Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ab initio real-time quantum dynamics of charge carriers in momentum space

This article has been updated

A preprint version of the article is available at arXiv.

Abstract

Application of the non-adiabatic molecular dynamics (NAMD) approach is limited to studying carrier dynamics in the momentum space, as a supercell is required to sample the phonon excitation and electron–phonon (e–ph) interaction at different momenta in a molecular dynamics simulation. Here we develop an ab initio approach for the real-time charge carrier quantum dynamics in the momentum space (NAMD_k) by directly introducing e–ph coupling into the Hamiltonian based on the harmonic approximation. The NAMD_k approach maintains the zero-point energy and includes memory effects of carrier dynamics. The application of NAMD_k to the hot carrier dynamics in graphene reveals the phonon-specific relaxation mechanism. An energy threshold of 0.2 eV—defined by two optical phonon modes—separates the hot electron relaxation into fast and slow regions with lifetimes of pico- and nanoseconds, respectively. The NAMD_k approach provides an effective tool to understand real-time carrier dynamics in the momentum space for different materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hot electron relaxation in graphene with Eini = 1.0 eV using 150 × 150 × 1k-point grid.
Fig. 2: Hot electron relaxation in graphene with different Eini.
Fig. 3: Time-dependent phonon excitation during the hot electron relaxation dynamics.
Fig. 4: Electron temperature evolution in graphene.
Fig. 5: Comparison of NAMD_r and NAMD_k simulations.

Similar content being viewed by others

Data availability

These data are obtained by NAMD_k simulations using our homemade code56,57. The source data for Figs. 15, Supplementary Figs. 1–3 and input files for NAMD_k simulations have been deposited in the Materials Cloud Archive at https://doi.org/10.24435/materialscloud:2n-3j. Source Data are provided with this paper.

Code availability

The code for our algorithm and a guide to reproducing the results is available at GitHub56 and Code Ocean57. In the calculation, e–ph coupling is calculated by the package Perturbo58, which can be obtained at https://perturbo-code.github.io.

Change history

  • 15 June 2023

    In the version of this article initially published, a reference (https://doi.org/10.1016/j.cpc.2021.107970) for the Perturbo software package listed in the Code availability section was missing and has now been amended in the HTML and PDF versions of the article.

References

  1. Tisdale, W. A. et al. Hot-electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010).

    Article  Google Scholar 

  2. Akimov, A. V., Neukirch, A. J. & Prezhdo, O. V. Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 113, 4496–4565 (2013).

    Article  Google Scholar 

  3. Zheng, Q. et al. Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems. WIREs Comput. Mol. Sci. 9, 1411 (2019).

    Article  Google Scholar 

  4. Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Modern Phys. 93, 025006 (2021).

    Article  Google Scholar 

  5. Poncé, S., Li, W., Reichardt, S. & Giustino, F. First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Rep. Prog. Phys. 83, 036501 (2020).

    Article  MathSciNet  Google Scholar 

  6. Bernardi, M. First-principles dynamics of electrons and phonons*. Eur. Phys. J. B 89, 239 (2016).

    Article  MathSciNet  Google Scholar 

  7. Jhalani, V. A., Zhou, J.-J. & Bernardi, M. Ultrafast hot carrier dynamics in gan and its impact on the efficiency droop. Nano Lett. 17, 5012–5019 (2017).

    Article  Google Scholar 

  8. Tong, X. & Bernardi, M. Toward precise simulations of the coupled ultrafast dynamics of electrons and atomic vibrations in materials. Phys. Rev. Res. 3, 023072 (2021).

    Article  Google Scholar 

  9. Li, X., Tully, J. C., Schlegel, H. B. & Frisch, M. J. Ab initio ehrenfest dynamics. J. Chem. Phys. 123, 084106 (2005).

    Article  Google Scholar 

  10. Meng, S. & Kaxiras, E. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. J. Chem. Phys. 129, 054110 (2008).

    Article  Google Scholar 

  11. Kolesov, G., Granas, O., Hoyt, R., Vinichenko, D. & Kaxiras, E. Real-time TD-DFT with classical ion dynamics: methodology and applications. J. Chem. Theory Comput. 12, 466–476 (2016).

    Article  Google Scholar 

  12. Wang, Z., Li, S.-S. & Wang, L.-W. Efficient real-time time-dependent density functional theory method and its application to a collision of an ion with a 2D material. Phys. Rev. Lett. 114, 063004 (2015).

    Article  Google Scholar 

  13. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    Article  Google Scholar 

  14. Schleife, A., Draeger, E. W., Kanai, Y. & Correa, A. A. Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn–Sham equations in large-scale simulations. J. Chem. Phys. 137, 22–546 (2012).

    Article  Google Scholar 

  15. Shepard, C., Zhou, R., Yost, D. C., Yao, Y. & Kanai, Y. Simulating electronic excitation and dynamics with real-time propagation approach to TDDFT within plane-wave pseudopotential formulation. J. Chem. Phys. 155, 100901 (2021).

    Article  Google Scholar 

  16. Akimov, A. V. & Prezhdo, O. V. The pyxaid program for non-adiabatic molecular dynamics in condensed matter systems. J Chem. Theory Comput. 9, 4959–72 (2013).

    Article  Google Scholar 

  17. Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  Google Scholar 

  18. Cui, G. & Thiel, W. Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J. Chem. Phys. 141, 124101 (2014).

    Article  Google Scholar 

  19. Zhang, X., Li, Z. & Lu, G. First-principles determination of charge carrier mobility in disordered semiconducting polymers. Phys. Rev. B 82, 205210 (2010).

    Article  Google Scholar 

  20. Jiang, X. et al. Real-time GW-BSE investigations on spin-valley exciton dynamics in monolayer transition metal dichalcogenide. Sci. Adv. 7, 3759 (2021).

    Article  Google Scholar 

  21. Liu, J., Zhang, X. & Lu, G. Excitonic effect drives ultrafast dynamics in van der waals heterostructures. Nano Lett. 20, 4631–4637 (2020).

    Article  Google Scholar 

  22. Zheng, Q. et al. Phonon-assisted ultrafast charge transfer at van der waals heterostructure interface. Nano Lett. 17, 6435–6442 (2017).

    Article  Google Scholar 

  23. Li, W., Zhou, L., Prezhdo, O. V. & Akimov, A. V. Spin-orbit interactions greatly accelerate nonradiative dynamics in lead halide perovskites. ACS Energy Lett. 3, 2159–2166 (2018).

    Article  Google Scholar 

  24. Zheng, Z., Zheng, Q. & Zhao, J. Spin-orbit coupling induced demagnetization in Ni: ab initio nonadiabatic molecular dynamics perspective. Phys. Rev. B 105, 085142 (2022).

    Article  Google Scholar 

  25. Liu, X.-Y. et al. Spin-orbit coupling accelerates the photoinduced interfacial electron transfer in a fullerene-based perovskite heterojunction. J. Phys. Chem. Lett. 12, 1131–1137 (2021).

    Article  Google Scholar 

  26. Sohier, T., Calandra, M. & Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: theoretical developments and application to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).

    Article  Google Scholar 

  27. Monserrat, B. Electron–phonon coupling from finite differences. J. Phys. Condensed Matter 30, 083001 (2018).

    Article  Google Scholar 

  28. Ye, Z.-Q., Cao, B.-Y., Yao, W.-J., Feng, T. & Ruan, X. Spectral phonon thermal properties in graphene nanoribbons. Carbon 93, 915–923 (2015).

    Article  Google Scholar 

  29. Dal Conte, S. et al. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11, 421–426 (2015).

    Article  Google Scholar 

  30. Park, C.-H., Giustino, F., Cohen, M. L. & Louie, S. G. Velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys. Rev. Lett. 99, 086804 (2007).

    Article  Google Scholar 

  31. Park, C.-H., Giustino, F., Cohen, M. L. & Louie, S. G. Electron–phonon interactions in graphene, bilayer graphene, and graphite. Nano Lett. 8, 4229–4233 (2008).

    Article  Google Scholar 

  32. Gierz, I. et al. Snapshots of non-equilibrium dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

    Article  Google Scholar 

  33. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article  Google Scholar 

  34. Gierz, I. et al. Tracking primary thermalization events in graphene with photoemission at extreme time scales. Phys. Rev. Lett. 115, 086803 (2015).

    Article  Google Scholar 

  35. Na, M. X. et al. Direct determination of mode-projected electron-phonon coupling in the time domain. Science 366, 1231 (2019).

    Article  Google Scholar 

  36. Kampfrath, T., Perfetti, L., Schapper, F., Frischkorn, C. & Wolf, M. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005).

    Article  Google Scholar 

  37. Stange, A. et al. Hot electron cooling in graphite: supercollision versus hot phonon decay. Phys. Rev. B 92, 184303 (2015).

    Article  Google Scholar 

  38. Wang, H. et al. Ultrafast relaxation dynamics of hot optical phonons in graphene. Appl. Phys. Lett. 96, 081917 (2010).

    Article  Google Scholar 

  39. Butscher, S., Milde, F., Hirtschulz, M., Malić, E. & Knorr, A. Hot electron relaxation and phonon dynamics in graphene. Appl. Phys. Lett. 91, 203103 (2007).

    Article  Google Scholar 

  40. Strait, J. H. et al. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 11, 4902–4906 (2011).

    Article  Google Scholar 

  41. Zhang, H. et al. Self-energy dynamics and the mode-specific phonon threshold effect in Kekulé-ordered graphene. Natl Sci. Rev. 9, 175 (2022).

    Article  Google Scholar 

  42. Lian, C., Hu, S.-Q., Guan, M.-X. & Meng, S. Momentum-resolved TDDFT algorithm in atomic basis for real time tracking of electronic excitation. J. Chem. Phys. 149, 154104 (2018).

    Article  Google Scholar 

  43. Bertsch, G. F., Iwata, J.-I., Rubio, A. & Yabana, K. Real-space, real-time method for the dielectric function. Phys. Rev. B 62, 7998–8002 (2000).

    Article  Google Scholar 

  44. Marques, M. A. L., Castro, A., Bertsch, G. F. & Rubio, A. octopus: a first-principles tool for excited electron–ion dynamics. Comput. Phys. Commun. 151, 60–78 (2003).

    Article  Google Scholar 

  45. Castro, A. et al. octopus: a tool for the application of time-dependent density functional theory. Phys. Status Solidi B 243, 2465–2488 (2006).

    Article  Google Scholar 

  46. Andrade, X. et al. Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys. 17, 31371–31396 (2015).

    Article  MathSciNet  Google Scholar 

  47. Hu, S.-Q. et al. Tracking photocarrier-enhanced electron–phonon coupling in nonequilibrium. npj Quantum Mater. 7, 14 (2022).

    Article  Google Scholar 

  48. Chu, W. & Prezhdo, O. V. Concentric approximation for fast and accurate numerical evaluation of nonadiabatic coupling with projector augmented-wave pseudopotentials. J. Phys. Chem. Lett. 12, 3082–3089 (2021).

    Article  Google Scholar 

  49. Chu, W. et al. Accurate computation of nonadiabatic coupling with projector augmented-wave pseudopotentials. J. Phys. Chem. Lett. 11, 10073–10080 (2020).

    Article  Google Scholar 

  50. Fernandez-Alberti, S., Roitberg, A. E., Nelson, T. & Tretiak, S. Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules. J. Chem. Phys. 137, 014512 (2012).

    Article  Google Scholar 

  51. Qiu, J., Bai, X. & Wang, L. Crossing classified and corrected fewest switches surface hopping. J. Phys. Chem. Lett. 9, 4319–4325 (2018).

    Article  Google Scholar 

  52. Wang, L. & Prezhdo, O. V. A simple solution to the trivial crossing problem in surface hopping. J. Phys. Chem. Lett. 5, 713–719 (2014).

    Article  Google Scholar 

  53. Hale, P. J., Hornett, S. M., Moger, J., Horsell, D. W. & Hendry, E. Hot phonon decay in supported and suspended exfoliated graphene. Phys. Rev. B 83, 121404 (2011).

    Article  Google Scholar 

  54. Chen, H.-Y., Sangalli, D. & Bernardi, M. Exciton-phonon interaction and relaxation times from first principles. Phys. Rev. Lett. 125, 107401 (2020).

    Article  Google Scholar 

  55. Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794–7800 (2015).

    Article  Google Scholar 

  56. Zheng, Z. & Zheng, Q. Hefei-NAMD-EPC v.1.10.6 (GitHub, 2023); https://github.com/ZhenfaZheng/NAMDinMomentumSpace.git

  57. Zheng, Z. & Zheng, Q. Ab initio real-time quantum dynamics of charge carriers in momentum space. CodeOcean https://doi.org/10.24433/CO.4619996.v1 (2023).

  58. Zhou, J.-J. et al. Perturbo: A software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics. Comput. Phys. Commun. https://doi.org/10.1016/j.cpc.2021.107970 (2021).

Download references

Acknowledgements

J.Z. acknowledges the support of the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0303306); the National Natural Science Foundation of China (NSFC, grant nos. 12125408 and 11974322); and the informatization plan of Chinese Academy of Sciences (grant no. CAS-WX2021SF-0105). Q.Z. acknowledges the support of the NSFC (grant no. 12174363). O.V.P. acknowledges funding of the US National Science Foundation (grant no. CHE-2154367). Calculations were performed at the Hefei Advanced Computing Center, the Supercomputing Center at USTC, and the ORISE Supercomputer. We received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. contributed to this work before March 2022. J.Z. supervised the research project. Y.S. conceived the original idea. J.Z., Q.Z., Y.S. and Z.Z. developed the method, whereas J.-J.Z. and O.V.P. provided suggestions to improve the method. Q.Z. constructed the original Hefei-NAMD code. Z.Z. developed the NAMD_k version of Hefei-NAMD on the basis of the original Hefei-NAMD code, performed the NAMD_k simulation of graphene, and data analysis, with help from Q.Z. J.-J.Z. provided the patch of PERTURBO package for outputting e–ph matrix elements data. J.Z., Q.Z. and Z.Z. wrote the manuscript. The manuscript reflects the contributions of all authors.

Corresponding authors

Correspondence to Yongliang Shi, Qijing Zheng or Jin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Jun Yin, Sergei Tretiak, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Proof of zero non-adiabatic coupling for Bloch states with different momenta, and Supplementary Figs. 1–3.

Supplementary Data 1

Source data for Supplementary Fig. 1.

Supplementary Data 2

Source data for Supplementary Fig. 2.

Supplementary Data 3

Source data for Supplementary Fig. 3.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Shi, Y., Zhou, JJ. et al. Ab initio real-time quantum dynamics of charge carriers in momentum space. Nat Comput Sci 3, 532–541 (2023). https://doi.org/10.1038/s43588-023-00456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00456-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing