Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Electrospinning of nanofibres

Abstract

Electrospinning is used to fabricate microscale to nanoscale materials from polymeric solutions based on electrohydrodynamics. Material modifications are achieved through physical and chemical processes, producing diverse material architectures, from laboratory to industrial scales, for conventional and emerging applications. This Primer explains electrospinning technology, encompassing principles, methodologies, equipment, materials, applications, scalability and optimization. The article begins by elucidating the working principles, providing an overview of electrospinning methods and process parameters at laboratory and industrial scales, and discussing emerging equipment. Methods are described for tailoring the composition, architecture and properties of electrospun fibres and fibre assemblies. The versatility of these properties makes electrospun materials suitable for diverse applications spanning environmental, energy and medical applications, textiles, wearables, agriculture and advanced materials. The Primer concludes by discussing the constraints of current electrospinning techniques and offers a perspective on the field’s potential future trajectory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example of a typical electrospinning experimental set-up.
Fig. 2: Experimental design process and factors affecting electrospinning.
Fig. 3: Electrospinning of diverse materials and morphology.
Fig. 4: Influence of novel electrospinning techniques.
Fig. 5: Applications of electrospinning in environmental, biomedical, wearable and other fields.
Fig. 6: Outlook of electrospinning.

Similar content being viewed by others

References

  1. Reneker, D. H. & Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216 (1996).

    Article  ADS  Google Scholar 

  2. Srinivasan, G. & Reneker, D. H. Structure and morphology of small diameter electrospun aramid fibers. Polym. Int. 36, 195–201 (1995).

    Article  Google Scholar 

  3. Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019).

    Article  Google Scholar 

  4. Doshi, J. & Reneker, D. H. Electrospinning process and applications of electrospun fibers. J. Electrost. 35, 151–160 (1995).

    Article  Google Scholar 

  5. Ji, L. & Zhang, X. Generation of activated carbon nanofibers from electrospun polyacrylonitrile–zinc chloride composites for use as anodes in lithium-ion batteries. Electrochem. Commun. 11, 684–687 (2009).

    Article  Google Scholar 

  6. Yu, Y. et al. Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Ed. 48, 6485–6489 (2009).

    Article  Google Scholar 

  7. Yoshimoto, H., Shin, Y. M., Terai, H. & Vacanti, J. P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24, 2077–2082 (2003).

    Article  Google Scholar 

  8. Chua, K.-N. et al. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26, 2537–2547 (2005).

    Article  Google Scholar 

  9. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  ADS  Google Scholar 

  10. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article  ADS  Google Scholar 

  11. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. & Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003).

    Article  Google Scholar 

  12. Yang, F., Murugan, R., Wang, S. & Ramakrishna, S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603–2610 (2005).

    Article  Google Scholar 

  13. Mo, X. M., Xu, C. Y., Kotaki, M. & Ramakrishna, S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25, 1883–1890 (2004).

    Article  Google Scholar 

  14. Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R. & Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012).

    Article  Google Scholar 

  15. Barhate, R. S. & Ramakrishna, S. Nanofibrous filtering media: filtration problems and solutions from tiny materials. J. Membr. Sci. 296, 1–8 (2007).

    Article  Google Scholar 

  16. Yoon, K. et al. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47, 2434–2441 (2006).

    Article  Google Scholar 

  17. Dou, L. et al. High‐entropy‐nanofibers enhanced polymer nanocomposites for high‐performance energy storage. Adv. Energy Mater. 13, 2203925 (2023).

    Article  Google Scholar 

  18. Ji, L., Lin, Z., Medford, A. J. & Zhang, X. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47, 3346–3354 (2009).

    Article  Google Scholar 

  19. Zhu, C., Mu, X., van Aken, P. A., Yu, Y. & Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156 (2014).

    Article  Google Scholar 

  20. Lee, S. et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370, 966–970 (2020).

    Article  ADS  Google Scholar 

  21. Gao, Q. et al. Breathable and flexible polymer membranes with mechanoresponsive electric resistance. Adv. Funct. Mater. 30, 1907555 (2020).

    Article  Google Scholar 

  22. Li, Z. et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J. Am. Chem. Soc. 130, 5036–5037 (2008).

    Article  Google Scholar 

  23. Bairagi, S. et al. High-performance triboelectric nanogenerators based on commercial textiles: electrospun nylon 66 nanofibers on silk and PVDF on polyester. ACS Appl. Mater. Interfaces 14, 44591–44603 (2022).

    Article  Google Scholar 

  24. Li, X. et al. Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling. Mater. Horiz. 10, 2487–2495 (2023).

    Article  Google Scholar 

  25. Shi, C. et al. Oregano essential oil/β-cyclodextrin inclusion compound polylactic acid/polycaprolactone electrospun nanofibers for active food packaging. Chem. Eng. J. 445, 136746 (2022).

    Article  Google Scholar 

  26. Dehnad, D. et al. Bioactive-loaded nanovesicles embedded within electrospun plant protein nanofibers; a double encapsulation technique. Food Hydrocoll. 141, 108683 (2023).

    Article  Google Scholar 

  27. Rezaeinia, H., Ghorani, B., Emadzadeh, B. & Tucker, N. Electrohydrodynamic atomization of balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: characterization of nano-capsules and modeling the kinetics of release. Food Hydrocoll. 93, 374–385 (2019).

    Article  Google Scholar 

  28. Krishnamoorthy, V. & Rajiv, S. Tailoring electrospun polymer blend carriers for nutrient delivery in seed coating for sustainable agriculture. J. Clean. Prod. 177, 69–78 (2018).

    Article  Google Scholar 

  29. Lan, L. et al. Breathable nanogenerators for an on-plant self-powered sustainable agriculture system. ACS Nano 15, 5307–5315 (2021).

    Article  Google Scholar 

  30. Ji, D. et al. The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc–air batteries. Angew. Chem. Int. Ed. 58, 13840–13844 (2019).

    Article  Google Scholar 

  31. Li, M. et al. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv. Energy Mater. 9, 1803185 (2019).

    Article  Google Scholar 

  32. Luo, C. J., Stoyanov, S. D., Stride, E., Pelan, E. & Edirisinghe, M. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem. Soc. Rev. 41, 4708 (2012).

    Article  Google Scholar 

  33. Li, D. & Xia, Y. N. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004).

    Article  Google Scholar 

  34. Li, L. et al. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017).

    Article  Google Scholar 

  35. Meng, X. et al. Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion. Nat. Commun. 14, 2643 (2023).

    Article  ADS  Google Scholar 

  36. Lauricella, M., Succi, S., Zussman, E., Pisignano, D. & Yarin, A. L. Models of polymer solutions in electrified jets and solution blowing. Rev. Mod. Phys. 92, 035004 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  37. Yan, Z. et al. Nanobiology dependent therapeutic convergence between biocompatibility and bioeffectiveness of graphene oxide quantum dot scaffold for immuno-inductive angiogenesis and nerve regeneration. Adv. Funct. Mater. 33, 2211709 (2023).

    Article  Google Scholar 

  38. Ritzau-Reid, K. I. et al. Microfibrous scaffolds guide stem cell lumenogenesis and brain organoid engineering. Adv. Mater. 35, e2300305 (2023).

    Article  Google Scholar 

  39. Zhou, X. et al. Flowerbed-inspired biomimetic scaffold with rapid internal tissue infiltration and vascularization capacity for bone repair. ACS Nano 17, 5140–5156 (2023).

    Article  Google Scholar 

  40. Dai, X. et al. Hybrid biofabrication of neurosecretory structures as a model for neurosecretion. Int. J. Bioprint. 9, 129–141 (2023).

    Google Scholar 

  41. Cheng, R. et al. In-situ synthesis of stable perovskite quantum dots in core-shell nanofibers via microfluidic electrospinning. Chin. Chem. Lett. 34, 107384 (2023).

    Article  ADS  Google Scholar 

  42. Brown, T. D., Dalton, P. D. & Hutmacher, D. W. Melt electrospinning today: an opportune time for an emerging polymer process. Prog. Polym. Sci. 56, 116–166 (2016).

    Article  Google Scholar 

  43. Madruga, L. Y. C. & Kipper, M. J. Expanding the repertoire of electrospinning: new and emerging biopolymers, techniques, and applications. Adv. Healthc. Mater. 11, 2101979 (2022).

    Article  Google Scholar 

  44. Gao, Q. et al. Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano Micro Lett. 15, 139 (2023).

    Article  ADS  Google Scholar 

  45. Tebyetekerwa, M. & Ramakrishna, S. What is next for electrospinning? Matter 2, 279–283 (2020).

    Article  Google Scholar 

  46. Reneker, D. H. & Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425 (2008).

    Article  Google Scholar 

  47. Taylor, G. I. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. 280, 383–397 (1964).

    ADS  Google Scholar 

  48. Taylor, G. I. Electrically driven jets. Proc. R. Soc. Lond. 313, 453 (1969).

    ADS  Google Scholar 

  49. Han, D. & Steckl, A. J. Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem 84, 1453–1497 (2019).

    Article  Google Scholar 

  50. Sivan, M. et al. AC electrospinning: impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Mater. Today Chem. 26, 101025 (2022).

    Article  Google Scholar 

  51. Erben, J., Kalous, T. & Chvojka, J. AC bubble electrospinning technology for preparation of nanofibrous mats. ACS Omega 5, 8268–8271 (2020).

    Article  Google Scholar 

  52. Joy, N., Anuraj, R., Viravalli, A., Dixit, H. N. & Samavedi, S. Coupling between voltage and tip-to-collector distance in polymer electrospinning: insights from analysis of regimes, transitions and cone/jet features. Chem. Eng. Sci. 230, 116200 (2021).

    Article  Google Scholar 

  53. Hsu, Y.-H., Chan, C.-H. & Tang, W. C. Alignment of multiple electrospun piezoelectric fiber bundles across serrated gaps at an incline: a method to generate textile strain sensors. Sci. Rep. 7, 15436 (2017).

    Article  ADS  Google Scholar 

  54. Okutan, N., Terzi, P. & Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 39, 19–26 (2014).

    Article  Google Scholar 

  55. Li, Y. et al. Developments of advanced electrospinning techniques: a critical review. Adv. Mater. Technol. 6, 2100410 (2021).

    Article  Google Scholar 

  56. Li, D., Wang, Y. & Xia, Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16, 361–366 (2004).

    Article  Google Scholar 

  57. Li, D., Wang, Y. & Xia, Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 3, 1167–1171 (2003).

    Article  ADS  Google Scholar 

  58. Dalton, P. D., Klee, D. & Möller, M. Electrospinning with dual collection rings. Polymer 46, 611–614 (2005).

    Article  Google Scholar 

  59. Wu, J. et al. Electrospun nanoyarn scaffold and its application in tissue engineering. Mater. Lett. 89, 146–149 (2012).

    Article  Google Scholar 

  60. Wei, L., Sun, R., Liu, C., Xiong, J. & Qin, X. Mass production of nanofibers from needleless electrospinning by a novel annular spinneret. Mater. Des. 179, 107885 (2019).

    Article  Google Scholar 

  61. Zhang, X., Xie, L., Wang, X., Shao, Z. & Kong, B. Electrospinning super-assembly of ultrathin fibers from single- to multi-Taylor cone sites. Appl. Mater. Today 26, 101272 (2022).

    Article  Google Scholar 

  62. Niu, H. & Lin, T. Fiber generators in needleless electrospinning. J. Nanomater. 2012, 725950 (2012).

    Article  Google Scholar 

  63. Silva, P. M., Torres‐Giner, S., Vicente, A. A. & Cerqueira, M. A. Management of operational parameters and novel spinneret configurations for the electrohydrodynamic processing of functional polymers. Macromol. Mater. Eng. 307, 2100858 (2022).

    Article  Google Scholar 

  64. Hohman, M. M., Shin, M., Rutledge, G. & Brenner, M. P. Electrospinning and electrically forced jets. II. applications. Phys. Fluids 13, 2221–2236 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  65. Lee, J. J. L., Andriyana, A., Ang, B. C., Huneau, B. & Verron, E. Electrospun PMMA polymer blend nanofibrous membrane: electrospinability, surface morphology and mechanical response. Mater. Res. Express 5, 065311 (2018).

    Article  ADS  Google Scholar 

  66. Singh, M., Chauhan, D., Das, A. K., Iqbal, Z. & Solanki, P. R. PVA/PMMA polymer blended composite electrospun nanofibers mat and their potential use as an anti-biofilm product. J. Appl. Polym. Sci. 138, 50340 (2021).

    Article  Google Scholar 

  67. Mailley, D., Hébraud, A. & Schlatter, G. A review on the impact of humidity during electrospinning: from the nanofiber structure engineering to the applications. Macromol. Mater. Eng. 306, 2100115 (2021).

    Article  Google Scholar 

  68. Marquez, A. L., Emilio Gareis, I., Jose Dias, F., Gerhard, C. & Florencia Lezcano, M. Methods to characterize electrospun scaffold morphology: a critical review. Polymers 14, 467 (2022).

    Article  Google Scholar 

  69. Tan, E. P. S. & Lim, C. T. Novel approach to tensile testing of micro- and nanoscale fibers. Rev. Sci. Instrum. 75, 2581–2585 (2004).

    Article  ADS  Google Scholar 

  70. Shibata, Y. & Miyazaki, T. New methods for the evaluation of bone quality. Nanoindentation protocol for measurement of bone mechanical properties of material level [Japanese]. Clin. Calcium 27, 1139–1145 (2017).

    Google Scholar 

  71. Srivastava, R. Synthesis and characterization techniques of nanomaterials. Int. J. Green. Nanotechnol. 4, 17–27 (2012).

    Article  Google Scholar 

  72. Hodge, J. G. & Quint, C. Improved porosity of electrospun poly(lactic-co-glycolic) scaffolds by sacrificial microparticles enhances cellular infiltration compared to sacrificial microfiber. J. Biomater. Appl. 37, 77–88 (2022).

    Article  Google Scholar 

  73. Gu, J. et al. Electrostatic-modulated interfacial crosslinking and waterborne emulsion coating toward waterproof, breathable, and antifouling fibrous membranes. Chem. Eng. J. 454, 140439 (2023).

    Article  Google Scholar 

  74. Zhou, M. et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 104, 107885 (2022).

    Article  Google Scholar 

  75. Qiu, Q. et al. Silane-functionalized polyionenes-coated cotton fabrics with potent antimicrobial and antiviral activities. Biomaterials 284, 121470 (2022).

    Article  Google Scholar 

  76. Al-Abduljabbar, A. & Farooq, I. Electrospun polymer nanofibers: processing, properties, and applications. Polymers 15, 65 (2022).

    Article  Google Scholar 

  77. Tian, L. et al. A humidity‐induced nontemplating route toward hierarchical porous carbon fiber hybrid for efficient bifunctional oxygen catalysis. Small 16, 2001743 (2020).

    Article  Google Scholar 

  78. Ding, Y., Hou, H., Zhao, Y., Zhu, Z. & Fong, H. Electrospun polyimide nanofibers and their applications. Prog. Polym. Sci. 61, 67–103 (2016).

    Article  Google Scholar 

  79. Cho, D., Zhou, H., Cho, Y., Audus, D. & Joo, Y. L. Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer 51, 6005–6012 (2010).

    Article  Google Scholar 

  80. Xu, X. et al. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Front. Chem. Sci. Eng. 17, 249–275 (2023).

    Article  Google Scholar 

  81. Jang, J. et al. Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater. 9, e432 (2017).

    Article  Google Scholar 

  82. Li, D. & Xia, Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555–560 (2003).

    Article  ADS  Google Scholar 

  83. Deng, L. & Zhang, H. Recent advances in probiotics encapsulation by electrospinning. ES Food Agrofor. 2, 3–12 (2020).

    Google Scholar 

  84. Hong, J., Yeo, M., Yang, G. H. & Kim, G. Cell-electrospinning and its application for tissue engineering. Int. J. Mol. Sci. 20, 6208 (2019).

    Article  Google Scholar 

  85. Zussman, E. Encapsulation of cells within electrospun fibers: encapsulation of cells. Polym. Adv. Technol. 22, 366–371 (2011).

    Article  Google Scholar 

  86. Feng, K. et al. Improved viability and thermal stability of the probiotics encapsulated in a novel electrospun fiber mat. J. Agric. Food Chem. 66, 10890–10897 (2018).

    Article  Google Scholar 

  87. Sahu, S. et al. Role of nanofibers in encapsulation of the whole cell. Int. J. Polym. Sci. 2021, 1–9 (2021).

    Article  Google Scholar 

  88. Koombhongse, S., Liu, W. & Reneker, D. H. Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. Part. B Polym. Phys. 39, 2598–2606 (2001).

    Article  ADS  Google Scholar 

  89. Mann‐Lahav, M. et al. Electrospun ionomeric fibers with anion conducting properties. Adv. Funct. Mater. 30, 1901733 (2020).

    Article  Google Scholar 

  90. Lim, J.-M., Moon, J. H., Yi, G.-R., Heo, C.-J. & Yang, S.-M. Fabrication of one-dimensional colloidal assemblies from electrospun nanofibers. Langmuir 22, 3445–3449 (2006).

    Article  Google Scholar 

  91. Han, T., Reneker, D. H. & Yarin, A. L. Buckling of jets in electrospinning. Polymer 48, 6064–6076 (2007).

    Article  Google Scholar 

  92. Liu, S. et al. Direct microscopic observation of shish-kebab structure in high-temperature electrospun iPP fibers. Mater. Lett. 172, 149–152 (2016).

    Article  Google Scholar 

  93. Wang, B., Li, B., Xiong, J. & Li, C. Y. Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules 41, 9516–9521 (2008).

    Article  ADS  Google Scholar 

  94. Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H. & Greiner, A. Compound core–shell polymer nanofibers by co-electrospinning. Adv. Mater. 15, 1929–1932 (2003).

    Article  Google Scholar 

  95. Liu, Z., Sun, D. D., Guo, P. & Leckie, J. O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 7, 1081–1085 (2007).

    Article  ADS  Google Scholar 

  96. Zhao, Y., Cao, X. & Jiang, L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc. 129, 764–765 (2007).

    Article  Google Scholar 

  97. Li, D. & Xia, Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4, 933–938 (2004).

    Article  ADS  Google Scholar 

  98. Li, Z., Zhang, J. T., Chen, Y. M., Li, J. & Lou, X. W. Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat. Commun. 6, 8850 (2015).

    Article  ADS  Google Scholar 

  99. Ji, D. et al. Design of 3-dimensional hierarchical architectures of carbon and highly active transition metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithium–air batteries. Chem. Mater. 29, 1665–1675 (2017).

    Article  Google Scholar 

  100. Tian, J. et al. Preparation of Janus microfibers with magnetic and fluorescence functionality via conjugate electro-spinning. Mater. Des. 170, 107701 (2019).

    Article  Google Scholar 

  101. Ranjbar-Mohammadi, M., Zamani, M., Prabhakaran, M. P., Bahrami, S. H. & Ramakrishna, S. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Mater. Sci. Eng. C. 58, 521–531 (2016).

    Article  Google Scholar 

  102. Ali, N. et al. Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture. J. Colloid Interface Sci. 560, 379–387 (2020).

    Article  ADS  Google Scholar 

  103. Maccaferri, E. et al. Rubbery nanofibers by co-electrospinning of almost immiscible NBR and PCL blends. Mater. Des. 186, 108210 (2020).

    Article  Google Scholar 

  104. Pal, P. et al. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater. Sci. 5, 1786–1799 (2017).

    Article  Google Scholar 

  105. Yang, Y., Li, X., Qi, M., Zhou, S. & Weng, J. Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur. J. Pharm. Biopharm. 69, 106–116 (2008).

    Article  Google Scholar 

  106. Shen, L. et al. Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Sci. Adv. 7, eabg6263 (2021).

    Article  ADS  Google Scholar 

  107. Lu, T.-D. et al. Electrospun nanofiber substrates that enhance polar solvent separation from organic compounds in thin-film composites. J. Mater. Chem. A 6, 15047–15056 (2018).

    Article  ADS  Google Scholar 

  108. Rezabeigi, E., Wood-Adams, P. M. & Demarquette, N. R. Complex morphology formation in electrospinning of binary and ternary poly(lactic acid) solutions. Macromolecules 51, 4094–4107 (2018).

    Article  ADS  Google Scholar 

  109. Xue, J., Xie, J., Liu, W. & Xia, Y. Electrospun nanofibers: new concepts, materials, and applications. Acc. Chem. Res. 50, 1976–1987 (2017).

    Article  Google Scholar 

  110. Xu, C. Y., Inai, R., Kotaki, M. & Ramakrishna, S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25, 877–886 (2004).

    Article  Google Scholar 

  111. Sundaray, B. et al. Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 84, 1222–1224 (2004).

    Article  ADS  Google Scholar 

  112. Yang, D., Lu, B., Zhao, Y. & Jiang, X. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv. Mater. 19, 3702–3706 (2007).

    Article  Google Scholar 

  113. Liu, Y., Zhang, X., Xia, Y. & Yang, H. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mater. 22, 2454–2457 (2010).

    Article  Google Scholar 

  114. Xie, J. et al. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4, 5027–5036 (2010).

    Article  Google Scholar 

  115. Osali, S., Ghiyasi, Y., Esfahani, H., Jose, R. & Ramakrishna, S. Electrospun nanomembranes at the liquid–liquid and solid–liquid interface—a review. Mater. Today 67, 151–177 (2023).

    Article  Google Scholar 

  116. Abdelaziz, A. G. et al. A review of 3D polymeric scaffolds for bone tissue engineering: principles, fabrication techniques, immunomodulatory roles, and challenges. Bioengineering 10, 204 (2023).

    Article  Google Scholar 

  117. Brown, T. D., Dalton, P. D. & Hutmacher, D. W. Direct writing by way of melt electrospinning. Adv. Mater. 23, 5651–5657 (2011).

    Article  Google Scholar 

  118. Vong, M., Diaz Sanchez, F. J., Keirouz, A., Nuansing, W. & Radacsi, N. Ultrafast fabrication of nanofiber-based 3D macrostructures by 3D electrospinning. Mater. Des. 208, 109916 (2021).

    Article  Google Scholar 

  119. Bao, M. et al. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA- co-TMC for bone tissue engineering. ACS Appl. Mater. Interfaces 6, 2611–2621 (2014).

    Article  Google Scholar 

  120. Wei, W. et al. Ultrathin flexible electrospun EVA nanofiber composite with electrothermally-driven shape memory effect for electromagnetic interference shielding. Chem. Eng. J. 446, 137135 (2022).

    Article  Google Scholar 

  121. Huang, Y. et al. Electrohydrodynamic direct-writing. Nanoscale 5, 12007 (2013).

    Article  ADS  Google Scholar 

  122. Sun, D., Chang, C., Li, S. & Lin, L. Near-field electrospinning. Nano Lett. 6, 839–842 (2006).

    Article  ADS  Google Scholar 

  123. Partheniadis, I., Nikolakakis, I., Laidmäe, I. & Heinämäki, J. A mini-review: needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes 8, 673 (2020).

    Article  Google Scholar 

  124. Yarin, A. L. & Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymer 45, 2977–2980 (2004).

    Article  Google Scholar 

  125. He, J.-H., Liu, Y., Xu, L., Yu, J.-Y. & Sun, G. BioMimic fabrication of electrospun nanofibers with high-throughput. Chaos Solitons Fractals 37, 643–651 (2008).

    Article  ADS  Google Scholar 

  126. Lukas, D., Sarkar, A. & Pokorny, P. Self-organization of jets in electrospinning from free liquid surface: a generalized approach. J. Appl. Phys. 103, 084309 (2008).

    Article  ADS  Google Scholar 

  127. Jiang, G., Zhang, S. & Qin, X. High throughput of quality nanofibers via one stepped pyramid-shaped spinneret. Mater. Lett. 106, 56–58 (2013).

    Article  Google Scholar 

  128. Niu, H., Wang, X. & Lin, T. Needleless electrospinning: influences of fibre generator geometry. J. Text. Inst. 103, 787–794 (2012).

    Article  Google Scholar 

  129. Wang, X., Niu, H., Wang, X. & Lin, T. Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J. Nanomater. 2012, 1–9 (2012).

    Article  Google Scholar 

  130. Xiong, J. et al. Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning. Mater. Des. 197, 109247 (2021).

    Article  Google Scholar 

  131. Um, I. C., Fang, D., Hsiao, B. S., Okamoto, A. & Chu, B. Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5, 1428–1436 (2004).

    Article  Google Scholar 

  132. Sóti, P. L. et al. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions. Int. J. Pharm. 494, 23–30 (2015).

    Article  Google Scholar 

  133. Démuth, B. et al. Investigation of deteriorated dissolution of amorphous itraconazole: description of incompatibility with magnesium stearate and possible solutions. Mol. Pharm. 14, 3927–3934 (2017).

    Article  Google Scholar 

  134. Paajanen, J. et al. Novel electroblowing synthesis of submicron zirconium dioxide fibers: effect of fiber structure on antimony(V) adsorption. Nanoscale Adv. 1, 4373–4383 (2019).

    Article  ADS  Google Scholar 

  135. Paajanen, J. et al. Novel electroblowing synthesis of tin dioxide and composite tin dioxide/silicon dioxide submicron fibers for cobalt(II) uptake. RSC Adv. 11, 15245–15257 (2021).

    Article  ADS  Google Scholar 

  136. Smit, E., Bűttner, U. & Sanderson, R. D. Continuous yarns from electrospun fibers. Polymer 46, 2419–2423 (2005).

    Article  Google Scholar 

  137. Teo, W.-E., Gopal, R., Ramaseshan, R., Fujihara, K. & Ramakrishna, S. A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer 48, 3400–3405 (2007).

    Article  Google Scholar 

  138. Yousefzadeh, M., Latifi, M., Teo, W.-E., Amani-Tehran, M. & Ramakrishna, S. Producing continuous twisted yarn from well-aligned nanofibers by water vortex. Polym. Eng. Sci. 51, 323–329 (2011).

    Article  Google Scholar 

  139. Kamireddi, D., Street, R. M. & Schauer, C. L. Electrospun nanoyarns: a comprehensive review of manufacturing methods and applications. Polym. Eng. Sci. 63, 677–690 (2023).

    Article  Google Scholar 

  140. Liao, X. et al. High strength in combination with high toughness in robust and sustainable polymeric materials. Science 366, 1376–1379 (2019).

    Article  ADS  Google Scholar 

  141. Al-Dhahebi, A. M. et al. Electrospinning research and products: the road and the way forward. Appl. Phys. Rev. 9, 011319 (2022).

    Article  ADS  Google Scholar 

  142. Shi, L., Liu, X., Wang, W., Jiang, L. & Wang, S. A self‐pumping dressing for draining excessive biofluid around wounds. Adv. Mater. 31, e1804187 (2018).

    Article  Google Scholar 

  143. Abdulhamid, M. A. & Muzamil, K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: a review. Chemosphere 310, 136886 (2023).

    Article  ADS  Google Scholar 

  144. Zhang, Z., Ji, D., He, H. & Ramakrishna, S. Electrospun ultrafine fibers for advanced face masks. Mater. Sci. Eng. R. Rep. 143, 100594 (2021).

    Article  Google Scholar 

  145. Aghaei-Zarch, S. M. et al. Non-coding RNAs: an emerging player in particulate matter 2.5-mediated toxicity. Int. J. Biol. Macromol. 235, 123790 (2023).

    Article  Google Scholar 

  146. Koo, W.-T. et al. Hierarchical metal–organic framework-assembled membrane filter for efficient removal of particulate matter. ACS Appl. Mater. Interfaces 10, 19957–19963 (2018).

    Article  Google Scholar 

  147. Wen, F. et al. Association of long-term exposure to air pollutant mixture and incident cardiovascular disease in a highly polluted region of China. Environ. Pollut. 328, 121647 (2023).

    Article  Google Scholar 

  148. Rao, Y. et al. Biocompatible curcumin coupled nanofibrous membrane for pathogens sterilization and isolation. J. Membr. Sci. 661, 120885 (2022).

    Article  Google Scholar 

  149. Fu, J., Liu, T., Binte Touhid, S. S., Fu, F. & Liu, X. Functional textile materials for blocking COVID-19 transmission. ACS Nano 17, 1739–1763 (2023).

    Article  Google Scholar 

  150. Kadam, V. et al. Electrospun bilayer nanomembrane with hierarchical placement of bead-on-string and fibers for low resistance respiratory air filtration. Sep. Purif. Technol. 224, 247–254 (2019).

    Article  Google Scholar 

  151. Hao, J., Chattopadhyay, S. & Rutledge, G. C. Chemical separation in a binary liquid aerosol by filtration using electrospun membranes. Chem. Eng. J. 382, 122924 (2020).

    Article  Google Scholar 

  152. Burgard, M. et al. Mesostructured nonwovens with penguin downy feather-like morphology — top-down combined with bottom-up. Adv. Funct. Mater. 29, 1903166 (2019).

    Article  Google Scholar 

  153. Bian, Y., Wang, S., Zhang, L. & Chen, C. Influence of fiber diameter, filter thickness, and packing density on PM2.5 removal efficiency of electrospun nanofiber air filters for indoor applications. Build. Env. 170, 106628 (2020).

    Article  Google Scholar 

  154. Jiang, S., Schmalz, H., Agarwal, S. & Greiner, A. Electrospinning of ABS nanofibers and their high filtration performance. Adv. Fiber Mater. 2, 34–43 (2020).

    Article  Google Scholar 

  155. Kadam, V. V., Wang, L. & Padhye, R. Electrospun nanofibre materials to filter air pollutants — a review. J. Ind. Text. 47, 2253–2280 (2018).

    Article  Google Scholar 

  156. Oldal, D. G., Topuz, F., Holtzl, T. & Szekely, G. Green electrospinning of biodegradable cellulose acetate nanofibrous membranes with tunable porosity. ACS Sustain. Chem. Eng. 11, 994–1005 (2023).

    Article  Google Scholar 

  157. Xiong, J. et al. Multi-scale nanoarchitectured fibrous networks for high-performance, self-sterilization, and recyclable face masks. Small 18, 2105570 (2022).

    Article  Google Scholar 

  158. Foong, C. Y., Wirzal, M. D. H. & Bustam, M. A. A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. J. Mol. Liq. 297, 111793 (2020).

    Article  Google Scholar 

  159. Ahmadijokani, F. et al. Electrospun nanofibers of chitosan/polyvinyl alcohol/UiO-66/nanodiamond: versatile adsorbents for wastewater remediation and organic dye removal. Chem. Eng. J. 457, 141176 (2023).

    Article  Google Scholar 

  160. Bao, J. et al. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria. J. Mater. Sci. Technol. 78, 131–143 (2021).

    Article  Google Scholar 

  161. Huang, X., Hadi, P., Joshi, R., Alhamzani, A. G. & Hsiao, B. S. A comparative study of mechanism and performance of anionic and cationic dialdehyde nanocelluloses for dye adsorption and separation. ACS Omega 8, 8634–8649 (2023).

    Article  Google Scholar 

  162. Wu, K. et al. The simultaneous adsorption of nitrate and phosphate by an organic-modified aluminum–manganese bimetal oxide: adsorption properties and mechanisms. Appl. Surf. Sci. 478, 539–551 (2019).

    Article  ADS  Google Scholar 

  163. Nthumbi, R. M. & Ngila, J. C. Electrospun and functionalized PVDF/PAN nanocatalyst-loaded composite for dechlorination and photodegradation of pesticides in contaminated water. Environ. Sci. Pollut. Res. 23, 20214–20231 (2016).

    Article  Google Scholar 

  164. Ghiasvand, S. et al. Application of polystyrene nanofibers filled with sawdust as separator pads for separation of oil spills. Process. Saf. Environ. Prot. 146, 161–168 (2021).

    Article  Google Scholar 

  165. Aghalari, Z., Dahms, H.-U., Sillanpää, M., Sosa-Hernandez, J. E. & Parra-Saldívar, R. Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review. Glob. Health 16, 13 (2020).

    Article  Google Scholar 

  166. Wang, H. et al. Hepatitis E virus genotype 3 strains and a plethora of other viruses detected in raw and still in tap water. Water Res. 168, 115141 (2020).

    Article  ADS  Google Scholar 

  167. Cui, J. et al. Electrospun nanofiber membranes for wastewater treatment applications. Sep. Purif. Technol. 250, 117116 (2020).

    Article  Google Scholar 

  168. Yan, X. et al. Recent progress in the removal of mercury ions from water based MOFs materials. Coord. Chem. Rev. 443, 214034 (2021).

    Article  Google Scholar 

  169. Fahimirad, S., Fahimirad, Z. & Sillanpää, M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total. Environ. 751, 141673 (2021).

    Article  ADS  Google Scholar 

  170. Rajapaksha, P. et al. Broad spectrum antibacterial zinc oxide-reduced graphene oxide nanocomposite for water depollution. Mater. Today Chem. 27, 101242 (2023).

    Article  Google Scholar 

  171. Piao, H. et al. Ultra-low power light driven lycopodium-like nanofiber membrane reinforced by PET braid tube with robust pollutants removal and regeneration capacity based on photo-Fenton catalysis. Chem. Eng. J. 450, 138204 (2022).

    Article  Google Scholar 

  172. Aravind, M. et al. Hydrothermally synthesized Ag–TiO2 nanofibers (NFs) for photocatalytic dye degradation and antibacterial activity. Chemosphere 321, 138077 (2023).

    Article  ADS  Google Scholar 

  173. Norouzi, M., Fazeli, A. & Tavakoli, O. Phenol contaminated water treatment by photocatalytic degradation on electrospun Ag/TiO2 nanofibers: optimization by the response surface method. J. Water Process. Eng. 37, 101489 (2020).

    Article  Google Scholar 

  174. Wang, Q., Hu, L., Ma, H., Venkateswaran, S. & Hsiao, B. S. High-flux nanofibrous composite reverse osmosis membrane containing interfacial water channels for desalination. ACS Appl. Mater. Interfaces 15, 26199–26214 (2023).

    Article  Google Scholar 

  175. Li, H.-N. et al. A self-descaling Janus nanofibrous evaporator enabled by a “moving interface” for durable solar-driven desalination of hypersaline water. J. Mater. Chem. A 10, 20856–20865 (2022).

    Article  Google Scholar 

  176. Ura, D. P. et al. Surface potential driven water harvesting from fog. ACS Nano 15, 8848–8859 (2021).

    Article  Google Scholar 

  177. Hussey, G. S., Dziki, J. L. & Badylak, S. F. Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 3, 159–173 (2018).

    Article  ADS  Google Scholar 

  178. Xie, X. et al. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J. Mater. Sci. Technol. 59, 243–261 (2020).

    Article  Google Scholar 

  179. Yao, T. et al. Thiol-ene conjugation of a VEGF peptide to electrospun scaffolds for potential applications in angiogenesis. Bioact. Mater. 20, 306–317 (2023).

    Google Scholar 

  180. Xi, K. et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat. Commun. 11, 4504 (2020).

    Article  ADS  Google Scholar 

  181. Liu, H. et al. Recent progress of electrospun herbal medicine nanofibers. Biomolecules 13, 184 (2023).

    Article  Google Scholar 

  182. Pattnaik, S., Swain, K. & Ramakrishna, S. Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: challenges, state of the art, and future directions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15, e1859 (2023).

    Article  Google Scholar 

  183. Pandey, G. et al. Multilayered nanofibrous scaffold of polyvinyl alcohol/gelatin/poly(lactic-co-glycolic acid) enriched with hemostatic/antibacterial agents for rapid acute hemostatic wound healing. Int. J. Pharm. 638, 122918 (2023).

    Article  Google Scholar 

  184. Jayasinghe, S. N. Unspooling the history of cell electrospinning. Matter 5, 4–7 (2022).

    Article  Google Scholar 

  185. Jayasinghe, S. N. Cell electrospinning: revolutionising cell scaffolding for healthcare. Adv. Biol. 7, e2300224 (2023).

    Article  Google Scholar 

  186. Kong, B. et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat. Commun. 11, 1435 (2020).

    Article  ADS  Google Scholar 

  187. Shalumon, K. T. et al. Braided suture-reinforced fibrous yarn bundles as a scaffold for tendon tissue engineering in extensor digitorum tendon repair. Chem. Eng. J. 454, 140366 (2023).

    Article  Google Scholar 

  188. Zhang, M. et al. Development of tropoelastin-functionalized anisotropic PCL scaffolds for musculoskeletal tissue engineering. Regen. Biomater. 10, rbac087 (2023).

    Article  Google Scholar 

  189. Wu, Y., Wang, L., Guo, B. & Ma, P. X. Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11, 5646–5659 (2017).

    Article  Google Scholar 

  190. Yang, Q. et al. Development of cell adhesive and inherently antibacterial polyvinyl alcohol/polyethylene oxide nanofiber scaffolds via incorporating chitosan for tissue engineering. Int. J. Biol. Macromol. 236, 124004 (2023).

    Article  Google Scholar 

  191. Taemeh, M. A., Shiravandi, A., Korayem, M. A. & Daemi, H. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr. Polym. 228, 115419 (2020).

    Article  Google Scholar 

  192. Tiwari, N. et al. Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J. Drug. Deliv. Sci. Technol. 82, 104319 (2023).

    Article  Google Scholar 

  193. Habibi, S. et al. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly(vinyl alcohol) nanofibrous mat: preparation, characterization, and controlled drug release. Int. J. Biol. Macromol. 240, 124399 (2023).

    Article  Google Scholar 

  194. Mao, Y. et al. Electrospun polymers: using devices to enhance their potential for biomedical applications. React. Funct. Polym. 186, 105568 (2023).

    Article  Google Scholar 

  195. Allizond, V. et al. Facile one-step electrospinning process to prepare AgNPs-loaded PLA and PLA/PEO mats with antibacterial activity. Polymers 15, 1470 (2023).

    Article  Google Scholar 

  196. Yi, N. et al. Highly hygroscopicity and antioxidant nanofibrous dressing base on alginate for accelerating wound healing. Colloids Surf. B Biointerfaces 225, 113240 (2023).

    Article  Google Scholar 

  197. Yu, H. et al. Multifunctional porous poly(l-lactic acid) nanofiber membranes with enhanced anti-inflammation, angiogenesis and antibacterial properties for diabetic wound healing. J. Nanobiotechnol. 21, 110 (2023).

    Article  Google Scholar 

  198. Yu, B. et al. Asymmetric wettable composite wound dressing prepared by electrospinning with bioinspired micropatterning enhances diabetic wound healing. ACS Appl. Bio Mater. 3, 5383–5394 (2020).

    Article  Google Scholar 

  199. Kumar, M., Hilles, A. R., Ge, Y., Bhatia, A. & Mahmood, S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: their current status with regulatory perspective. Int. J. Biol. Macromol. 234, 123696 (2023).

    Article  Google Scholar 

  200. Cleeton, C., Keirouz, A., Chen, X. & Radacsi, N. Electrospun nanofibers for drug delivery and biosensing. Acs Biomater. Sci. Eng. 5, 4183–4205 (2019).

    Article  Google Scholar 

  201. Han, D. et al. Multi-layered core-sheath fiber membranes for controlled drug release in the local treatment of brain tumor. Sci. Rep. 9, 17936 (2019).

    Article  ADS  Google Scholar 

  202. Tort, S., Han, D., Frantz, E. & Steckl, A. J. Controlled drug release of parylene-coated pramipexole nanofibers for transdermal applications. Surf. Coat. Technol. 409, 126831 (2021).

    Article  Google Scholar 

  203. Sroczyk, E. A., Berniak, K., Jaszczur, M. & Stachewicz, U. Topical electrospun patches loaded with oil for effective γ-linoleic acid transport and skin hydration towards atopic dermatitis skincare. Chem. Eng. J. 429, 132256 (2022).

    Article  Google Scholar 

  204. Honarbakhsh, S., Guenther, R. H., Willoughby, J. A., Lommel, S. A. & Pourdeyhimi, B. Polymeric systems incorporating plant viral nanoparticles for tailored release of therapeutics. Adv. Healthc. Mater. 2, 1001–1007 (2013).

    Article  Google Scholar 

  205. Ling, Y. et al. Disruptive, soft, wearable sensors. Adv. Mater. 32, 1904664 (2020).

    Article  Google Scholar 

  206. Peng, X. et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6, eaba9624 (2020).

    Article  ADS  Google Scholar 

  207. Wang, C., Yokota, T. & Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146 (2021).

    Article  Google Scholar 

  208. Yang, T., Zhan, L. & Huang, C. Z. Recent insights into functionalized electrospun nanofibrous films for chemo-/bio-sensors. TrAC Trends Anal. Chem. 124, 115813 (2020).

    Article  Google Scholar 

  209. Lin, C. et al. Ultrafine electrospun fiber based on ionic liquid/AlN/copolyamide composite as novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cell 223, 110953 (2021).

    Article  Google Scholar 

  210. Wu, J. et al. A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core–sheath fiber structure for wearable personal thermal management. ACS Nano 16, 12801–12812 (2022).

    Article  Google Scholar 

  211. Zhao, L. et al. Emulsion-electrospinning n-octadecane/silk composite fiber as environmental-friendly form-stable phase change materials. J. Appl. Polym. Sci. 134, 45538 (2017).

    Article  Google Scholar 

  212. Li, D. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021).

    Article  ADS  Google Scholar 

  213. Wu, X. et al. An all-weather radiative human body cooling textile. Nat. Sustain. 6, 1446–1454 (2023).

    Article  Google Scholar 

  214. Gao, Q. et al. Breathable and flexible dual-sided nonwovens with adjustable infrared optical performances for smart textile. Adv. Funct. Mater. 32, 2108808 (2022).

    Article  Google Scholar 

  215. Wang, Y. et al. Reversible water transportation diode: temperature‐adaptive smart Janus textile for moisture/thermal management. Adv. Funct. Mater. 30, 1907851 (2020).

    Article  Google Scholar 

  216. Dai, B. et al. Bioinspired Janus textile with conical micropores for human body moisture and thermal management. Adv. Mater. 31, 1904113 (2019).

    Article  Google Scholar 

  217. Fan, C. et al. Dynamically tunable subambient daytime radiative cooling metafabric with Janus wettability. Adv. Funct. Mater. 33 https://doi.org/10.1002/adfm.202300794 (2023).

  218. Fan, L., Yang, X. & Sun, H. Pressure sensors combining porous electrodes and electrospun nanofiber-based ionic membranes. ACS Appl. Nano Mater. 6, 3560–3571 (2023).

    Article  Google Scholar 

  219. Tian, L. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3, 194–205 (2019).

    Article  Google Scholar 

  220. Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018). 

    Article  ADS  Google Scholar 

  221. Li, Q. et al. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv. Fiber Mater. 3, 302–311 (2021).

    Article  Google Scholar 

  222. Wang, P. et al. Wearable, ultrathin and breathable tactile sensors with an integrated all-nanofiber network structure for highly sensitive and reliable motion monitoring. Nano Energy 104, 107883 (2022).

    Article  Google Scholar 

  223. Puttananjegowda, K., Takshi, A. & Thomas, S. Silicon carbide nanoparticles electrospun nanofibrous enzymatic glucose sensor. Biosens. Bioelectron. 186, 113285 (2021).

    Article  Google Scholar 

  224. Zhao, C. et al. Improving the sensitivity of nanofibrous membrane-based ELISA for on-site antibiotics detection. ACS Sens. 7, 1458–1466 (2022).

    Article  MathSciNet  Google Scholar 

  225. Kim, W., Lee, J. S. & Jang, J. Aptamer-functionalized three-dimensional carbon nanowebs for ultrasensitive and free-standing PDGF biosensor. ACS Appl. Mater. Interfaces 12, 20882–20890 (2020).

    Article  Google Scholar 

  226. Lee, G., Wei, Q. & Zhu, Y. Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 31, 2106475 (2021).

    Article  Google Scholar 

  227. Chen, K. et al. Surface functionalization of porous In2O3 nanofibers with Zn nanoparticles for enhanced low-temperature NO2 sensing properties. Sens. Actuators B Chem. 308, 127716 (2020).

    Article  ADS  Google Scholar 

  228. Guan, X. et al. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 80, 105549 (2021).

    Article  Google Scholar 

  229. Sanchez, F. J. D. et al. Sponge-like piezoelectric micro- and nanofiber structures for mechanical energy harvesting. Nano Energy 98, 107286 (2022).

    Article  Google Scholar 

  230. Su, Y. et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 13, 4867 (2022).

    Article  ADS  Google Scholar 

  231. Wu, S. et al. Cesium lead halide perovskite decorated polyvinylidene fluoride nanofibers for wearable piezoelectric nanogenerator yarns. ACS Nano 17, 1022–1035 (2023).

    Article  Google Scholar 

  232. Persano, L., Ghosh, S. K. & Pisignano, D. Enhancement and function of the piezoelectric effect in polymer nanofibers. Acc. Mater. Res. 3, 900–912 (2022).

    Article  Google Scholar 

  233. Zhi, C. et al. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano Micro Lett. 15, 60 (2023).

    Article  ADS  Google Scholar 

  234. Ma, L. et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14, 4716–4726 (2020).

    Article  Google Scholar 

  235. He, X. et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022).

    Article  Google Scholar 

  236. Sun, Z., Wen, X., Wang, L., Yu, J. & Qin, X. Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci. 15, 4584–4591 (2022).

    Article  Google Scholar 

  237. Sun, Z. et al. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2, 32–46 (2022).

    Article  Google Scholar 

  238. Zambrzycki, M., Piech, R., Raga, S. R., Lira-Cantu, M. & Fraczek-Szczypta, A. Hierarchical carbon nanofibers/carbon nanotubes/NiCo nanocomposites as novel highly effective counter electrode for dye-sensitized solar cells: a structure–electrocatalytic activity relationship study. Carbon 203, 97–110 (2023).

    Article  Google Scholar 

  239. Yin, X. et al. A new strategy for efficient light management in inverted perovskite solar cell. Chem. Eng. J. 439, 135703 (2022).

    Article  Google Scholar 

  240. Bandodkar, A. J. et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ. Sci. 10, 1581–1589 (2017).

    Article  Google Scholar 

  241. Bhatta, T. et al. Siloxene/PVDF composite nanofibrous membrane for high‐performance triboelectric nanogenerator and self‐powered static and dynamic pressure sensing applications. Adv. Funct. Mater. 32, 2202145 (2022).

    Article  Google Scholar 

  242. Li, X. et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors. Chem. Eng. J. 426, 130345 (2021).

    Article  Google Scholar 

  243. Wei, Q. et al. Porous one‐dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29, 1602300 (2017).

    Article  Google Scholar 

  244. Wang, S. et al. Li+ affinity ultra-thin solid polymer electrolyte for advanced all-solid-state lithium-ion battery. Chem. Eng. J. 461, 141995 (2023).

    Article  Google Scholar 

  245. Peng, S. et al. Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries. Adv. Energy Mater. 8, 1800612 (2018).

    Article  Google Scholar 

  246. Gao, S. et al. Pea‐like MoS2@NiS1.03–carbon heterostructured hollow nanofibers for high‐performance sodium storage. Carbon Energy 5, e319 (2023).

    Article  Google Scholar 

  247. Miao, X. et al. Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy 34, 26–35 (2017).

    Article  Google Scholar 

  248. Hwang, C.-K. et al. Perpendicularly stacked array of PTFE nanofibers as a reinforcement for highly durable composite membrane in proton exchange membrane fuel cells. Nano Energy 101, 107581 (2022).

    Article  Google Scholar 

  249. Liu, D. S. et al. Spray layer-by-layer electrospun composite proton exchange membranes. Adv. Funct. Mater. 23, 3087–3095 (2013).

    Article  Google Scholar 

  250. Niu, C. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7402 (2015).

    Article  ADS  Google Scholar 

  251. Arrese-Igor, M. et al. Solid-state Li-ion batteries with carbon microfiber electrodes via 3D electrospinning. Appl. Phys. Lett. 122, 173903 (2023).

    Article  ADS  Google Scholar 

  252. Ji, D. et al. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc–air batteries. Adv. Mater. 31, 1808267 (2019).

    Article  Google Scholar 

  253. Ilango, P. R. et al. Electrospun flexible nanofibres for batteries: design and application. Electrochem. Energy Rev. 6, 12 (2023).

    Article  Google Scholar 

  254. Radacsi, N., Campos, F. D., Chisholm, C. R. I. & Giapis, K. P. Spontaneous formation of nanoparticles on electrospun nanofibres. Nat. Commun. 9, 4740 (2018).

    Article  ADS  Google Scholar 

  255. Lu, C. & Chen, X. Electrospun polyaniline nanofiber networks toward high‐performance flexible supercapacitors. Adv. Mater. Technol. 4, 1900564 (2019).

    Article  Google Scholar 

  256. Xu, T. et al. Carbon nanofibrous sponge made from hydrothermally generated biochar and electrospun polymer nanofibers. Adv. Fiber Mater. 2, 74–84 (2020).

    Article  Google Scholar 

  257. Archana, P. S., Jose, R., Yusoff, M. M. & Ramakrishna, S. Near band-edge electron diffusion in electrospun Nb-doped anatase TiO2 nanofibers probed by electrochemical impedance spectroscopy. Appl. Phys. Lett. 98, 152106 (2011).

    Article  ADS  Google Scholar 

  258. Archana, P. S., Gupta, A., Yusoff, M. M. & Jose, R. Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells. Phys. Chem. Chem Phys 16, 7448–7454 (2014).

    Article  Google Scholar 

  259. Balilonda, A. et al. Lead-free and electron transport layer-free perovskite yarns: designed for knitted solar fabrics. Chem. Eng. J. 410, 128384 (2021).

    Article  Google Scholar 

  260. Li, Q. et al. Flexible solar yarns with 15.7% power conversion efficiency, based on electrospun perovskite composite nanofibers. Sol. RRL 4, 2000269 (2020).

    Article  Google Scholar 

  261. Archana, P. S., Jose, R., Vijila, C. & Ramakrishna, S. Improved electron diffusion coefficient in electrospun TiO2 nanowires. J. Phys. Chem. C. 113, 21538–21542 (2009).

    Article  Google Scholar 

  262. Wen, X., Xiong, J., Lei, S., Wang, L. & Qin, X. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications. Adv. Fiber Mater. 4, 145–161 (2022).

    Article  Google Scholar 

  263. Liao, X. et al. Extremely low thermal conductivity and high electrical conductivity of sustainable carbonceramic electrospun nonwoven materials. Sci. Adv. 9, eade6066 (2023).

    Article  ADS  Google Scholar 

  264. Tian, T. et al. Durable organic nonlinear optical membranes for thermotolerant lightings and in vivo bioimaging. Nat. Commun. 14, 4429 (2023).

    Article  ADS  Google Scholar 

  265. Zhang, Z. et al. Synergistic effect of Cu2+ and Cu+ in SrTiO3 nanofibers promotes the photocatalytic reduction of CO2 to methanol. Appl. Surf. Sci. 609, 155297 (2023).

    Article  Google Scholar 

  266. Kim, D.-H. et al. Ex-solution hybrids functionalized on oxide nanofibers for highly active and durable catalytic materials. ACS Nano 17, 5842–5851 (2023).

    Article  Google Scholar 

  267. Lin, C. C. et al. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces 10, 2210–2215 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  268. Tian, T. et al. Large-area waterproof and durable perovskite luminescent textiles. Nat. Commun. 14, 234 (2023).

    Article  ADS  Google Scholar 

  269. Liao, X. et al. Polarized blue photoluminescence of mesoscopically ordered electrospun non-conjugated polyacrylonitrile nanofibers. Mater. Horiz. 7, 1605–1612 (2020).

    Article  Google Scholar 

  270. Romano, L. et al. Intelligent non-colorimetric indicators for the perishable supply chain by non-wovens with photo-programmed thermal response. Nat. Commun. 11, 5991 (2020).

    Article  ADS  Google Scholar 

  271. Tang, Q. et al. Flexible, breathable, and self-powered patch assembled of electrospun polymer triboelectric layers and polypyrrole-coated electrode for infected chronic wound healing. ACS Appl. Mater. Interfaces 15, 17641–17652 (2023).

    Article  Google Scholar 

  272. Cho, Y. et al. Multifunctional filter membranes based on self-assembled core–shell biodegradable nanofibers for persistent electrostatic filtration through the triboelectric effect. ACS Nano 16, 19451–19463 (2022).

    Article  Google Scholar 

  273. Zhang, J.-H. et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13, 5839 (2022).

    Article  ADS  Google Scholar 

  274. Xia, M. et al. High efficiency antibacterial, moisture permeable, and low temperature comfortable Janus nanofiber membranes for high performance air filters and respiration monitoring sensors. Adv. Mater. Interfaces 10, 2201952 (2023).

    Article  Google Scholar 

  275. Soares, R. M. D., Siqueira, N. M., Prabhakaram, M. P. & Ramakrishna, S. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater. Sci. Eng. C 92, 969–982 (2018).

    Article  Google Scholar 

  276. Vass, P. et al. Scale‐up of electrospinning technology: applications in the pharmaceutical industry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1611 (2020).

    Article  Google Scholar 

  277. Keirouz, A. et al. The history of electrospinning: past, present, and future developments. Adv. Mater. Technol. 8, 2201723 (2023).

    Article  Google Scholar 

  278. Song, W. et al. Electrospinning spinneret: a bridge between the visible world and the invisible nanostructures. Innovation 4, 100381 (2023).

    Google Scholar 

  279. He, H., Wang, Y., Farkas, B., Nagy, Z. K. & Molnar, K. Analysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodology. Mater. Des. 194, 108902 (2020).

    Article  Google Scholar 

  280. Zhang, B. et al. Solvent-free electrospinning: opportunities and challenges. Polym. Chem. 8, 333–352 (2017).

    Article  Google Scholar 

  281. Ray, S. S., Chen, S.-S., Li, C.-W., Nguyen, N. C. & Nguyen, H. T. A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv. 6, 85495–85514 (2016).

    Article  ADS  Google Scholar 

  282. Lei, S., Wang, L., Wang, R., Qin, X. & Yu, J. Controllable diameter of electrospun nanofibers based on the velocity of whipping jets for high-efficiency air filtration. Sci. China Technol. Sci. 65, 481–489 (2022).

    Article  ADS  Google Scholar 

  283. Cho, C.-J. et al. Green electrospun nanofiber membranes filter prepared from novel biomass thermoplastic copolyester: morphologies and filtration properties. J. Taiwan. Inst. Chem. Eng. 106, 206–214 (2020).

    Article  Google Scholar 

  284. Zhuge, Y. & Liu, F. Controlled preparation of polyimide/polysulfone amide (PI/PSA) porous micro–nano fiber membranes by microemulsion electrospinning for excellent thermal insulation. Eur. Polym. J. 194, 112170 (2023).

    Article  Google Scholar 

  285. Huang, S. et al. A comprehensive review of electrospray technique for membrane development: current status, challenges, and opportunities. J. Membr. Sci. 646, 120248 (2022).

    Article  Google Scholar 

  286. Niu, H., Lin, T. & Wang, X. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J. Appl. Polym. Sci. 114, 3524–3530 (2009).

    Article  Google Scholar 

  287. Zhou, M. et al. Large-scale preparation of micro-gradient structured sub-micro fibrous membranes with narrow diameter distributions for high-efficiency air purification. Environ. Sci. Nano 6, 3560–3578 (2019).

    Article  Google Scholar 

  288. Lunni, D. et al. Light-assisted electrospinning monitoring for soft polymeric nanofibers. Sci. Rep. 10, 16341 (2020).

    Article  Google Scholar 

  289. Guo, Y. et al. Research progress, models and simulation of electrospinning technology: a review. J. Mater. Sci. 57, 58–104 (2022).

    Article  ADS  Google Scholar 

  290. Yang, D., Faraz, F., Wang, J. & Radacsi, N. Combination of 3D printing and electrospinning techniques for biofabrication. Adv. Mater. Technol. 7, 2101309 (2022).

    Article  Google Scholar 

  291. Drosou, C., Krokida, M. & Biliaderis, C. G. Composite pullulan–whey protein nanofibers made by electrospinning: impact of process parameters on fiber morphology and physical properties. Food Hydrocoll. 77, 726–735 (2018).

    Article  Google Scholar 

  292. Qiu, Q. et al. Functional nanofibers embedded into textiles for durable antibacterial properties. Chem. Eng. J. 384, 123241 (2020).

    Article  Google Scholar 

  293. Lv, D. et al. Green electrospun nanofibers and their application in air filtration. Macromol. Mater. Eng. 303, 1800336 (2018).

    Article  ADS  Google Scholar 

  294. Chaudhary, K. & Kandasubramanian, B. Self-healing nanofibers for engineering applications. Ind. Eng. Chem. Res. 61, 3789–3816 (2022).

    Article  Google Scholar 

  295. Yuan, L. et al. Piezoelectric PAN/BaTiO3 nanofiber membranes sensor for structural health monitoring of real-time damage detection in composite. Compos. Commun. 25, 100680 (2021).

    Article  Google Scholar 

  296. Lan, X. et al. Multidrug-loaded electrospun micro/nanofibrous membranes: fabrication strategies, release behaviors and applications in regenerative medicine. J. Controlled Rel. 330, 1264–1287 (2021).

    Article  Google Scholar 

  297. Dou, Y., Zhang, W. & Kaiser, A. Electrospinning of metal–organic frameworks for energy and environmental applications. Adv. Sci. 7, 1902590 (2020).

    Article  Google Scholar 

  298. Das, K. P., Sharma, D. & Satapathy, B. K. Electrospun fibrous constructs towards clean and sustainable agricultural prospects: SWOT analysis and TOWS based strategy assessment. J. Clean. Prod. 368, 133137 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by grants from the National Natural Science Foundation of China (51973027 and 52202218), the Fundamental Research Funds for the Central Universities (2232020A-08), the Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission (2019–01–07–00–03-E00023) to X.Q., and the DHU Distinguished Young Professor Program, National Key Research and Development Project (2022YFB4700602), the Shanghai Committee of Science and Technology (no.22ZR1401000) and the Shanghai Pujiang Program (21PJ1400200) to D.J. R.J. acknowledges Universiti Malaysia Pahang research grant RDU223101.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.J. and N.R.); Experimentation (B.R., N.R., R.J., S.R. and D.J.); Results (D.J., Y.L. and X.G.); Applications (D.J., X.G. and N.R.); Reproducibility and data deposition (B.R. and R.J.); Limitations and optimizations (D.J., R.W., N.R. and X.Q.); Outlook (D.J., R.W., X.Q. and S.R.); Overview of the Primer (all authors).

Corresponding author

Correspondence to Seeram Ramakrishna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Ick Soo Kim, Mayakrishnan Gopiraman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

3D printing

(Also known as additive manufacturing). The process of creating 3D objects layer by layer from a digital model or design.

4D printing

The process of using materials that can react to external stimuli, allowing for the fabrication of structures that change shape and behaviour as time progresses.

Anatase

One of the three crystalline forms of titanium dioxide (TiO2), characterized by its tetragonal crystal structure. The other two forms are rutile and brookite.

Aptamers

Short, single-stranded DNA or RNA molecules that can bind to specific target molecules, used in various biotechnological and medical applications.

Artificial neural networks

Computational models inspired by the structure and functioning of biological neural networks, used in machine learning and artificial intelligence (AI) for tasks such as pattern recognition and prediction.

Bioprinting

The layer by layer deposition of living cells, tissues and biomaterials to construct biological structures, mimicking natural tissues or organs, often used in regenerative medicine and tissue engineering.

Collector

A substrate or target surface where the charged nanofibres or particles are collected and deposited to form a fibrous mat or film.

Electrified liquid jet

A stream of liquid charged with electricity to create a flow of charged liquid particles.

Microfluidics

The study of fluids at the microscale, typically within channels with dimensions in the order of micrometres.

Perovskite

A crystal-structured material (ABX3), where A is a larger cation, B is a smaller cation and X is an anion.

Phase change nanofibres

Materials composed of nanoscale fibres that can undergo a phase change, such as melting or solidification, typically used for applications such as thermal energy storage.

Polymer melt

Refers to a state in which a polymer has been heated to a temperature above its melting point, resulting in a molten, viscous material that can be moulded or shaped.

Response surface methodology

(RSM). A statistical technique used to model and optimize the relationship between multiple variables and the response of a system to achieve the desired outcome.

Spinneret

A small, fine nozzle or device used in the electrospinning process to extrude a polymer solution or melt.

Taylor cone

A conical shape with specific geometry that is formed when a liquid is subjected to high voltage during the electrospinning process.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, D., Lin, Y., Guo, X. et al. Electrospinning of nanofibres. Nat Rev Methods Primers 4, 1 (2024). https://doi.org/10.1038/s43586-023-00278-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00278-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing