objects across different levels of visual abstraction. J. Vis. 22, 4–4 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Geirhos, R. et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. Preprint at arXiv https://doi.org/10.48550/arXiv.1811.12231 (2018).

    Article  Google Scholar 

  74. Baker, N. & Elder, J. H. Deep learning models fail to capture the configural nature of human shape perception. iScience 25, 104913 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hochberg, J. & Brooks, V. Pictorial recognition as an unlearned ability: a study of one child’s performance. Am. J. Psychol. 75, 624–628 (1962).

    Article  PubMed  Google Scholar 

  76. DeLoache, J. S., Strauss, M. S. & Maynard, J. Picture perception in infancy. Infant. Behav. Dev. 2, 77–89 (1979).

    Article  Google Scholar 

  77. Tanaka, M. Recognition of pictorial representations by chimpanzees (Pan troglodytes). Anim. Cogn. 10, 169–179 (2007).

    Article  PubMed  Google Scholar 

  78. Itakura, S. Recognition of line-drawing representations by a chimpanzee (Pan troglodytes). J. Gen. Psychol. 121, 189–197 (1994).

    Article  PubMed  Google Scholar 

  79. Hayes, K. J. & Hayes, C. Imitation in a home-raised chimpanzee. J. Comp. Physiol. Psychol. 45, 450–459 (1952).

    Article  PubMed  Google Scholar 

  80. Deregowski, J. B. Real space and represented space: cross-cultural perspectives. Behav. Brain Sci. 12, 51–74 (1989).

    Article  Google Scholar 

  81. DeLoache, J. S., Pierroutsakos, S. L. & Uttal, D. H. The origins of pictorial competence. Curr. Dir. Psychol. Sci. 12, 114–118 (2003).

    Article  Google Scholar 

  82. Ganea, P. A., Pickard, M. B. & DeLoache, J. S. Transfer between picture books and the real world by very young children. J. Cogn. Dev. 9, 46–66 (2008).

    Article  Google Scholar 

  83. Preissler, M. & Carey, S. Do both pictures and words function as symbols for 18- and 24-month-old children? J. Cogn. Dev. 5, 185–212 (2004).

    Article  Google Scholar 

  84. Preissler, M. & Bloom, P. Two-year-olds appreciate the dual nature of pictures. Psychol. Sci. 18, 1–2 (2007).

    Article  PubMed  Google Scholar 

  85. Serpell, R. & Deregowski, J. B. The skill of pictorial perception: an interpretation of cross-cultural evidence. Int. J. Psychol. 15, 145–180 (1980).

    Article  Google Scholar 

  86. Deregowski, J. B., Muldrow, E. S. & Muldrow, W. Pictorial recognition in a remote Ethiopian population. Perception 1, 417–425 (1972).

    Article  PubMed  Google Scholar 

  87. Cohn, N. Framing “I can’t draw”: The influence of cultural frames on the development of drawing. Cult. Psychol. 20, 102–117 (2014).

    Article  Google Scholar 

  88. Whitney, D. & Levi, D. M. Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn. Sci. 15, 160–168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Baldwin, J., Burleigh, A., Pepperell, R. & Ruta, N. The perceived size and shape of objects in peripheral vision. i-Perception 7, 2041669516661900 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Coates, D. R., Wagemans, J. & Sayim, B. Diagnosing the periphery: using the Rey–Osterrieth complex figure drawing test to characterize peripheral visual function. i-Perception 8, 2041669517705447 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sayim, B. & Wagemans, J. Perceived junction changes in crowding revealed with a drawing paradigm. Perception 44, 219–219 (2015).

    Google Scholar 

  92. Sayim, B. & Wagemans, J. Appearance changes and error characteristics in crowding revealed by drawings. J. Vis. 17, 8 (2017).

    Article  PubMed  Google Scholar 

  93. Sayim, B. & Taylor, H. Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking. Psychol. Sci. 30, 1082–1086 (2019).

    Article  PubMed  Google Scholar 

  94. Koch, E., Baig, F. & Zaidi, Q. Picture perception reveals mental geometry of 3D scene inferences. Proc. Natl Acad. Sci. USA 115, 7807–7812 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Todd, J. T. The visual perception of 3D shape. Trends Cogn. Sci. 8, 115–121 (2004).

    Article  PubMed  Google Scholar 

  96. Burleigh, A., Pepperell, R. & Ruta, N. Natural perspective: mapping visual space with art and science. Vision 2, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Baldwin, J., Burleigh, A. & Pepperell, R. Comparing artistic and geometrical perspective depictions of space in the visual field. i-Perception 5, 536–547 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Van Sommers, P. Drawing And Cognition: Descriptive And Experimental Studies Of Graphic Production Processes (Cambridge Univ. Press, 1984).

  99. Sommers, P. V. A system for drawing and drawing-related neuropsychology. Cogn. Neuropsychol. 6, 117–164 (1989).

    Article  Google Scholar 

  100. Agrell, B. & Dehlin, O. The clock-drawing test. Age Ageing 27, 399–404 (1998).

    Article  Google Scholar 

  101. Cantagallo, A. & Della Sala, S. Preserved insight in an artist with extrapersonal spatial neglect. Cortex 34, 163–189 (1998).

    Article  PubMed  Google Scholar 

  102. Blanke, O., Ortigue, S. & Landis, T. Colour neglect in an artist. Lancet 361, 264 (2003).

    Article  PubMed  Google Scholar 

  103. Trojano, L. & Gainotti, G. Drawing disorders in Alzheimer’s disease and other forms of dementia. J. Alzheimers Dis. 53, 31–52 (2016).

    Article  PubMed  Google Scholar 

  104. Halligan, P. W., Fink, G. R., Marshall, J. C. & Vallar, G. Spatial cognition: evidence from visual neglect. Trends Cogn. Sci. 7, 125–133 (2003).

    Article  PubMed  Google Scholar 

  105. Hreha, K., Gillen, G., Noce, N. & Nilsen, D. The feasibility and effectiveness of using prism adaptation to treat motor and spatial dysfunction in stroke survivors with multiple incidents of stroke. Top. Stroke Rehabil. 25, 305–311 (2018).

    Article  PubMed  Google Scholar 

  106. Chatterjee, A. The neuropsychology of visual artistic production. Neuropsychologia 42, 1568–1583 (2004).

    Article  PubMed  Google Scholar 

  107. Franklin, S. & Howard, D. in Mental Lives: Case Studies In Cognition (ed. Campbell, R.) 178–198 (Basil Blackwell, 1992).

  108. Schwartz, M. F. & Chawluk, J. B. in Modular Deficits In Alzheimer-Type Dementia 245–296 (MIT Press, 1990).

  109. Bozeat, S. et al. A duck with four legs: Investigating the structure of conceptual knowledge using picture drawing in semantic dementia. Cogn. Neuropsychol. 20, 27–47 (2003).

    Article  PubMed  Google Scholar 

  110. Mottron, L. & Belleville, S. A study of perceptual analysis in a high-level autistic subject with exceptional graphic abilities. Brain Cogn. 23, 279–309 (1993).

    Article  PubMed  Google Scholar 

  111. Humphrey, N. Cave art, autism, and the evolution of the human mind. Camb. Archaeol. J. 8, 165–191 (1998).

    Article  Google Scholar 

  112. Booth, R., Charlton, R., Hughes, C. & Happé, F. Disentangling weak coherence and executive dysfunction: planning drawing in autism and attention–deficit/hyperactivity disorder. Phil. Trans. R. Soc. Lond. B 358, 387–392 (2003).

    Article  Google Scholar 

  113. Cardillo, R., Menazza, C. & Mammarella, I. C. Visuoconstructive abilities and visuospatial memory in autism spectrum disorder without intellectual disability: is the role of local bias specific to the cognitive domain tested? Neuropsychology 32, 822–834 (2018).

    Article  PubMed  Google Scholar 

  114. Mottron, L., Burack, J. A., Stauder, J. E. & Robaey, P. Perceptual processing among high-functioning persons with autism. J. Child. Psychol. Psychiat. Allied Discip. 40, 203–211 (1999).

    Article  Google Scholar 

  115. Pring, L., Hermelin, B. & Heavey, L. Savants, segments, art and autism. J. Child. Psychol. Psychiat. 36, 1065–1076 (1995).

    Article  PubMed  Google Scholar 

  116. Pring, L., Ryder, N., Crane, L. & Hermelin, B. Local and global processing in savant artists with autism. Perception 39, 1094–1103 (2010).

    Article  PubMed  Google Scholar 

  117. Intraub, H. & Richardson, M. Wide-angle memories of close-up scenes. J. Exp. Psychol. Learn. Mem. Cogn. 15, 179 (1989).

    Article  PubMed  Google Scholar 

  118. Bainbridge, W. A. & Baker, C. I. Boundaries extend and contract in scene memory depending on image properties. Curr. Biol. 30, 537–543 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Prasad, D. & Bainbridge, W. A. The Visual Mandela Effect as evidence for shared and specific false memories across people. Psychol. Sci. 33, 1971–1988 (2022).

    Article  PubMed  Google Scholar 

  120. Zeman, A. Z., Dewar, M. & Della Sala, S. Lives without imagery — congenital aphantasia. Cortex 73, 378–380 (2015).

    Article  PubMed  Google Scholar 

  121. Keogh, R. & Pearson, J. The blind mind: no sensory visual imagery in aphantasia. Cortex 105, 53–60 (2018).

    Article  PubMed  Google Scholar 

  122. Bainbridge, W. A., Kwok, W. Y. & Baker, C. I. Disrupted object-scene semantics boost scene recall but diminish object recall in drawings from memory. Mem. Cogn. 49, 1568–1582 (2021).

    Article  Google Scholar 

  123. Heiser, J. & Tversky, B. Arrows in comprehending and producing mechanical diagrams. Cogn. Sci. 30, 581–592 (2006).

    Article  PubMed  Google Scholar 

  124. Yang, J. & Fan, J. E. Visual communication of object concepts at different levels of abstraction. Preprint at arXiv https://doi.org/10.48550/arXiv.2106.02775 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Huey, H., Lu, X., Walker, C. M. & Fan, J. E. Visual explanations prioritize functional properties at the expense of visual fidelity. Cognition 236, 105414 (2023).

    Article  PubMed  Google Scholar 

  126. Holt, S., Barner, D. & Fan, J. E. Improvised numerals rely on 1-to-1 correspondence. Proc. Annu. Meet. Cogn. Sci. Soc. 43, 1033593 (2021).

    Google Scholar 

  127. Luquet, G.-H. Le Dessin Enfantin (Bibliothèque De Psychologie De L’Enfant Et De Pédagogie) (Alcan, 1927).

  128. Freeman, N. H. & Janikoun, R. Intellectual realism in children’s drawings of a familiar object with distinctive features. Child. Dev. 43, 1116–1121 (1972).

    Article  PubMed  Google Scholar 

  129. Bremner, J. G. & Moore, S. Prior visual inspection and object naming: two factors that enhance hidden feature inclusion in young children’s drawings. Br. J. Dev. Psychol. 2, 371–376 (1984).

    Article  Google Scholar 

  130. Barrett, M. & Light, P. Symbolism and intellectual realism in children’s drawings. Br. J. Educ. Psychol. 46, 198–202 (1976).

    Article  Google Scholar 

  131. Ainsworth, S. E. & Scheiter, K. Learning by drawing visual representations: potential, purposes, and practical implications. Curr. Dir. Psychol. Sci 30, 61–67 (2021). This paper provides an overview of work on how drawing activities are used to support learning in educational contexts.

    Article  Google Scholar 

  132. Kozma, R. & Russell, J. in Visualization In Science Education 121–145 (Springer, 2005).

  133. Quillin, K. & Thomas, S. Drawing-to-learn: a framework for using drawings to promote model-based reasoning in biology. CBE Life Sci. Educ. 14, es2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Fan, J. E. Drawing to learn: how producing graphical representations enhances scientific thinking. Transl. Issues Psychol. Sci. 1, 170–181 (2015). This paper reviews work examining the use of visualizations to support observation, explanation and problem solving in science education.

    Article  Google Scholar 

  135. Fiorella, L. & Zhang, Q. Drawing boundary conditions for learning by drawing. Educ. Psychol. Rev 30, 1115–1137 (2018). This paper reviews work investigating the conditions under which drawing activities support learning in educational contexts.

    Article  Google Scholar 

  136. Fernandes, M. A., Wammes, J. D. & Meade, M. E. The surprisingly powerful influence of drawing on memory. Curr. Dir. Psychol. Sci 27, 302–308 (2018). This paper reviews work comparing the impact of drawing production with other mnemonic techniques (such as writing and visualizing) on verbal memory.

    Article  Google Scholar 

  137. Chamberlain, R. Drawing as a window onto expertise. Curr. Dir. Psychol. Sci 27, 501–507 (2018). This paper reviews work investigating the relationship between drawing expertise and other psychological variables, including cognitive, personality and genetic factors.

    Article  Google Scholar 

  138. Kozbelt, A. Artists as experts in visual cognition. Vis. Cogn 8, 705–723 (2001).

    Article  Google Scholar 

  139. Wammes, J. D., Meade, M. E. & Fernandes, M. A. The drawing effect: evidence for reliable and robust memory benefits in free recall. Q. J. Exp. Psychol 69, 1752–1776 (2016). This paper systematically compares drawing production with other activities with respect to their impact on verbal memory.

    Article  Google Scholar 

  140. Wammes, J. D., Meade, M. E. & Fernandes, M. A. Creating a recollection-based memory through drawing. J. Exp. Psychol. Learn. Mem. Cogn. 44, 734–751 (2018).

    Article  PubMed  Google Scholar 

  141. Chi, M. T. & Wylie, R. The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49, 219–243 (2014).

    Article  Google Scholar 

  142. Slamecka, N. J. & Graf, P. The generation effect: delineation of a phenomenon. J. Exp. Psychol. Hum. Learn. Mem. 4, 592–604 (1978).

    Google Scholar 

  143. Engelkamp, J. Memory For Actions (Psychology Press/Taylor & Francis, 1998).

  144. Chi, M. T., De Leeuw, N., Chiu, M.-H. & LaVancher, C. Eliciting self-explanations improves understanding. Cogn. Sci. 18, 439–477 (1994).

    Google Scholar 

  145. Freeman, S. et al. Active learning increases student performance in science, engineering, and mathematics. Proc. Natl Acad. Sci. USA 111, 8410–8415 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Von Helmholtz, H. Treatise On Physiological Optics (Courier Corporation, 2013).

  147. Olshausen, B. A., Mangun, G. & Gazzaniga, M. in The Cognitive Neurosciences (eds Gazzaniga, M. S. & Mangun G. R.) Vol. 295, Ch. 27 (MIT Press, 2014).

  148. Yildirim, I., Belledonne, M., Freiwald, W. & Tenenbaum, J. Efficient inverse graphics in biological face processing. Sci. Adv. 6, eaax5979 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015).

    Article  PubMed  Google Scholar 

  150. James, K. H. The importance of handwriting experience on the development of the literate brain. Curr. Dir. Psychol. Sci. 26, 502–508 (2017).

    Article  Google Scholar 

  151. Tian, L., Ellis, K., Kryven, M. & Tenenbaum, J. Learning abstract structure for drawing by efficient motor program induction. Adv. Neur. Inf. Process. Syst. 33, 2686–2697 (2020).

    Google Scholar 

  152. VanLehn, K., Jones, R. M. & Chi, M. T. A model of the self-explanation effect. J. Learn. Sci. 2, 1–59 (1992).

    Article  Google Scholar 

  153. Bobek, E. & Tversky, B. Creating visual explanations improves learning. Cogn. Res. Princ. Implic. 1, 27 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Paivio, A. & Csapo, K. Picture superiority in free recall: Imagery or dual coding? Cogn. Psychol. 5, 176–206 (1973).

    Article  Google Scholar 

  155. Peynirciog˘ lu, Z. F. The generation effect with pictures and nonsense figures. Acta Psychol. 70, 153–160 (1989).

    Article  Google Scholar 

  156. Wammes, J. D., Jonker, T. R. & Fernandes, M. A. Drawing improves memory: the importance of multimodal encoding context. Cognition 191, 103955 (2019).

    Article  PubMed  Google Scholar 

  157. Cromley, J. G., Du, Y. & Dane, A. P. Drawing-to-learn: does meta-analysis show differences between technology-based drawing and paper-and-pencil drawing? J. Sci. Educ. Technol. 29, 216–229 (2020).

    Article  Google Scholar 

  158. Van Meter, P. & Garner, J. The promise and practice of learner-generated drawing: literature review and synthesis. Educ. Psychol. Rev. 17, 285–325 (2005).

    Article  Google Scholar 

  159. Tiedemann, H., Morgenstern, Y., Schmidt, F. & Fleming, R. W. One-shot generalization in humans revealed through a drawing task. Elife 11, e75485 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Alesandrini, K. L. Pictorial–verbal and analytic–holistic learning strategies in science learning. J. Educ. Psychol. 73, 358 (1981).

    Article  Google Scholar 

  161. Hall, V. C., Bailey, J. & Tillman, C. Can student-generated illustrations be worth ten thousand words? J. Educ. Psychol. 89, 677 (1997).

    Article  Google Scholar 

  162. Dean, R. S. & Kulhavy, R. W. Influence of spatial organization in prose learning. J. Educ. Psychol. 73, 57 (1981).

    Article  Google Scholar 

  163. Lesgold, A. M., De Good, H. & Levin, J. R. Pictures and young children’s prose learning: a supplementary report. J. Read. Behav. 9, 353–360 (1977).

    Article  Google Scholar 

  164. Backhouse, M., Fitzpatrick, M., Hutchinson, J., Thandi, C. S. & Keenan, I. D. Improvements in anatomy knowledge when utilizing a novel cyclical “observe-reflect-draw-edit-repeat” learning process. Anat. Sci. Educ. 10, 7–22 (2017).

    Article  PubMed  Google Scholar 

  165. Reid, S., Shapiro, L. & Louw, G. How haptics and drawing enhance the learning of anatomy. Anat. Sci. Edu. 12, 164–172 (2019).

    Article  Google Scholar 

  166. Arnold, T. C. & Dwyer, F. M. Realism in visualized instruction. Percept. Motor Skills 40, 369–370 (1975).

    Article  Google Scholar 

  167. Ainsworth, S. & Th Loizou, A. The effects of self-explaining when learning with text or diagrams. Cogn. Sci. 27, 669–681 (2003).

    Article  Google Scholar 

  168. Wammes, J. D., Meade, M. E. & Fernandes, M. A. Learning terms and definitions: drawing and the role of elaborative encoding. Acta Psychol. 179, 104–113 (2017).

    Article  Google Scholar 

  169. Kulhavy, R. W., Lee, J. B. & Caterino, L. C. Conjoint retention of maps and related discourse. Contemp. Educ. Psychol. 10, 28–37 (1985).

    Article  Google Scholar 

  170. Rasco, R. W., Tennyson, R. D. & Boutwell, R. C. Imagery instructions and drawings in learning prose. J. Educ. Psychol. 67, 188 (1975).

    Article  Google Scholar 

  171. Snowman, J. & Cunningham, D. J. A comparison of pictorial and written adjunct aids in learning from text. J. Educ. Psychol. 67, 307 (1975).

    Article  Google Scholar 

  172. Leutner, D., Leopold, C. & Sumfleth, E. Cognitive load and science text comprehension: effects of drawing and mentally imagining text content. Comput. Hum. Behav. 25, 284–289 (2009).

    Article  Google Scholar 

  173. Frank, M. C. & Goodman, N. D. Predicting pragmatic reasoning in language games. Science 336, 998–998 (2012).

    Article  PubMed  Google Scholar 

  174. Goodman, N. & Stuhlmüller, A. Knowledge and implicature: modeling language understanding as social cognition. Top. Cogn. Sci. 5, 173–184 (2013).

    Article  PubMed  Google Scholar 

  175. Franke, M. & Jäger, G. Probabilistic pragmatics, or why Bayes’ rule is probably important for pragmatics. Z. Sprachwiss. 35, 3–44 (2016).

    Article  Google Scholar 

  176. Bergen, L., Levy, R. & Goodman, N. Pragmatic reasoning through semantic inference. Semant. Pragm. https://doi.org/10.3765/sp.9.20 (2016).

    Article  Google Scholar 

  177. Grice, H. P. in Syntax and Semantics (eds. Cole, P. & Morgan, J. L.) vol. 3, 41–58 (Academic, 1975).

  178. Hawkins, R. D. et al. From partners to populations: a hierarchical Bayesian account of coordination and convention. Psychol. Rev. 130, 977–1016 (2023).

    Article  PubMed  Google Scholar 

  179. Tamariz, M. Experimental studies on the cultural evolution of language. Annu. Rev. Linguist. 3, 389–407 (2017).

    Article  Google Scholar 

  180. Zaslavsky, N., Kemp, C., Regier, T. & Tishby, N. Efficient compression in color naming and its evolution. Proc. Natl Acad. Sci. USA 115, 7937–7942 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kemp, C. & Regier, T. Kinship categories across languages reflect general communicative principles. Science 336, 1049–1054 (2012).

    Article  PubMed  Google Scholar 

  182. Kirby, S., Tamariz, M., Cornish, H. & Smith, K. Compression and communication in the cultural evolution of linguistic structure. Cognition 141, 87–102 (2015).

    Article  PubMed  Google Scholar 

  183. Garrod, S., Fay, N., Lee, J., Oberlander, J. & MacLeod, T. Foundations of representation: where might graphical symbol systems come from? Cogn. Sci. 31, 961–987 (2007).

    Article  PubMed  Google Scholar 

  184. Fay, N., Garrod, S., Roberts, L. & Swoboda, N. The interactive evolution of human communication systems. Cogn. Sci. 34, 351–386 (2010).

    Article  PubMed  Google Scholar 

  185. Garrod, S., Fay, N., Rogers, S., Walker, B. & Swoboda, N. Can iterated learning explain the emergence of graphical symbols? Interact. Stud. 11, 33–50 (2010).

    Article  Google Scholar 

  186. Abell, C. Canny resemblance. Phil. Rev. 118, 183–223 (2009).

    Article  Google Scholar 

  187. Voltolini, A. A Syncretistic Theory Of Depiction (Springer, 2015).

  188. Kulvicki, J. Images (Routledge, 2013).

  189. Lewis, M., Balamurugan, A., Zheng, B. & Lupyan, G. Characterizing variability in shared meaning through millions of sketches. Proc. Ann. Meet. Cogn. Sci. Soc. 43, 10302201 (2021).

    Google Scholar 

  190. Cohn, N. & Ehly, S. The vocabulary of manga: visual morphology in dialects of Japanese Visual Language. J. Pragmat. 92, 17–29 (2016).

    Article  Google Scholar 

  191. Cohn, N. A different kind of cultural frame: an analysis of panels in American comics and Japanese manga. Image Narrative 12, 120–134 (2011).

    Google Scholar 

  192. Gombrich, E. H. The Story Of Art (Phaidon, 1995).

  193. Ralph, M. A. L., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55 (2017).

    Article  PubMed  Google Scholar 

  194. Paller, K. A. & Wagner, A. D. Observing the transformation of experience into memory. Trends Cogn. Sci. 6, 93–102 (2002).

    Article  PubMed  Google Scholar 

  195. Schacter, D. L. & Addis, D. R. The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Phil. Trans. R. Soc. B 362, 773–786 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Vinci-Booher, S., Cheng, H. & James, K. H. An analysis of the brain systems involved with producing letters by hand. J. Cogn. Neurosci. 31, 138–154 (2019).

    Article  PubMed  Google Scholar 

  197. Ittelson, W. H. Visual perception of markings. Psychon. Bull. Rev. 3, 171–187 (1996). This theoretical paper explores the role that communicative intent plays in determining how pictures and other markings are perceived.

    Article  PubMed  Google Scholar 

  198. Larkin, J. H. & Simon, H. A. Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11, 65–100 (1987).

    Article  Google Scholar 

  199. Stenning, K. & Oberlander, J. A cognitive theory of graphical and linguistic reasoning: logic and implementation. Cogn. Sci. 19, 97–140 (1995).

    Article  Google Scholar 

  200. Bauer, M. I. & Johnson-Laird, P. N. How diagrams can improve reasoning. Psychol. Sci. 4, 372–378 (1993).

    Article  Google Scholar 

  201. Gobert, J. D. & Clement, J. J. Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. J. Res. Sci. Teach. 36, 39–53 (1999).

    Article  Google Scholar 

  202. Goldstone, R. L. Perceptual learning. Annu. Rev. Psychol. 49, 585–612 (1998).

    Article  PubMed  Google Scholar 

  203. Biederman, I. & Kim, J. G. 17000 years of depicting the junction of two smooth shapes. Perception 37, 161–164 (2008).

    Article  PubMed  Google Scholar 

  204. Ostrofsky, J., Kozbelt, A. & Seidel, A. Perceptual constancies and visual selection as predictors of realistic drawing skill. Psychol. Aesthet. Creat. Arts 6, 124–136 (2012).

    Google Scholar 

  205. Kozbelt, A., Seidel, A., ElBassiouny, A., Mark, Y. & Owen, D. R. Visual selection contributes to artists’ advantages in realistic drawing. Psychol. Aesthet. Creat. Arts 4, 93–102 (2010).

    Google Scholar 

  206. Ellis, K. et al. DreamCoder: growing generalizable, interpretable knowledge with wake–sleep Bayesian program learning. Philos. Trans. R. Soc. A 381, 20220050 (2023).

    Article  Google Scholar 

  207. Chaudhuri, S. et al. Neurosymbolic programming. Found. Trends Program. Lang. 7, 158–243 (2021).

    Article  Google Scholar 

  208. Urton, G. & Llanos, P. N. The Social Life Of Numbers: A Quechua Ontology Of Numbers And Philosophy Of Arithmetic (Univ. Texas Press, 1997).

  209. Tversky, B. in Spatial Cognition II LNAI Vol. 1849, 72–79 (Springer, 2000). This position paper explores how maps and diagrams encode abstract knowledge about spatial, temporal, and semantic relationships.

  210. Hegarty, M. The cognitive science of visual–spatial displays: implications for design. Top. Cogn. Sci. 3, 446–474 (2011).

    Article  PubMed  Google Scholar 

  211. Franconeri, S. L., Padilla, L. M., Shah, P., Zacks, J. M. & Hullman, J. The science of visual data communication: what works. Psychol. Sci. Public Interest 22, 110–161 (2021).

    Article  PubMed  Google Scholar 

  212. Munzner, T. Visualization Analysis And Design (CRC Press, 2014).

  213. Harris, D. B. Children’s drawings as measures of intellectual maturity. J. Aesthet. Art Crit. 23, 516 (1965).

    Article  Google Scholar 

  214. Goodnow, J. J. Visible thinking: cognitive aspects of change in drawings. Child Dev. 49, 637–641 (1978).

    Article  Google Scholar 

  215. Freeman, N. H. Strategies Of Representation In Young Children: Analysis Of Spatial Skills And Drawing Processes (Academic, 1980).

  216. Rosenblatt, E. & Winner, E. The art of children’s drawing. J. Aesthetic Educ. 22, 3–15 (1988).

    Article  Google Scholar 

  217. Thomas, G. V. & Silk, A. M. An Introduction To The Psychology Of Children’s Drawings (New York Univ. Press, 1990).

  218. Lange-Küttner, C. Gender-specific developmental pathways for boys and girls: the Wertheimer Common-Region-Test can predict spatial memory. Int. J. Dev. Sci. 4, 46–66 (2010).

    Article  Google Scholar 

  219. Lange-Kuettner, C. et al. Object-and view-specificity in agreement: the case of embodied perspective. Adv. Ophthalmol. Vis. Syst. 1, 00011 (2014).

    Google Scholar 

  220. Piaget, J. & Cook, M. T. The Origins Of Intelligence In Children 419 (WW Norton, 1952).

  221. Light, P. & McEwen, F. Drawings as messages: the effect of a communication game upon production of view-specific drawings. Br. J. Dev. Psychol. 5, 53–59 (1987).

    Article  Google Scholar 

  222. Light, P. & Simmons, B. The effects of a communication task upon the representation of depth relationships in young children’s drawings. J. Exp. Child. Psychol. 35, 81–92 (1983).

    Article  PubMed  Google Scholar 

  223. Bloom, P. & Markson, L. Intention and analogy in children’s naming of pictorial representations. Psychol. Sci. 9, 200–204 (1998).

    Article  Google Scholar 

  224. Moore, V. The relationship between children’s drawings and preferences for alternative depictions of a familiar object. J. Exp. Child. Psychol. 42, 187–198 (1986).

    Article  Google Scholar 

  225. Karmiloff-Smith, A. Constraints on representational change: evidence from children’s drawing. Cognition 34, 57–83 (1990).

    Article  PubMed  Google Scholar 

  226. Light, P. in Visual Order: The Nature And Development Of Pictorial Representation 214–230 (Cambridge Univ. Press, 1985).

  227. Wu, S. P. & Rau, M. A. How students learn content in science, technology, engineering, and mathematics (STEM) through drawing activities. Educ. Psychol. Rev. 31, 87–120 (2019).

    Article  Google Scholar 

  228. Chamberlain, R. et al. Artists as experts in visual cognition: an update. Psychol. Aesthet. Creat. Arts 13, 58–73 (2019).

    Google Scholar 

  229. Chamberlain, R., McManus, I., Riley, H., Rankin, Q. & Brunswick, N. Local processing enhancements associated with superior observational drawing are due to enhanced perceptual functioning, not weak central coherence. Q. J. Exp. Psychol. 66, 1448–1466 (2013).

    Article  Google Scholar 

  230. Chamberlain, R. & Wagemans, J. Visual arts training is linked to flexible attention to local and global levels of visual stimuli. Acta Psychol. 161, 185–197 (2015).

    Article  Google Scholar 

  231. Perdreau, F. & Cavanagh, P. Drawing skill is related to the efficiency of encoding object structure. i-Perception 5, 101–119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Perdreau, F. & Cavanagh, P. Drawing experts have better visual memory while drawing. J. Vis. 15, 5 (2015).

    Article  PubMed  Google Scholar 

  233. Chamberlain, R. & Wagemans, J. The genesis of errors in drawing. Neurosci. Biobehav. Rev. 65, 195–207 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. B. Ritchie and B. van Buren. This work was supported by a NSF CAREER grant (2047191) to J.E.F., a NSERC Discovery grant to J.D.W., and a NIH grant (R01EY034432) and APF F. J. McGuigan Early Career Investigator Research Grant on Understanding the Human Mind to W.A.B.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Judith E. Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Shaaron Ainsworth, Yaniv Morgenstern, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J.E., Bainbridge, W.A., Chamberlain, R. et al. Drawing as a versatile cognitive tool. Nat Rev Psychol 2, 556–568 (2023). https://doi.org/10.1038/s44159-023-00212-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00212-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing