Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Comprehensive two-dimensional liquid chromatography

Abstract

Despite progress in hardware and column technology, the complexity and heterogeneity of many samples still pose a challenge for state-of-the-art 1D liquid chromatography (LC). As an effective answer to these analytical questions, multidimensional comprehensive techniques have become an attractive strategy across disciplines. This Primer provides a general overview of 2D comprehensive LC (LC × LC), including hardware, software and best practices for experimentation. The underlying principles are described, alongside the requirements of separation and detection equipment. In addition, this Primer discusses data collection, processing and analysis, with an exploration of inherent challenges and possible workarounds. Selected examples are presented to show how the gain in resolution afforded by LC × LC has enabled in-depth characterization of complex non-volatile samples, such as pharmaceuticals, polymers, foods and the ‘omics. Finally, the technique progress is evaluated, with an outline of future directions for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: On-line LC × LC hardware setup.
Fig. 2: Configuration of the most used valve modulators.
Fig. 3: Instrumental scheme of the on-line SPE–HILIC–SPE × RP for the clean-up of peptides.
Fig. 4: An example of data visualization in the LC × LC analysis of α-casein tryptic digest separated using RP × RP.
Fig. 5: An illustrative example of spectral compression applied to LC × LC–MS data.
Fig. 6: Temperature-responsive × RPLC separation analysing mixtures of pharmaceuticals containing a main active principle (sulfamethizole) at 1 mg ml−1 and impurities at a 0.5% level.
Fig. 7: µLC × LC separation obtained at 254 nm from hemp strains.

Similar content being viewed by others

References

  1. Marriott, P. J., Schoenmakers, P. & Wu, Z. Nomenclature and conventions in comprehensive multidimensional chromatography — an update. LCGC Eur. 25, 266–275 (2012).

    Google Scholar 

  2. Wu, Y. et al. Recent advances of innovative and high-efficiency stationary phases for chromatographic separations. Trends Analyt. Chem. 153, 116647 (2022).

    Article  Google Scholar 

  3. Broeckhoven, K. & Desmet, K. Advances and innovations in liquid chromatography stationary phase supports. Anal. Chem. 93, 257–272 (2021).

    Article  Google Scholar 

  4. González‐Ruiz, V., Olives, A. I. & Martín, M. A. Core–shell particles lead the way to renewing high‐performance liquid chromatography. Trends Analyt. Chem. 64, 17–28 (2015).

    Article  Google Scholar 

  5. Tanaka, N. & McCalley, D. V. Core–shell, ultrasmall particles, monoliths, and other support materials in high‐performance liquid chromatography. Anal. Chem. 88, 279–298 (2016).

    Article  Google Scholar 

  6. Blue, L. E. & Jorgenson, J. W. 1.1 µm superficially porous particles for liquid chromatography. Part II: column packing and chromatographic performance. J. Chromatogr. A 1380, 71–80 (2015).

    Article  Google Scholar 

  7. Patel, D. C., Breitbach, Z. S., Wahab, M. F., Barhate, C. L. & Armstrong, D. W. Gone in seconds: praxis, performance, and peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal. Chem. 87, 9137–9148 (2015).

    Article  Google Scholar 

  8. Svec, F. & Lv, Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 87, 250–273 (2015).

    Article  Google Scholar 

  9. Hefnawy, M. et al. Trends in monoliths: packings, stationary phases and nanoparticles. J. Chromatogr. A 1691, 463819 (2023).

    Article  Google Scholar 

  10. Hara, T., Eeltink, S. & Desmet, G. Exploring the pressure resistance limits of monolithic silica capillary columns. J. Chromatogr. A 1446, 164–169 (2016).

    Article  Google Scholar 

  11. Langford, J. B. & Lurie, I. S. The use of micro, capillary, and nano liquid chromatography for forensic analysis. J. Sep. Sci. 45, 38–50 (2022).

    Article  Google Scholar 

  12. Reising, A. E., Godinho, J. M., Jorgenson, J. W. & Tallarek, U. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns. J. Chromatogr. A 1504, 71–82 (2017).

    Article  Google Scholar 

  13. Blue, L. E. et al. Recent advances in capillary ultrahigh pressure liquid chromatography. J. Chromatogr. A 1523, 17–39 (2017).

    Article  Google Scholar 

  14. Xiang, Y. et al. Elevated-temperature ultrahigh-pressure liquid chromatography using very small polybutadiene-coated nonporous zirconia particles. J. Chromatogr. A 983, 83–89 (2003).

    Article  Google Scholar 

  15. Broeckhoven, K. & Desmet, G. Advances and challenges in extremely high-pressure liquid chromatography in current and future analytical scale column formats. Anal. Chem. 92, 554–560 (2020).

    Article  Google Scholar 

  16. Kaplitz, A. S. et al. High-throughput and ultrafast liquid chromatography. Anal. Chem. 92, 67–84 (2020).

    Article  Google Scholar 

  17. Lunn, D. B., Yun, Y. J. & Jorgenson, J. W. Retention and effective diffusion of model metabolites on 719 porous graphitic carbon. J. Chromatogr. A 1530, 112–119 (2017).

    Article  Google Scholar 

  18. Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trends Analyt. Chem. 122, 115709 (2020).

    Article  Google Scholar 

  19. Bouvier, E. S. P. & Koza, S. M. Advances in size-exclusion separations of proteins and polymers by UHPLC. Trends Analyt. Chem. 63, 85–94 (2014).

    Article  Google Scholar 

  20. Zhang, J.-H., Xie, S.-M. & Yuan, L.-M. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J. Sep. Sci. 45, 51–77 (2022).

    Article  Google Scholar 

  21. Dong, M. & Guillarme, D. Newer developments in HPLC impacting pharmaceutical analysis: a brief review. Am. Pharm. Rev. 16, 36–43 (2013).

    Google Scholar 

  22. Botcherby, L. Trends and developments in liquid chromatography. Column 18, 2–7 (2022).

    Google Scholar 

  23. De Vos, J., Broeckhoven, K. & Eeltink, S. Advances in ultrahigh‐pressure liquid chromatography technology and system design. Anal. Chem. 88, 262–278 (2016).

    Article  Google Scholar 

  24. Sorensen, M. J., Anderson, B. G. & Kennedy, R. T. Liquid chromatography above 20,000 PSI. Trends Analyt. Chem. 124, 115810 (2020).

    Article  Google Scholar 

  25. Sorensen, M. J., Miller, K. E., Jorgenson, J. W. & Kennedy, R. T. Ultrahigh-performance capillary liquid chromatography–mass spectrometry at 35 kpsi for separation of lipids. J. Chromatogr. A 672, 460575 (2019).

    Google Scholar 

  26. Shishkova, E., Hebert, A. S., Westphall, M. S. & Coon, J. J. Ultra-high pressure (>30,000 psi) packing of capillary columns enhancing depth of shotgun proteomic analyses. Anal. Chem. 90, 11503–11508 (2018).

    Article  Google Scholar 

  27. Harrieder, E.-M., Kretschmer, F., Böcker, S. & Witting, M. Current state-of-the-art of separation methods used in LC–MS based metabolomics and lipidomics. J. Chromatogr. B 1188, 123069 (2022).

    Article  Google Scholar 

  28. Chen, C.-J., Lee, D.-Y., Yu, J., Lin, Y.-N. & Lin, T.-M. Recent advances in LC–MS-based metabolomics for clinical biomarker discovery. Mass Spectrom. Rev. 42, 2349–2378 (2023).

    Article  ADS  Google Scholar 

  29. Panda, D., Dash, B. P., Manickam, S. & Boczkaj, G. Recent advancements in LC–MS based analysis of biotoxins: present and future challenges. Mass Spectom. Rev. 41, 766–803 (2022).

    Article  ADS  Google Scholar 

  30. Donato, P., Cacciola, F., Tranchida, P. Q., Dugo, P. & Mondello, L. Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications and trends. Mass Spectrom. Rev. 31, 523–559 (2012).

    Article  ADS  Google Scholar 

  31. Donato, P., Cacciola, F., Dugo, P. & Mondello, L. Comprehensive chromatographic separations in proteomics. J. Chromatogr. A 1218, 8777–8790 (2011).

    Article  Google Scholar 

  32. Grunert, I. et al. Comprehensive multidimensional liquid chromatography–mass spectrometry for the characterization of charge variants of a bispecific antibody. J. Am. Soc. Mass Spectrom. 33, 2319–2327 (2022).

    Article  Google Scholar 

  33. Camperi, J., Goyon, A., Guillarme, D., Zhang, K. & Stella, C. Multi-dimensional LC–MS: the next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches. Analyst 146, 747–769 (2021).

    Article  ADS  Google Scholar 

  34. Oezipek, S., Hoelterhoff, S., Breuer, S., Bell, C. & Bathke, A. mDUPLC–MS/MS: next generation of mAb characterization by multidimensional ultra-performance liquid chromatography mass spectrometry and parallel on-column LysC & trypsin digestion. Anal. Chem. 94, 8136–8145 (2022).

    Article  Google Scholar 

  35. Pirok, B. W. J., Stoll, D. R. & Schoenmakers, P. J. Recent developments in two-dimensional liquid chromatography: fundamental improvements for practical applications. Anal. Chem. 91, 240–263 (2019). This paper discusses the recent development and applications of multidimensional (LC–LC) and comprehensive (LC × LC) techniques.

    Article  Google Scholar 

  36. Cohen, S. A. & Schure, M. R. (eds) Multidimensional Liquid Chromatography: Theory and Applications in Industrial Chemistry and the Life Sciences (Wiley-Interscience, 2008).

  37. François, I., Sandra, K. & Sandra, P. Comprehensive liquid chromatography: fundamental aspects and practical considerations: a review. Anal. Chim. Acta 641, 14–31 (2009).

    Article  Google Scholar 

  38. Mondello, L. (ed.) Comprehensive Chromatography in Combination with Mass Spectrometry 1st edn (Wiley, 2011).

  39. Stoll, D. R. & Carr, P. W. Two-dimensional liquid chromatography: a state of the art tutorial. Anal. Chem. 89, 519–531 (2017).

    Article  Google Scholar 

  40. Pirok, B. W. J., Gargano, A. F. G. & Schoenmakers, P. J. Optimizing separations in online comprehensive two‐dimensional liquid chromatography. J. Sep. Sci. 41, 68–98 (2018). This paper illustrates the principles of 2D-LC and discusses different strategies to improve the quality of 2D-LC separations.

    Article  Google Scholar 

  41. Lv, W., Shi, X., Wang, S. & Xu, G. Multidimensional liquid chromatography–mass spectrometry for metabolomic and lipidomic analyses. Trends Analyt. Chem. 120, 115302 (2019).

    Article  Google Scholar 

  42. Vanhoenacker, G., Sandra, P. & Sandra, K. Minimizing the risk of missing critical sample information by using 2D-LC. LCGC Eur. 35, 348–353 (2022).

    Google Scholar 

  43. Imran Ali, I., Suhail, M. & Aboul-Enein, H. Y. Advances in chiral multidimensional liquid chromatography. Trends Analyt. Chem. 120, 115634 (2019).

    Article  Google Scholar 

  44. Singh, G., Lu, D., Liu, C. & Howerm, D. Analytical challenges and recent advances in the identification and quantitation of extractables and leachables in pharmaceutical and medical products. Trends Analyt. Chem. 141, 116286 (2021).

    Article  Google Scholar 

  45. Brandão, P. F., Duarte, A. C. & Duarte, R. M. B. O. Comprehensive multidimensional liquid chromatography for advancing environmental and natural products research. Trends Analyt. Chem. 116, 186–197 (2019).

    Article  Google Scholar 

  46. Cacciola, F., Dugo, P. & Mondello, L. Multidimensional liquid chromatography in food analysis. Trends Analyt. Chem. 96, 116–123 (2017).

    Article  Google Scholar 

  47. Cacciola, F. et al. Novel comprehensive multidimensional liquid chromatography approach for elucidation of the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 strain. Anal. Bioanal. Chem. 410, 3473–3482 (2018).

    Article  Google Scholar 

  48. Verscheure, L. et al. 3D-LC–MS with D-2 multimethod option for fully automated assessment of multiple attributes of monoclonal antibodies directly from cell culture supernatants. Anal. Chem. 94, 6502–6511 (2022).

    Article  Google Scholar 

  49. Themelis, T., Amini, A., De Vos, J. & Eeltink, S. Towards spatial comprehensive three-dimensional liquid chromatography: a tutorial review. Anal. Chim. Acta 1148, 238157 (2021).

    Article  Google Scholar 

  50. Giddings, J. C. Two-dimensional separation: concept and promise. Anal. Chem. 56, 1258–1270 (1984).

    Article  Google Scholar 

  51. Giddings, J. C. Concept and comparisons in multidimensional chromatography. J. High Res. Chromatogr. 10, 319–323 (1987).

    Article  Google Scholar 

  52. Murphy, R. E., Schure, M. R. & Foley, J. P. Effect of sampling rate on resolution in comprehensive two-dimensional chromatography. Anal. Chem. 70, 4353–4360 (1998).

    Article  Google Scholar 

  53. Horie, K. et al. Calculating optimal modulation periods to maximize the peak capacity in two-dimensional HPLC. Anal. Chem. 79, 3764–3770 (2007).

    Article  Google Scholar 

  54. Filgueira, M. R., Huang, Y., Witt, K., Castells, C. & Carr, P. W. Improving peak capacity in fast online comprehensive two-dimensional liquid chromatography with post-first-dimension flow splitting. Anal. Chem. 83, 9531–9539 (2011).

    Article  Google Scholar 

  55. Davis, J. M. & Giddings, J. C. Statistical theory of component overlap in multicomponent chromatograms. Anal. Chem. 55, 418–424 (1983).

    Article  Google Scholar 

  56. Horvath, K., Fairchild, J. & Guiochon, G. Optimization strategies for off-line two-dimensional liquid chromatography. J. Chromatogr. A 1216, 2511–2518 (2009).

    Article  Google Scholar 

  57. Pot, S. et al. Fast analysis of antibody-derived therapeutics by automated multidimensional liquid chromatography–mass spectrometry. Anal. Chim. Acta 1184, 339015 (2021).

    Article  Google Scholar 

  58. Groeneveld, G. & Pirok, B. W. J. Perspectives on the future of multi-dimensional platforms. Faraday Discuss. 218, 72–100 (2019).

    Article  ADS  Google Scholar 

  59. Stoll, D. R. Introduction to two-dimensional liquid chromatography — theory and practice. in Handbook of Advanced Chromatography/Mass Spectrometry Techniques (eds Holcapek, M. & Byrdwell, W. C.) 227–286 (AOCS Press, 2017).

  60. Carr, P. W., Stoll, D. R. & Wang, X. Perspectives on recent advances in the speed of high-performance liquid chromatography. Anal. Chem. 83, 1890–1900 (2011).

    Article  Google Scholar 

  61. Herrero, M., Ibáñez, E., Cifuentes, A. & Bernal, J. Multidimensional chromatography in food analysis. J. Chromatogr. A 1216, 7110–7129 (2009).

    Article  Google Scholar 

  62. Karongo, R., Horak, J. & Lämmerhofer, M. Comprehensive online reversed-phase × chiral two-dimensional liquid chromatography–mass spectrometry with data-independent sequential window acquisition of all theoretical fragment-ion spectra-acquisition for untargeted enantioselective amino acid analysis. Anal. Chem. 94, 17063–17072 (2022).

    Article  Google Scholar 

  63. Stoll, D. R. Guidelines for bioanalytical 2D chromatography method development and implementation. Bioanalysis 2, 105–122 (2010).

    Article  Google Scholar 

  64. Bedani, F., Schoenmakers, P. J. & Janssen, H.-G. Theories to support method development in comprehensive two-dimensional liquid chromatography — a review. J. Sep. Sci. 35, 1697–1711 (2012).

    Article  Google Scholar 

  65. Makey, D. M. et al. Mapping the separation landscape in two-dimensional liquid chromatography: blueprints for efficient analysis and purification of pharmaceuticals enabled by computer-assisted modeling. Anal. Chem. 93, 964–972 (2021).

    Article  Google Scholar 

  66. Haidar Ahmad, I. A. et al. In silico multifactorial modeling for streamlined development and optimization of two-dimensional liquid chromatography. Anal. Chem. 93, 11532–11539 (2021).

    Article  Google Scholar 

  67. Vivó-Truyols, G., van der Wal, S. J. & Schoenmakers, P. J. Comprehensive study on the optimization of online two-dimensional liquid chromatographic systems considering losses in theoretical peak capacity in first- and second-dimensions: a Pareto-optimality approach. Anal. Chem. 82, 8525–8536 (2010).

    Article  Google Scholar 

  68. Pirok, B. W. J., Pous-Torres, S., Ortiz-Bolsico, C., Vivó-Truyols, G. & Schoenmakers, P. J. Program for the interpretive optimization of two-dimensional resolution. J. Chromatogr. A 1450, 29–37 (2016).

    Article  Google Scholar 

  69. Andrighetto, L. M., Stevenson, P. G., Pearson, J. R., Henderson, L. C. & Conlan, X. A. DryLab® optimised two-dimensional high performance liquid chromatography for differentiation of ephedrine and pseudoephedrine based methamphetamine samples. Forensic Sci. Int. 244, 302–305 (2014).

    Article  Google Scholar 

  70. Andrighetto, L. M. et al. In-silico optimisation of two-dimensional high performance liquid chromatography for the determination of Australian methamphetamine seizure samples. Forensic Sci. Int. 266, 511–516 (2016).

    Article  Google Scholar 

  71. Lindsey, R. K. et al. Column selection for comprehensive two-dimensional liquid chromatography using the hydrophobic subtraction model. J. Chromatogr. A 1589, 47–55 (2019).

    Article  Google Scholar 

  72. Snyder, L. R., Dolan, J. W. & Carr, P. W. The hydrophobic-subtraction model of reversed-phase column selectivity. J. Chromatogr. A 1060, 77–116 (2004).

    Article  Google Scholar 

  73. Chen, Y., Montero, L. & Schmitz, O. J. Advance in on-line two-dimensional liquid chromatography modulation technology. TrAC Trend Anal. Chem. 120, 115647 (2019).

    Article  Google Scholar 

  74. Vonk, R. et al. Comprehensive two-dimensional liquid chromatography with stationary-phase-assisted modulation coupled to high-resolution mass spectrometry applied to proteome analysis of Saccharomyces cerevisiae. Anal. Chem. 87, 5387–5394 (2015).

    Article  Google Scholar 

  75. Gargano, A. F. G., Duffin, M., Navarro, P. & Schoenmakers, P. J. Reducing dilution and analysis time in online comprehensive two-dimensional liquid chromatography by active modulation. Anal. Chem. 88, 1785–1793 (2016).

    Article  Google Scholar 

  76. Petersson, P., Haselmann, K. & Buckenmaier, S. Multiple heart-cutting two dimensional liquid chromatography mass spectrometry: towards real time determination of related impurities of bio-pharmaceuticals in salt based separation methods. J. Chromatogr. A 1468, 95 (2016).

    Article  Google Scholar 

  77. Stoll, D. R., Shoykhet, K., Petersson, P. & Buckenmaier, S. Active solvent modulation: a valve-based approach to improve separation compatibility in two-dimensional liquid chromatography. Anal. Chem. 89, 9260–9267 (2017). This work demonstrates the usefulness of ASM approaches to address the major drawbacks of fixed solvent modulation.

    Article  Google Scholar 

  78. Chen, Y., Li, J. & Schmitz, O. J. Development of an at-column dilution modulator for flexible and precise control of dilution factors to overcome mobile phase incompatibility in comprehensive two-dimensional liquid chromatography. Anal. Chem. 91, 10251–10257 (2019).

    Article  Google Scholar 

  79. Niezen, L. E., Staal, B. B. P., Lang, C., Pirok, B. W. J. & Schoenmakers, P. J. Thermal modulation to enhance two-dimensional liquid chromatography separations of polymers. J. Chromatogr. A 1653, 462429 (2021).

    Article  Google Scholar 

  80. Creese, M. E. et al. Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography. Anal. Chem. 89, 1123–1130 (2017).

    Article  Google Scholar 

  81. Tian, H., Xu, J. & Guan, Y. Comprehensive two-dimensional liquid chromatography (NPLC × RPLC) with vacuum–evaporation interface. J. Sep. Sci. 31, 1677–1685 (2008).

    Article  Google Scholar 

  82. Wang, X. Y. et al. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum. J. Chromatogr. A 1387, 60–68 (2015).

    Article  Google Scholar 

  83. Li, J. F. et al. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of toad venom. J. Chromatogr. A 1456, 169–175 (2016).

    Article  Google Scholar 

  84. Fornells, E. et al. Evaporative membrane modulation for comprehensive two-dimensional liquid chromatography. Anal. Chim. Acta 1000, 303e309 (2018).

    Article  Google Scholar 

  85. Arena, K., Cacciola, F., Rigano, F., Dugo, P. & Mondello, L. Evaluation of matrix effect in one-dimensional and comprehensive two-dimensional liquid chromatography for the determination of the phenolic fraction in extra virgin olive oils. J. Sep. Sci. 43, 1781–1789 (2020).

    Article  Google Scholar 

  86. Martín-Pozo, L., Arena, K., Cacciola, F., Dugo, P. & Mondello, L. Comprehensive two-dimensional liquid chromatography in food analysis. Is any sample preparation necessary?Green Anal. Chem. 3, 100025 (2022).

    Article  Google Scholar 

  87. Montero, L. et al. Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J. Chromatogr. A 1428, 115–125 (2016).

    Article  Google Scholar 

  88. Machtejevas, E. et al. Automated multi-dimensional liquid chromatography: sample preparation and identification of peptides from human blood filtrate. J. Chromatogr. B 803, 121–130 (2004).

    Article  Google Scholar 

  89. Machtejevas, E. et al. Profiling of endogenous peptides by multidimensional liquid chromatography: on-line automated sample cleanup for biomarker discovery in human urine. J. Sep. Sci. 32, 2223–2232 (2009).

    Article  Google Scholar 

  90. Holm, A. et al. Combined solid-phase extraction and 2D LC–MS for characterization of the neuropeptides in rat-brain tissue. Anal. Bioanal. Chem. 382, 751–759 (2005).

    Article  Google Scholar 

  91. Mihailova, A. et al. Improving the resolution of neuropeptides in rat brain with on-line HILIC-RP compared to on-line SCX-RP. J. Sep. Sci. 31, 459–467 (2008).

    Article  Google Scholar 

  92. Dugo, P., Cacciola, F., Kumm, T., Dugo, G. & Mondello, L. Comprehensive multidimensional liquid chromatography: theory and applications. J. Chromatogr. A 1184, 353–368 (2008).

    Article  Google Scholar 

  93. Stoll, D. R. et al. Fast, comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 1168, 3–43 (2007).

    Article  Google Scholar 

  94. Shang, Z. et al. A global profiling strategy using comprehensive two-dimensional liquid chromatography coupled with dual-mass spectrometry platforms: chemical analysis of a multi-herb Chinese medicine formula as a case study. J. Chromatogr. A 1642, 462021 (2021).

    Article  Google Scholar 

  95. De Vos, J., Stoll, D. R., Buckenmaier, S. & Eeltink, S. Advances in ultra-high-pressure and multi-dimensional liquid chromatography instrumentation and workflows. Anal. Sci. Adv. 2, 171–192 (2021).

    Article  Google Scholar 

  96. Bernardin, M., Masle, A. L., Bessueille-Barbier, F., Lienemann, C. P. & Heinisch, S. Comprehensive two-dimensional liquid chromatography with inductively coupled plasma mass spectrometry detection for the characterization of sulfur, vanadium and nickel compounds in petroleum products. J. Chromatogr. A 1611, 460605 (2020).

    Article  Google Scholar 

  97. Stephan, S., Jakob, C., Hippler, J. & Schmitz, O. J. A novel four-dimensional analytical approach for analysis of complex samples. Anal. Bioanal. Chem. 408, 3751–3759 (2016).

    Article  Google Scholar 

  98. Venter, P. et al. Comprehensive three-dimensional LC × LC × ion mobility spectrometry separation combined with high-resolution MS for the analysis of complex samples. Anal. Chem. 90, 11643–11650 (2018).

    Article  Google Scholar 

  99. Davis, J. M., Stoll, D. R. & Carr, P. W. Effect of first-dimension undersampling on effective peak capacity in comprehensive two-dimensional separations. Anal. Chem. 80, 461–473 (2008).

    Article  Google Scholar 

  100. Potts, L. W., Stoll, D. R., Li, X. & Carr, P. W. The impact of sampling time on peak capacity and analysis speed in on-line comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 1217, 5700–5709 (2010).

    Article  Google Scholar 

  101. Horvath, K., Fairchild, J. N. & Guiochon, G. Generation and limitations of peak capacity in online two-dimensional liquid chromatography. Anal. Chem. 81, 3879–3888 (2009).

    Article  Google Scholar 

  102. Stoll, D. R., Cohen, J. D. & Carr, P. W. Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography. J. Chromatogr. A 1122, 123–137 (2006).

    Article  Google Scholar 

  103. Gilar, M., Olivova, P., Daly, A. E. & Gebler, J. C. Orthogonality of separation in two-dimensional liquid chromatography. Anal. Chem. 77, 6426–6434 (2005).

    Article  Google Scholar 

  104. Peters, S., Vivo-Truyols, G., Marriott, P. J. & Schoenmakers, P. J. Development of an algorithm for peak detection in comprehensive two-dimensional chromatography. J. Chromatogr. A 1156, 14–24 (2007).

    Article  Google Scholar 

  105. Stevenson, P. G., Mnatsakanyan, M., Guiochon, G. & Shalliker, R. A. Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography. Analyst 135, 1541–1550 (2010).

    Article  ADS  Google Scholar 

  106. Liu, Z., Patterson, D. G. & Lee, M. L. Geometric approach to factor analysis for the estimation of orthogonality and practical peak capacity in comprehensive two-dimensional separations. Anal. Chem. 67, 3840–3845 (1995).

    Article  Google Scholar 

  107. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  ADS  Google Scholar 

  108. Steinier, J., Termonia, Y. & Deltour, J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 44, 1906–1909 (1972).

    Article  Google Scholar 

  109. Durbin, J. & Watson, G. S. Testing for serial correlation in least squares regression. I. Biometrika 37, 409–428 (1950).

    MathSciNet  MATH  Google Scholar 

  110. Reichenbach, S. E., Ni, M., Kottapalli, V. & Visvanathan, A. Information technologies for comprehensive two-dimensional gas chromatography. Chemometr. Intell. Lab. 71, 107–120 (2004).

    Article  Google Scholar 

  111. Reichenbach, S. E., Tian, X., Cordero, C. & Tao, Q. Features for non-targeted cross-sample analysis with comprehensive two-dimensional chromatography. J. Chromatogr. A 1226, 140–148 (2012).

    Article  Google Scholar 

  112. Latha, I., Reichenbach, S. E. & Tao, Q. Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography. J. Chromatogr. A 1218, 6792–6798 (2011).

    Article  Google Scholar 

  113. Weggler, B. A. et al. A unique data analysis framework and open source benchmark data set for the analysis of comprehensive two-dimensional gas chromatography software. J. Chromatogr. A 1635, 461721 (2021).

    Article  Google Scholar 

  114. Pol, J., Hohnova, B., Jussila, M. & Hyotylainen, T. Comprehensive two-dimensional liquid chromatography–time-of-flight mass spectrometry in the analysis of acidic compounds in atmospheric aerosols. J. Chromatogr. A 1130, 64–71 (2006).

    Article  Google Scholar 

  115. Mondello, L. et al. Quantification in comprehensive two-dimensional liquid chromatography. Anal. Chem. 80, 5418–5424 (2008).

    Article  Google Scholar 

  116. Hoggard, J. C. & Synovec, R. E. Automated resolution of nontarget analyte signals in GC × GC-TOFMS data using parallel factor analysis. Anal. Chem. 80, 6677–6688 (2008).

    Article  Google Scholar 

  117. Baileya, H. P., Rutana, S. C. & Carr, P. W. Factors that affect quantification of diode array data in comprehensive two-dimensional liquid chromatography using chemometric data analysis. J. Chromatogr. A 1218, 8411–8422 (2011).

    Article  Google Scholar 

  118. Pérez-Cova, M., Tauler, R. & Jaumot, J. Chemometrics in comprehensive two-dimensional liquid chromatography: a study of the data structure and its multilinear behavior. Chemometr. Intell. Lab. 201, 104009 (2021).

    Article  Google Scholar 

  119. Pérez-Cova, M., Jaumot, J. & Tauler, R. Untangling comprehensive two-dimensional liquid chromatography data sets using regions of interest and multivariate curve resolution approaches. Trends Analyt. Chem. 137, 116207 (2021).

    Article  Google Scholar 

  120. Bos, T. S. et al. Recent applications of chemometrics in one- and two-dimensional chromatography. J. Sep. Sci. 43, 1678–1727 (2020).

    Article  Google Scholar 

  121. Navarro-Reig, M. et al. Untargeted comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry analysis of rice metabolome using multivariate curve resolution. Anal. Chem. 89, 7675–7683 (2017).

    Article  Google Scholar 

  122. Navarro-Reig, M., Bedia, C., Tauler, R. & Jaumot, J. Chemometric strategies for peak detection and profiling from multidimensional chromatography. Proteomics 18, e1700327 (2018).

    Article  Google Scholar 

  123. Navarro-Reig, M., Jaumot, J., van Beek, T. A., Vivo-Truyols, G. & Tauler, R. Chemometric analysis of comprehensive LC × LC MS data: resolution of triacylglycerol structural isomers in corn oil. Talanta 160, 624–635 (2016).

    Article  Google Scholar 

  124. Martín Ortiz, A., Ruiz Matute, A. I., Sanz, M. L., Moreno, F. J. & Herrero, M. Separation of di- and trisaccharide mixtures by comprehensive two-dimensional liquid chromatography. Application to prebiotic oligosaccharides. Anal. Chim. Acta 1060, 125–132 (2019).

    Article  Google Scholar 

  125. Iguiniz, M. & Heinisch, S. Two-dimensional liquid chromatography in pharmaceutical analysis. Instrumental aspects, trends and applications. J. Pharm. Biomed. Anal. 145, 482–503 (2017).

    Article  Google Scholar 

  126. Stoll, D. R., Talus, E. S., Harmes, D. C. & Zhang, K. Evaluation of detection sensitivity in comprehensive two-dimensional liquid chromatography separations of an active pharmaceutical ingredient and its degradants. Anal. Bioanal. Chem. 407, 265–277 (2015).

    Article  Google Scholar 

  127. Iguiniz, M., Corbel, E., Roques, N. & Heinisch, S. Quantitative aspects in on-line comprehensive two-dimensional liquid chromatography for pharmaceutical applications. Talanta 195, 272–280 (2019).

    Article  Google Scholar 

  128. Wicht, K. et al. Speeding up temperature-responsive × reversed-phase comprehensive liquid chromatography through the combined exploitation of temperature and flow rate gradients. J. Chromatogr. A 1685, 463584 (2022).

    Article  Google Scholar 

  129. Bäurer, S. et al. Mixed-mode chromatography characteristics of chiralpak ZWIX(+) and ZWIX(−) and elucidation of their chromatographic orthogonality for LC × LC application. Anal. Chim. Acta 1093, 168–179 (2020).

    Article  Google Scholar 

  130. Kilz, P. & Radke, W. Application of two-dimensional chromatography to the characterization of macromolecules and biomacromolecules. Anal. Bioanal. Chem. 407, 193–215 (2015).

    Article  Google Scholar 

  131. Schoenmakers, P. & Aarnoutse, P. Multi-dimensional separations of polymers. Anal. Chem. 86, 6172–6179 (2014).

    Article  Google Scholar 

  132. Groeneveld, G. et al. Fast determination of functionality-type × molecular-weight distribution of propoxylates with varying numbers of hydroxyl end-groups using gradient–normal-phase liquid chromatography × ultra-high pressure size-exclusion chromatography. J. Chromatogr. A 1659, 462644 (2021).

    Article  Google Scholar 

  133. Pursch, M., Wegener, A. & Buckenmaier, S. Evaluation of active solvent modulation to enhance two-dimensional liquid chromatography for target analysis in polymeric matrices. J. Chromatogr. A 1562, 78–86 (2018).

    Article  Google Scholar 

  134. Cacciola, F., Rigano, F., Dugo, P. & Mondello, L. Comprehensive two-dimensional liquid chromatography as a powerful tool for the analysis of food and food products. Trends Analyt. Chem. 127, 115894 (2020).

    Article  Google Scholar 

  135. Montero, L. & Herrero, M. Two-dimensional liquid chromatography approaches in foodomics — a review. Anal. Chim. Acta 1083, 1–18 (2019).

    Article  Google Scholar 

  136. Muller, M., Tredoux, A. G. J. & de Villiers, A. Application of kinetically optimised online HILIC × RP-LC methods hyphenated to high resolution MS for the analysis of natural phenolics. Chromatographia 82, 181–196 (2019).

    Article  Google Scholar 

  137. Hohme, L., Fischer, C. & Kleinschmidt, T. Characterization of bitter peptides in casein hydrolysates using comprehensive two-dimensional liquid chromatography. Food Chem. 404, 134527 (2023).

    Article  Google Scholar 

  138. Montero, L., Meckelmann, S. W., Kim, H., Ayala-Cabrera, J. F. & Schmitz, O. J. Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using LC × LC-HRMS. Anal. Bioanal. Chem. 414, 5445–5459 (2022).

    Article  Google Scholar 

  139. Donato, D. et al. Comprehensive lipid profiling in the Mediterranean mussel (Mytilus galloprovincialis) using hyphenated and multidimensional chromatography techniques coupled to mass spectrometry detection. Anal. Bioanal. Chem. 410, 3297–3313 (2018).

    Article  Google Scholar 

  140. Pérez-Cova, M., Platikanov, S., Tauler, R. & Jaumot, J. Quantification strategies for two-dimensional liquid chromatography datasets using regions of interest and multivariate curve resolution approaches. Talanta 247, 123586 (2022). This paper describes and compares different chemometrics-based approaches for quantification purposes in 2D-LC.

    Article  Google Scholar 

  141. Francois, I., dos Santos Pereira, A., Lynen, F. & Sandra, P. Construction of a new interface for comprehensive supercritical fluid chromatography × reversed phase liquid chromatography (SFC × RPLC). J. Sep. Sci. 31, 3473–3478 (2008).

    Article  Google Scholar 

  142. Montero, L. et al. Focusing and non-focusing modulation strategies for the improvement of on-line two-dimensional hydrophilic interaction chromatography × reversed phase profiling of complex food samples. Anal. Chim. Acta 985, 202–212 (2017).

    Article  Google Scholar 

  143. Baert, M. et al. Enhancing the possibilities of comprehensive two-dimensional liquid chromatography through hyphenation of purely aqueous temperature-responsive and reversed-phase liquid chromatography. Anal. Chem. 90, 4961–4967 (2018).

    Article  Google Scholar 

  144. Haun, J. et al. Online and splitless NanoLC × CapillaryLC with quadrupole/time-of-flight mass spectrometric detection for comprehensive screening analysis of complex samples. Anal. Chem. 85, 10083–10090 (2013).

    Article  Google Scholar 

  145. Gstöttner, C. et al. Fast and automated characterization of antibody variants with 4D HPLC/MS. Anal. Chem. 90, 2119–2125 (2018).

    Article  Google Scholar 

  146. Goyon, A. et al. From proof of concept to the routine use of an automated and robust multi-dimensional liquid chromatography mass spectrometry workflow applied for the charge variant characterization of therapeutic antibodies. J. Chromatogr. A 1615, 460740 (2020).

    Article  Google Scholar 

  147. Goyon, A. et al. Streamlined characterization of an antibody–drug conjugate by two-dimensional and four-dimensional liquid chromatography/mass spectrometry. Anal. Chem. 91, 14896–14903 (2019).

    Article  Google Scholar 

  148. Camperi, J., Dai, L., Guillarme, D. & Stella, C. Development of a 3D–LC/MS workflow for fast, automated and effective characterization of glycosylation patterns of biotherapeutic products. Anal. Chem. 92, 4357–4363 (2020).

    Article  Google Scholar 

  149. Dixon, S. P., Pitfiled, I. D. & Perrett, D. Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis: a review. Biomed. Chromatogr. 20, 508–529 (2006).

    Article  Google Scholar 

  150. Wang, H. et al. Introducing online multicolumn two-dimensional liquid chromatography screening for facile selection of stationary and mobile phase conditions in both dimensions. J. Chromatogr. A 1622, 460895 (2020). In this work, a multicolumn online LC × LC approach is demonstrated, which simplifies column screening and method development for screening targeted compounds in multicomponent mixtures.

    Article  Google Scholar 

  151. Regalado, E. L. et al. The emergence of universal chromatographic methods in the research and development of new drug substances. Acc. Chem. Res. 52, 1990–2002 (2019).

    Article  Google Scholar 

  152. François, I. et al. Tryptic digest analysis by comprehensive reversed phase × two reversed phase liquid chromatography (RP-LC × 2RP-LC) different pH’s. J. Sep. Sci. 32, 1137–1144 (2009).

    Article  Google Scholar 

  153. Donato, P. et al. Online comprehensive RPLC × RPLC with mass spectrometry detection for the analysis of proteome samples. Anal. Chem. 83, 2485–2491 (2011).

    Article  Google Scholar 

  154. Stoll, D. R. et al. Development of comprehensive online two-dimensional liquid chromatography/mass spectrometry using hydrophilic interaction and reversed-phase separations for rapid and deep profiling of therapeutic antibodies. Anal. Chem. 90, 5923–5929 (2018).

    Article  Google Scholar 

  155. Breadmore, M. C., Egeness, M. J., Hilder, E. F. & Shellie, R. The modulator in comprehensive two-dimensional liquid chromatography. LCGC Eur. 29, 268–276 (2016).

    Google Scholar 

  156. Tache, F., Udrescu, S., Albu, F., Micale, F. & Medvedovici, A. Greening pharmaceutical applications of liquid chromatography through using propylene carbonate–ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases. J. Pharm. Biomed. Anal. 75, 230–238 (2013).

    Article  Google Scholar 

  157. Aly, A. A., Górecki, T. & Omar, M. A. Green approaches to comprehensive two-dimensional liquid chromatography (LC × LC). J. Chromatogr. Open 2, 100046 (2022). This paper affords practical evidence of the possibility of replacing toxic solvents used in LC × LC, paving the way to greener separations.

    Article  Google Scholar 

  158. Giddings, J. C. Maximum number of components resolvable by gel filtration and other elution chromatographic methods. Anal. Chem. 39, 1027–10258 (1967). A milestone work describing the factors controlling peak width and retention in chromatographic systems, for the estimation of the peak capacity.

    Article  Google Scholar 

  159. Neue, U. D. Theory of peak capacity in gradient elution. J. Chromatogr. A. 1079, 153–161 (2005). This paper describes the fundamental work of the influence of the operating conditions on the peak capacity of separation and bandspreading phenomena.

    Article  Google Scholar 

  160. Neue, U. D. Peak capacity in unidimensional chromatography. J. Chromatogr. A 1184, 107–130 (2008).

    Article  Google Scholar 

  161. Li, X., Stoll, D. R. & Carr, P. W. Equation for peak capacity estimation in two-dimensional liquid chromatography. Anal. Chem. 81, 845–850 (2009). This paper demonstrates accurate equation for the effective 2D peak capacity that incorporates a correction for undersampling of the first dimension.

    Article  Google Scholar 

  162. Schure, M. R. & Davis, J. M. Orthogonal separations: comparison of orthogonality metrics by statistical analysis. J. Chromatogr. A 1414, 60–76 (2015). In this work, several aspects of 2D separations are examined by using statistical analyses, to correlate orthogonality metrics with chromatographic separation quality.

    Article  Google Scholar 

  163. Rutan, S. C., Davis, J. M. & Carr, P. W. Fractional coverage metrics based on ecological home range for calculation of the effective peak capacity in comprehensive two-dimensional separations. J. Chromatogr. A 1255, 267–276 (2012).

    Article  Google Scholar 

  164. Camenzuli, M. & Schoenmakers, P. J. A new measure of orthogonality for multi-dimensional chromatography. Anal. Chim. Acta 838, 93–101 (2014).

    Article  Google Scholar 

  165. Arena, K. et al. Determination of the polyphenolic fraction of Pistacia vera L. kernel extracts by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry detection. Anal. Bioanal. Chem. 411, 4819–4829 (2019).

    Article  Google Scholar 

  166. Donato, P. et al. Comprehensive two-dimensional liquid chromatography–tandem mass spectrometry for the simultaneous determination of wine polyphenols and target contaminants. J. Chromatogr. A 1458, 54–62 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L. Mondello, P. Dugo and P. Donato); Experimentation (L. Montero and O.J.S.); Results (L. Mondello, P. Dugo and P. Donato); Applications (M.H.); Reproducibility and data deposition (M.H.); Limitations and optimizations (L. Montero and O.J.S.); Outlook (L. Mondello, P. Dugo and P. Donato); Overview of the Primer (all authors).

Corresponding author

Correspondence to Luigi Mondello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Davy Guillarme and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HPLC column database: http://www.hplccolumns.org/

Glossary

Co-elutions

Two or more compounds that are not chromatographically separated owing to retention times closer than the method resolution.

C-term

In the van Deemter equation, C-term describes the resistance to mass transfer coefficient of the analyte between the stationary and mobile phase.

Cuts

In 2D-LC practice, the term ‘cut’ refers to a fraction of the first dimension (1D) sample, which is stored in a loop system for second-dimensional (2D) separation.

Heart-cutting 2D-LC

A targeted 2D-LC technique, in which only a selected eluent fraction (single heart-cutting) or fractions (multiple heart-cutting) are collected for second-dimensional (2D) separation.

Isocratic retention factor

The ratio of the retention time of an analyte on the stationary phase to the time it spends in the mobile phase under isocratic conditions.

Off-line

In 2D-LC practice, the term off-line means that the fractions eluted from the first column are stored for subsequent reinjection onto the second column.

On-line

In 2D-LC practice, the term on-line means that the second separation is carried out in real time, in an automated fashion.

Peak capacity

The maximum number of resolvable peaks within a given analysis time.

Resolving power

In the chromatography practice, it is sometimes used to estimate the goodness of a separation between adjacent peaks.

Reversed-phase separation

Compound separation using hydrophobic interactions between the solute molecules in the mobile phase and the stationary phase.

Sample dimensionality

The number of distinct chemical classes in a sample that themselves lead to different retention mechanisms in the separation.

van Deemter curve

Describes the dependence of the height of a theoretical plate (H) on the linear flow velocity of the mobile phase (u). It is used to predict the optimum velocity at which there will be minimum variance per unit column length and hence maximum efficiency.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondello, L., Dugo, P., Donato, P. et al. Comprehensive two-dimensional liquid chromatography. Nat Rev Methods Primers 3, 86 (2023). https://doi.org/10.1038/s43586-023-00269-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00269-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing