Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Surface-enhanced infrared absorption spectroscopy

Abstract

When molecules are placed at the interface to metals or metal oxides, an increase in their infrared (IR) spectral intensities is observed, a phenomenon termed surface-enhanced infrared absorption (SEIRA). This effect was found initially for polydisperse metal island films with moderate to strong enhancements enabling the detection of IR signals at the monolayer level. Later, the advancement of lithographic techniques gave access to specifically tailored nano-antennas with plasmonic resonances, which provide enhancements by several orders of magnitude, such that a detection in the range of 103 molecules became possible. With the chemical resolution inherent to IR spectroscopy and its non-destructive and label-free nature, the SEIRA effect, therefore, opened the door to a large range of chemical and biophysical applications, which had not been possible earlier without SEIRA’s surface sensitivity and enhancing effect. This Primer describes the mechanisms underlying the SEIRA effect, common methods to fabricate SEIRA-active materials, and the advantages and limitations of this powerful approach. Furthermore, the broad applicability of SEIRA is presented with a particular focus on examples from the fields of analytics, electrochemistry and catalysis as well as biophysical functional investigations, finally concluding on future trends in this vibrant field of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of surface-enhanced infrared absorption (SEIRA).
Fig. 2: Instrumental set-up for FTIR spectroscopy.
Fig. 3: (Electro)Chemical fabrication and functionalization of SEIRA-active materials.
Fig. 4: Data analysis and characteristics of SEIRA.
Fig. 5: Tunable rSEIRA materials for trace analysis and bioanalytic applications.
Fig. 6: Investigating (bio)electrocatalysis using SEIRAS.
Fig. 7: Biofunctional investigations at model membranes using SEIRAS.

Similar content being viewed by others

References

  1. Griffiths, P. R. & De Haseth, J. A. Fourier Transform Infrared Spectrometry (Wiley, 2006).

  2. Cristy, A. A., Ozaki, Y. & Gregoriou, V. G. Modern Fourier: transform infrared spectroscopy. Compr. Anal. Chem. 35, 1–356 (2001).

    Google Scholar 

  3. Franca, A. S. & Oliviera, L. S. FTIR Spectroscopy: Advances in Research and Applications (Nova Science, 2022).

  4. Siebert, F. & Hildebrandt, P. Vibrational Spectroscopy in Life Science (Wiley–VCH Verlag, 2008).

  5. Cozzolino, D. Infrared spectroscopy for environmental monitoring. Compr. Anal. Chem. 98, 2–93 (2022).

    Google Scholar 

  6. Hartstein, A., Kirtley, J. R. & Tsang, J. C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Phys. Rev. Lett. 45, 201–204 (1980). To our knowledge, this study is the first report on the detection of SEIRAS.

    Article  ADS  Google Scholar 

  7. Han, X. X., Rodriguez, R. S., Haynes, C. L., Ozaki, Y. & Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 1, 87 (2021).

    Article  Google Scholar 

  8. Di Meo, V. et al. Advanced DNA detection via multispectral plasmonic metasurfaces. Front. Bioeng. Biotechnol. 9, 1–9 (2021).

    Google Scholar 

  9. Dong, L. et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett. 17, 5768–5774 (2017). This work demonstrates the highest rSEIRA enhancement to date in gaps of bow tie-shaped nano-antennas.

    Article  ADS  Google Scholar 

  10. Pfitzner, E., Seki, H., Schlesinger, R., Ataka, K. & Heberle, J. Disc antenna enhanced infrared spectroscopy: from self-assembled monolayers to membrane proteins. ACS Sens. 3, 984–991 (2018).

    Article  Google Scholar 

  11. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–828 (1985).

    Article  ADS  Google Scholar 

  12. Bjerke, A. E., Griffiths, P. R. & Theiss, W. Surface-enhanced infrared absorption of CO on platinized platinum. Anal. Chem. 71, 1967–1974 (1999).

    Article  Google Scholar 

  13. Zou, S., Gómez, R. & Weaver, M. J. Nitric oxide and carbon monoxide adsorption on polycrystalline iridium electrodes: a combined Raman and infrared spectroscopic study. Langmuir 13, 6713–6721 (1997).

    Article  Google Scholar 

  14. Aroca, R. & Price, B. A new surface for surface-enhanced infrared spectroscopy: tin island films. J. Phys. Chem. B 101, 6537–6540 (1997).

    Article  Google Scholar 

  15. Priebe, A., Sinther, M., Fahsold, G. & Pucci, A. The correlation between film thickness and adsorbate line shape in surface enhanced infrared absorption. J. Chem. Phys. 119, 4887–4890 (2003).

    Article  ADS  Google Scholar 

  16. Wang, Z., Chen, C., Wu, K., Chong, H. & Ye, H. Transparent conductive oxides and their applications in near infrared plasmonics. Phys. Status Solidi Appl. Mater. Sci. 216, 1–12 (2019).

    Google Scholar 

  17. Neubrech, F., Huck, C., Weber, K., Pucci, A. & Giessen, H. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117, 5110–5145 (2017).

    Article  Google Scholar 

  18. Osawa, M. in Handbook of Vibrational Spectroscopy Vol. 1 (eds Chalmers, J. M. & Griffiths, P. R.) 785–799 (Wiley, 2002).

  19. Osawa, M., Ataka, K.-I., Yoshii, K. & Nishikawa, Y. Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47, 1497–1502 (1993).

    Article  ADS  Google Scholar 

  20. Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: physics and applications. J. Phys. D. Appl. Phys. 45, 113001 (2012).

    Article  ADS  Google Scholar 

  21. Osawa, M., Kuramitsu, M., Hatta, A., Suëtaka, W. & Seki, H. Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films. Surf. Sci. 175, L787–L793 (1986).

    Article  ADS  Google Scholar 

  22. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007). This article provides a description of the nano-antenna size dependence of the rSEIRA resonance frequency.

    Article  ADS  Google Scholar 

  23. Neubrech, F. et al. Resonances of individual lithographic gold nanowires in the infrared. Appl. Phys. Lett. 93, 163105 (2008). To our knowledge, this is the first report on the detection of plasmon resonances in gold nano-antennas.

    Article  ADS  Google Scholar 

  24. Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M. & Iatì, M. A. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017).

    Article  ADS  Google Scholar 

  25. Osawa, M. & Ikeda, M. Surface-enhanced infrared absorption of p-nitrobenzolc acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms. J. Phys. Chem. 95, 9914–9919 (1991).

    Article  Google Scholar 

  26. Weaver, J. B., Kozuch, J., Kirsh, J. M. & Boxer, S. G. Nitrile infrared intensities characterize electric fields and hydrogen bonding in protic, aprotic, and protein environments. J. Am. Chem. Soc. 144, 7562–7567 (2022).

    Article  Google Scholar 

  27. Utesch, T. et al. Potential distribution across model membranes. J. Phys. Chem. B 126, 7664–7675 (2022).

    Article  Google Scholar 

  28. Lambert, D. K. Electric field induced change of adsorbate vibrational line strength. J. Chem. Phys. 94, 41709 (1991).

    Article  Google Scholar 

  29. Dumas, P., Tobin, R. G. & Richards, P. L. Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy: II. Gold and copper. Surf. Sci. 171, 579–599 (1986).

    Article  ADS  Google Scholar 

  30. Choi, S., Park, J., Kwak, K. & Cho, M. Substituent effects on the vibrational properties of the CN stretch mode of aromatic nitriles: IR probes useful for time-resolved IR spectroscopy. Chem. Asian J. 16, 2626–2632 (2021).

    Article  Google Scholar 

  31. Abalde-Cela, S., Carregal-Romero, S., Coelho, J. P. & Guerrero-Martínez, A. Recent progress on colloidal metal nanoparticles as signal enhancers in nanosensing. Adv. Colloid Interface Sci. 233, 255–270 (2016).

    Article  Google Scholar 

  32. Hlavatsch, M. et al. Infrared spectroscopy—quo vadis? Appl. Sci. 12, 7598 (2022).

    Article  Google Scholar 

  33. Schnee, J. et al. Coupling a rapid-scan FT-IR spectrometer with quantum cascade lasers within a single setup: an easy way to reach microsecond time resolution without losing spectral information. Anal. Chem. 91, 4368–4373 (2019).

    Article  Google Scholar 

  34. Szczepaniak, U., Schneider, S. H., Horvath, R., Kozuch, J. & Geiser, M. Vibrational Stark spectroscopy of fluorobenzene using quantum cascade laser dual frequency combs. Appl. Spectrosc. 74, 347–356 (2020).

    Article  ADS  Google Scholar 

  35. Klocke, J. L. et al. Single-shot sub-microsecond mid-infrared spectroscopy on protein reactions with quantum cascade laser frequency combs. Anal. Chem. 90, 10494–10500 (2018).

    Article  Google Scholar 

  36. Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).

    Article  ADS  Google Scholar 

  37. Lins, E., Andvaag, I. R., Read, S., Rosendahl, S. M. & Burgess, I. J. Dual-frequency comb spectroscopy studies of ionic strength effects in time-resolved ATR-SEIRAS. J. Electroanal. Chem. 921, 116672 (2022).

    Article  Google Scholar 

  38. Katon, J. E. Infrared microspectroscopy. A review of fundamentals and applications. Micron 27, 303–314 (1996).

    Article  Google Scholar 

  39. Diem, M. Modern Vibrational Spectroscopy and Micro-Spectroscopy: Theory, Instrumentation and Biomedical Applications (Wiley, 2015).

  40. Aroca, R. F., Ross, D. J. & Domingo, C. Surface-enhanced infrared spectroscopy. Appl. Spectrosc. 58, 324A–338A (2004).

    Article  ADS  Google Scholar 

  41. Nishikawa, Y., Fujiwara, K., Ataka, K.-I. & Osawa, M. Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers. Anal. Chem. 65, 556–562 (1993).

    Article  Google Scholar 

  42. Ataka, K. & Heberle, J. Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer. Biopolymers 82, 415–419 (2006).

    Article  Google Scholar 

  43. Tu, K., Morhart, T. A., Read, S. T., Rosendahl, S. M. & Burgess, I. J. Probing heterogeneity in attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) response with synchrotron infrared microspectroscopy. Appl. Spectrosc. 75, 1198–1206 (2021). This paper uses synchrotron radiation to resolve the lateral heterogeneity of the nrSEIRA effect in metal island films.

    Article  ADS  Google Scholar 

  44. Martin, I., Goormaghtigh, E. & Ruysschaert, J. M. Attenuated total reflection IR spectroscopy as a tool to investigate the orientation and tertiary structure changes in fusion proteins. Biochim. Biophys. Acta Biomembr. 1614, 97–103 (2003).

    Article  Google Scholar 

  45. Milosevic, M. Internal reflection and ATR spectroscopy. Appl. Spectrosc. Rev. 39, 365–384 (2004).

    Article  ADS  Google Scholar 

  46. Osawa, M. in In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis (eds Sun, S. G., Christensen, P. A. & Wieckowski, A.) 209–246 (Elsevier, 2007).

  47. Ly, K. H. & Weidinger, I. M. Understanding active sites in molecular (photo)electrocatalysis through complementary vibrational spectroelectrochemistry. Chem. Commun. 57, 2328–2342 (2021).

    Article  Google Scholar 

  48. Thuy, V. et al. Surface sensitive infrared spectroelectrochemistry using palladium electrodeposited on ITO-modified internal reflection elements. Phys. Chem. Chem. Phys 24, 2925 (2022).

    Article  Google Scholar 

  49. Pfisterer, J. H. K., Zhumaev, U. E., Cheuquepan, W., Feliu, J. M. & Domke, K. F. Stark effect or coverage dependence? Disentangling the EC-SEIRAS vibrational shift of sulfate on Au(111). J. Chem. Phys. 150, 041709 (2019).

    Article  ADS  Google Scholar 

  50. Miyake, H., Hosono, E., Osawa, M. & Okada, T. Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes. Chem. Phys. Lett. 428, 451–456 (2006).

    Article  ADS  Google Scholar 

  51. Ataka, K. & Heberle, J. Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal. Bioanal. Chem. 388, 47–54 (2007).

    Article  Google Scholar 

  52. Yan, Y.-G. et al. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal–electrolyte interfaces. J. Phys. Chem. B 109, 7900–7906 (2005). This article shows the deposition of platinum group metals as SEIRA-active island films for electrocatalytic studies.

    Article  Google Scholar 

  53. Mattox, D. M. Handbook of Physical Vapor Deposition (PVD) (Elsevier, 2010).

  54. Sharma, E. et al. Evolution in lithography techniques: microlithography to nanolithography. Nanomaterials 12, 2754 (2022).

    Article  Google Scholar 

  55. Nishikawa, Y., Nagasawa, T., Fujiwara, K. & Osawa, M. Silver island films for surface-enhanced infrared absorption spectroscopy: effect of island morphology on the absorption enhancement. Vib. Spectrosc. 6, 43–53 (1993).

    Article  Google Scholar 

  56. Yang, X. et al. Optimizing ultrathin Ag films for high performance oxide–metal–oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures. Sci. Rep. 7, 44576 (2017).

    Article  ADS  Google Scholar 

  57. Gopi, R., Saravanan, I. & Devaraju, A. in Recent Advances in Materials and Modern Manufacturing, Lecture Notes in Mechanical Engineering (eds Palani, I. A., Sathiya, P. & Palanisamy, D.) 803–811 (Springer, 2022).

  58. Lippens, P. & Muehlfeld, U. in Handbook of Visual Display Technology (eds Chen, J., Cranton, W. & Fihn, K.) 779–794 (Springer, 2012).

  59. Anderson, M. S. Room-temperature synthesis of titanium nitride using metastable nitrogen. Coatings 12, 1177 (2022).

    Article  Google Scholar 

  60. Ma, Y. et al. Observation of tunable surface plasmon resonances and surface enhanced infrared absorption (SEIRA) based on indium tin oxide (ITO) nanoparticle substrates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 271, 120914 (2022).

    Article  Google Scholar 

  61. Todeschini, M., Bastos Da Silva Fanta, A., Jensen, F., Wagner, J. B. & Han, A. Influence of Ti and Cr adhesion layers on ultrathin Au films. ACS Appl. Mater. Interfaces 9, 37374–37385 (2017).

    Article  Google Scholar 

  62. Miyake, H., Ye, S. & Osawa, M. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. Electrochem. Commun. 4, 973–977 (2002). This article outlines a popular method to produce reproducible gold island films for nrSEIRA spectroscopy.

    Article  Google Scholar 

  63. Bao, W. J. et al. Au/ZnSe-based surface enhanced infrared absorption spectroscopy as a universal platform for bioanalysis. Anal. Chem. 90, 3842–3848 (2018).

    Article  Google Scholar 

  64. Miyake, H. & Osawa, M. Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution. Chem. Lett. 33, 278–279 (2004).

    Article  Google Scholar 

  65. Rodes, A., Orts, J. M., Pérez, J. M., Feliu, J. M. & Aldaz, A. Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy. Electrochem. Commun. 5, 56–60 (2003).

    Article  Google Scholar 

  66. Miki, A., Ye, S. & Osawa, M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. https://doi.org/10.1039/b203392e (2002).

  67. Polte, J. et al. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 132, 1296–1301 (2010).

    Article  Google Scholar 

  68. Huo, S. J., Xue, X. K., Li, Q. X., Xu, S. F. & Cai, W. B. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy. J. Phys. Chem. B 110, 25721–25728 (2006).

    Article  Google Scholar 

  69. Sivanesan, A. et al. Functionalized Ag nanoparticles with tunable optical properties for selective protein analysis. Chem. Commun. 47, 3553–3555 (2011).

    Article  Google Scholar 

  70. Stanglmair, C., Neubrech, F. & Pacholski, C. Chemical routes to surface enhanced infrared absorption (SEIRA) substrates. Z. fur Phys. Chem. 232, 1527–1539 (2018).

    Article  Google Scholar 

  71. Harris, T. G. A. A. et al. Robust electrografted interfaces on metal oxides for electrocatalysis—an in situ spectroelectrochemical study. J. Mater. Chem. A 6, 15200 (2018).

    Article  Google Scholar 

  72. Aksu, Y. & Driess, M. A low-temperature molecular approach to highly conductive tin-rich indium tin oxide thin films with durable electro-optical performance. Angew. Chem. Int. Ed. 48, 7778–7782 (2009).

    Article  Google Scholar 

  73. Guiet, A. et al. Hydrophobic nanoreactor soft-templating: a supramolecular approach to Yolk@Shell materials. Adv. Func. Mater. 25, 6228–6240 (2015).

    Article  Google Scholar 

  74. Wang, J.-Y., Zhang, H.-X., Jiang, K. & Cai, W.-B. From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study. J. Am. Chem. Soc. 133, 43 (2011).

    Google Scholar 

  75. Feng, J.-J. et al. Novel Au–Ag hybrid device for electrochemical SE(R)R spectroscopy in a wide potential and spectral range. Nano Lett. 9, 298–303 (2009).

    Article  ADS  Google Scholar 

  76. Murphy, C. J. et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005).

    Article  Google Scholar 

  77. Yuan, H. et al. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012).

    Article  ADS  Google Scholar 

  78. Kranz, C. & Mizaikoff, B. Microscopic techniques for the characterization of gold nanoparticles. Compr. Anal. Chem. 66, 257–299 (2014).

    Article  Google Scholar 

  79. Jensen, T. R., Van Duyne, R. P., Johnson, S. A. & Maroni, V. A. Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Appl. Spectrosc. 54, 371–377 (2000).

    Article  ADS  Google Scholar 

  80. Hoffmann, J. M. J. M. et al. Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm. J. Phys. Chem. C. 117, 11311–11316 (2013).

    Article  Google Scholar 

  81. Wu, Z., Chen, K., Menz, R., Nagao, T. & Zheng, Y. Tunable multiband metasurfaces by moiré nanosphere lithography. Nanoscale 7, 20391–20396 (2015).

    Article  ADS  Google Scholar 

  82. Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl Acad. Sci. USA 106, 19227–19232 (2009). This article reports nano-antenna arrays for biosensor applications.

    Article  ADS  Google Scholar 

  83. Brown, L. V. et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett. 21, 47 (2015).

    Google Scholar 

  84. Cubukcu, E., Zhang, S., Park, Y.-S., Bartal, G. & Zhang, X. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 (2009).

    Article  ADS  Google Scholar 

  85. Huang, M. et al. Reusable nanostencils for creating multiple biofunctional molecular nanopatterns on polymer substrate. Nano Lett. 12, 4817–4822 (2012).

    Article  ADS  Google Scholar 

  86. Bagheri, S. et al. Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement. ACS Photonics 2, 779–786 (2015).

    Article  MathSciNet  Google Scholar 

  87. Bagheri, S. et al. Large-area antenna-assisted SEIRA substrates by laser interference lithography. Adv. Opt. Mater. 2, 1050–1056 (2014).

    Article  MathSciNet  Google Scholar 

  88. Maß, T. W. W. & Taubner, T. Incident angle-tuning of infrared antenna array resonances for molecular sensing. ACS Photonics 2, 58 (2015).

    Article  Google Scholar 

  89. Li, P. et al. Recent advances in focused ion beam nanofabrication for nanostructures and devices: fundamentals and applications. Nanoscale 13, 1529–1565 (2021).

    Article  Google Scholar 

  90. Faulón Marruecos, D., Schwartz, D. K. & Kaar, J. L. Impact of surface interactions on protein conformation. Curr. Opin. Colloid Interface Sci. 38, 45–55 (2018).

    Article  Google Scholar 

  91. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  Google Scholar 

  92. Jiang, X., Zuber, A., Heberle, J. & Ataka, K. In situ monitoring of the orientated assembly of strep-tagged membrane proteins on the gold surface by surface enhanced infrared absorption spectroscopy. Phys. Chem. Chem. Phys. 10, 6381–6387 (2008).

    Article  Google Scholar 

  93. Wiebalck, S. et al. Monitoring the transmembrane proton gradient generated by cytochrome bo3 in tethered bilayer lipid membranes using SEIRA spectroscopy. J. Phys. Chem. B 129, 2249–2256 (2016).

    Article  Google Scholar 

  94. Ataka, K., Stripp, S. T. & Heberle, J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim. Biophys. Acta 1828, 2283–2293 (2013).

    Article  Google Scholar 

  95. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021).

    Article  Google Scholar 

  96. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  Google Scholar 

  97. Bélanger, D., Pinson, J., Beíanger, D. & Pinson, J. Electrografting: a powerful method for surface modification. Chem. Soc. Rev. 40, 3995–4048 (2011).

    Article  Google Scholar 

  98. Harris, T. G. A. A. et al. In situ spectroelectrochemical studies into the formation and stability of robust diazonium-derived interfaces on gold electrodes for the immobilization of an oxygen-tolerant hydrogenase. ACS Appl. Mater. Interfac. 10, 23380–23391 (2018).

    Article  Google Scholar 

  99. Sivanesan, A. et al. Tailored silica coated Ag nanoparticles for non-invasive surface enhanced Raman spectroscopy of biomolecular targets. RSC Adv. 2, 805–808 (2012).

    Article  ADS  Google Scholar 

  100. Chauhuri, R. G. & Paria, S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).

    Article  Google Scholar 

  101. Mayerhöfer, T. G., Mutschke, H. & Popp, J. Employing theories far beyond their limits—the case of the (Boguer–)Beer–Lambert law. ChemPhysChem 17, 1948–1955 (2016).

    Article  Google Scholar 

  102. Perry, D. A. et al. Study of adsorption of aminobenzoic acid isomers on silver nanostructures by surface-enhanced infrared spectroscopy. J. Phys. Chem. C. 113, 18304–18311 (2009).

    Article  Google Scholar 

  103. Tseng, C., Pennathur, A. K., Blauth, D., Salazar, N. & Dawlaty, J. M. Direct determination of plasmon enhancement factor and penetration depths in surface enhanced IR absorption spectroscopy. Langmuir 39, 3179–3184 (2023). This article describes a combination of electrochemistry and SEIRAS to quantify SEFs.

    Article  Google Scholar 

  104. Huo, S.-J., Wang, J.-Y., Sun, D.-L. & Cai, W.-B. Attenuated total reflection surface-enhanced infrared absorption spectroscopy at a cobalt electrode. Appl. Spectrosc. 63, 1162–1167 (2009).

    Article  ADS  Google Scholar 

  105. Osawa, M. & Ataka, K. Electromagnetic mechanism of enhanced infrared absorption of molecules adsorbed on metal island films. Surf. Sci. 262, L118–L122 (1992). To our knowledge, this is the first description of the nrSEIRA effect using effective medium theory.

    Article  ADS  Google Scholar 

  106. Aroca, R. F. Surface-enhanced Vibrational Spectroscopy (Wiley, 2006).

  107. Ataka, K., Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 3654, 10664–10672 (1996). In this article, the potential-dependent behaviour of interfacial water at electrodes is studied using SEIRAS; the reorientation of water molecules is detected via the surface-selection rule.

    Article  Google Scholar 

  108. Wan, L.-J., Terashima, M., Noda, H. & Osawa, M. Molecular orientation and ordered structure of benzenethiol adsorbed on gold(111). J. Phys. Chem. B 104, 3563–3569 (2000).

    Article  Google Scholar 

  109. Forbrig, E. et al. Monitoring the orientational changes of alamethicin during incorporation into bilayer lipid membranes. Langmuir 34, 2373–2385 (2018).

    Article  Google Scholar 

  110. Andvaag, I. R., Lins, E. & Burgess, I. J. An effective medium theory description of surface-enhanced infrared absorption from metal island layers grown on conductive metal oxide films. J. Phys. Chem. C. 125, 22301–22311 (2021).

    Article  Google Scholar 

  111. Osley, E. J. et al. Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule. Phys. Rev. Lett. 110, 087402 (2013).

    Article  ADS  Google Scholar 

  112. Pecharromán, C., Cuesta, A. & Gutiérrez, C. Comments on the paper by M.-S. Zheng and S.-G. Sun entitled ‘In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions’ [J. Electroanal. Chem. 500 (2001) 223]. J. Electroanal. Chem. 529, 145–154 (2002).

    Article  Google Scholar 

  113. Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 1767, 1073–1101 (2007).

    Article  Google Scholar 

  114. Barone, V. et al. Computational molecular spectroscopy. Nat. Rev. Methods Primers 1, 38 (2021).

    Article  Google Scholar 

  115. Kozuch, J., Schneider, S. H. & Boxer, S. G. Biosynthetic incorporation of site-specific isotopes in β-lactam antibiotics enables biophysical studies. ACS Chem. Biol. 15, 1148–1153 (2020).

    Article  Google Scholar 

  116. Zheng, C. et al. A two-directional vibrational probe reveals different electric field orientations in solution and an enzyme active site. Nat. Chem. 14, 891–897 (2022).

    Article  Google Scholar 

  117. Kozuch, J.et al. Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 16, 9546–9555 (2014).

    Article  Google Scholar 

  118. Baiz, C. R. & Tokmakoff, A. Structural disorder of folded proteins: isotope-edited 2D IR spectroscopy and Markov state modeling. Biophys. J. 108, 1747–1757 (2015).

    Article  ADS  Google Scholar 

  119. Fried, S. D. & Boxer, S. G. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. Acc. Chem. Res. 48, 998–1006 (2015).

    Article  Google Scholar 

  120. John-Herpin, A., Tittl, A. & Altug, H. Quantifying the limits of detection of surface-enhanced infrared spectroscopy with grating order-coupled nanogap antennas. ACS Photonics 5, 4117–4124 (2018).

    Article  Google Scholar 

  121. Kalam, S., Abu-Khamsin, S. A., Kamal, M. S. & Patil, S. Surfactant adsorption isotherms: a review. ACS Omega 6, 32342–32348 (2021).

    Article  Google Scholar 

  122. Li, Y. et al. Operando infrared spectroscopic insights into the dynamic evolution of liquid–solid (photo)electrochemical interfaces. Nano Energy 77, 105121 (2020).

    Article  Google Scholar 

  123. Kozuch, J., Steinem, C., Hildebrandt, P. & Millo, D. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes. Angew. Chem. Int. Ed. 51, 8114–8117 (2012). This article describes a membrane system on SEIRA-active metal films for the combined electrochemical and spectroscopic study of peptide antibiotics/membrane interactions.

    Article  Google Scholar 

  124. Ataka, K., Drauschke, J., Stulberg, V., Koksch, B. & Heberle, J. pH-induced insertion of pHLIP into a lipid bilayer: in-situ SEIRAS characterization of a folding intermediate at neutral pH. Biochim. Biophys. Acta Biomembr. 1864, 183873 (2022).

    Article  Google Scholar 

  125. Wu, L., Zeng, L. & Jiang, X. Revealing the nature of interaction between graphene oxide and lipid membrane by surface-enhanced infrared absorption (SEIRA) spectroscopy. J. Am. Chem. Soc. 137, 10052–10055 (2015).

    Article  Google Scholar 

  126. Fallah, M. A., Stanglmair, C., Pacholski, C. & Hauser, K. Devising self-assembled-monolayers for surface-enhanced infrared spectroscopy of pH-driven poly-l-lysine conformational changes. Langmuir 32, 7356–7364 (2016).

    Article  Google Scholar 

  127. Bao, W.-J. et al. Distance-determined sensitivity in attenuated total reflection-surface enhanced infrared absorption spectroscopy: aptamer–antigen compared to antibody–antigen. Chem. Commun. 50, 7787 (2014).

    Article  Google Scholar 

  128. Jiang, X., Ataka, K. & Heberle, J. Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an Au electrode: in situ observation by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C. 112, 813–819 (2008).

    Article  Google Scholar 

  129. Millo, D., Hildebrandt, P., Pandelia, M.-E., Lubitz, W. & Zebger, I. SEIRA spectroscopy of the electrochemical activation of an immobilized [NiFe] hydrogenase under turnover and non-turnover conditions. Angew. Chem. Int. Ed. 50, 2632–2634 (2011). This article describes catalytic current and hydrogen production by immobilized hydrogenase enzymes monitored using SEIRAS.

    Article  Google Scholar 

  130. Ataka, K. et al. Oriented attachment and membrane reconstitution of His-tagged cytochrome c oxidase to a gold electrode: in situ monitoring by surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 126, 16199–16206 (2004). To our knowledge, this is the first report of the use of SEIRAS to study the function of membrane proteins reconstituted in model membranes.

    Article  Google Scholar 

  131. Kielb, P. et al. Spectroscopic observation of calcium-induced reorientation of cellobiose dehydrogenase immobilized on electrodes and its effect on electrocatalytic activity. ChemPhysChem 16, 1960–1968 (2015).

    Article  Google Scholar 

  132. Heidary, N. et al. Orientation-controlled electrocatalytic efficiency of an adsorbed oxygen-tolerant hydrogenase. PLoS ONE 10, e0143101 (2015).

    Article  Google Scholar 

  133. Kriegel, S., Uchida, T., Osawa, M., Friedrich, T. & Hellwig, P. Biomimetic environment to study E. coli complex I through surface-enhanced IR absorption spectroscopy. Biochemistry 53, 6340–6347 (2014).

    Article  Google Scholar 

  134. Ataka, K. & Heberle, J. Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectroscopy of a protein monolayer. J. Am. Chem. Soc. 125, 4986–4987 (2003). To our knowledge, this is the first report of the application of SEIRAS to study the redox transition in proteins immobilized on SEIRA-active electrodes.

    Article  Google Scholar 

  135. Jiang, X., Engelhard, M., Ataka, K. & Heberle, J. Molecular impact of the membrane potential on the rhodopsin II. J. Am. Chem. Soc. 132, 10808–10815 (2010).

    Article  Google Scholar 

  136. Staffa, J. K. J. K. et al. Determination of the local electric field at Au/SAM interfaces using the vibrational Stark effect. J. Phys. Chem. C. 121, 22274–22285 (2017). This article describes quantification of interfacial electrostatics at functionalized electrodes using SEIRAS.

    Article  Google Scholar 

  137. Jiang, X. et al. Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy. Proc. Natl Acad. Sci. USA 105, 12113–12117 (2008).

    Article  ADS  Google Scholar 

  138. Zaitseva, E., Saavedra, M., Banerjee, S., Sakmar, T. P. & Vogel, R. SEIRA spectroscopy on a membrane receptor monolayer using lipoprotein particles as carriers. Biophys. J. 99, 2327–2335 (2010).

    Article  ADS  Google Scholar 

  139. Wisitruangsakul, N. et al. Redox-linked protein dynamics of cytochrome c probed by time-resolved surface enhanced infrared absorption spectroscopy. Phys. Chem. Chem. Phys. 10, 5276–5286 (2008).

    Article  Google Scholar 

  140. Cuesta, A. & Angel, C. ATR-SEIRAS for time-resolved studies of electrode–electrolyte interfaces. Curr. Opin. Electrochem. 35, 101041 (2022).

    Article  Google Scholar 

  141. Lins, E., Read, S., Unni, B., Rosendahl, S. M. & Burgess, I. J. Microsecond resolved infrared spectroelectrochemistry using dual frequency comb IR lasers. Anal. Chem. 92, 6241–6244 (2020).

    Article  Google Scholar 

  142. Ataka, K., Hara, Y. & Osawa, M. New approach to electrode kinetics and dynamics by potential modulated Fourier transform infrared spectroscopy. J. Electroanal. Chem. 473, 34–42 (1999).

    Article  Google Scholar 

  143. Mäntele, W. Reaction-induced infrared difference spectroscopy for the study of protein function and reaction mechanisms. Trends Biochem. Sci. 18, 197–202 (1993).

    Article  Google Scholar 

  144. Nyquist, R. M., Ataka, K. & Heberle, J. The molecular mechanism of membrane proteins probed by evanescent infrared waves. ChemBioChem 5, 431–436 (2004).

    Article  Google Scholar 

  145. Bergman, D. J. & Stroud, D. Physical properties of macroscopically inhomogeneous media. Solid. State Phys. Adv. Res. Appl. 46, 147–269 (1992).

    Google Scholar 

  146. Adato, R., Aksu, S. & Altug, H. Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy. Mater. Today 18, 436–446 (2015).

    Article  Google Scholar 

  147. Neuman, T. et al. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photonics Rev. 9, 637–649 (2015). This article describes the localization of the plasmonic near field in nano-antennas visualized using IR nano-imaging.

    Article  ADS  Google Scholar 

  148. Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    Article  ADS  Google Scholar 

  149. Catrysse, P. B., Fan, S., Yu, Z. & Verslegers, L. Temporal coupled-mode theory for resonant apertures. J. Opt. Soc. Am. B 27, 1947–1956 (2010).

    Article  ADS  Google Scholar 

  150. Wanzenböck, H. D., Mizaikoff, B., Weissenbacher, N. & Kellner, R. Surface enhanced infrared absorption spectroscopy (SEIRA) using external reflection on low-cost substrates. Fresenius. J. Anal. Chem. 362, 15–20 (1998).

    Article  Google Scholar 

  151. Sánchez-Cortés, S., Domingo, C., García-Ramos, J. V. & Aznárez, J. A. Surface-enhanced vibrational study (SEIR and SERS) of dithiocarbamate pesticides on gold films. Langmuir 17, 1157–1162 (2001).

    Article  Google Scholar 

  152. Sudo, E., Esaki, Y. & Sugiura, M. Analysis of additives in polymeric materials by liquid chromatography/infrared spectroscopy using surface-enhanced infrared spectroscopy. Bunseki Kagaku 50, 703–707 (2001).

    Article  Google Scholar 

  153. Chekhun, V. F. et al. The SEIRA spectroscopy data of nucleic acids and phospholipids from sensitive- and drug-resistant rat tumours. J. Exp. Clin. Cancer Res. 21, 599–607 (2002).

    Google Scholar 

  154. Dovbeshko, G. I. et al. Surface enhanced IR absorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolymers 67, 470–486 (2002).

    Article  Google Scholar 

  155. Adato, R. & Altug, H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013).

    Article  ADS  Google Scholar 

  156. Cataldo, S. et al. Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. ACS Nano 6, 979–985 (2012).

    Article  Google Scholar 

  157. Lu, G. Q. & Wieckowski, A. Heterogeneous electrocatalysis: a core field of interfacial science. Curr. Opin. Colloid Interface Sci. 5, 95–100 (2000).

    Article  Google Scholar 

  158. Su, H. S., Chang, X. & Xu, B. Surface-enhanced vibrational spectroscopies in electrocatalysis: fundamentals, challenges, and perspectives. Chinese J. Catal. 43, 2757–2771 (2022).

    Article  Google Scholar 

  159. Van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem. Soc. Rev. 46, 4347 (2017).

    Article  Google Scholar 

  160. Lin, W. F., Iwasita, T. & Vielstich, W. Catalysis of CO electrooxidation at Pt, Ru, and PtRu alloy. An in situ FTIR study. J. Phys. Chem. B 103, 3250–3257 (1999).

    Article  Google Scholar 

  161. Samjeské, G. et al. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a time-resolved surface-enhanced infrared study. J. Phys. Chem. B 109, 23509–23516 (2005).

    Article  Google Scholar 

  162. Hahn, F. & Melendres, C. A. Anodic oxidation of methane at noble metal electrodes: an ‘in situ’ surface enhanced infrared spectroelectrochemical study. Electrochim. Acta 46, 3525–3534 (2001).

    Article  Google Scholar 

  163. Wei, R. L. et al. Ammonia oxidation on iridium electrode in alkaline media: an in situ ATR-SEIRAS study. J. Electroanal. Chem. 896, 115254 (2021).

    Article  Google Scholar 

  164. Yao, Y., Wang, H., Yuan, X.-Z., Li, H. & Shao, M. Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 4, 1336–1341 (2019).

    Article  Google Scholar 

  165. Chang, J. et al. Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells. J. Mater. Chem. A 4, 18607–18613 (2016).

    Article  Google Scholar 

  166. Watanabe, M., Zhu, Y. & Uchida, H. Oxidation of CO on a Pt–Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy. J. Phys. Chem. B 104, 1762–1768 (2000).

    Article  Google Scholar 

  167. Yajima, T., Wakabayashi, N., Uchida, H. & Watanabe, M. Adsorbed water for the electro-oxidation of methanol at Pt–Ru alloy. Chem. Commun. https://doi.org/10.1039/B212197B (2003).

  168. Yajima, T., Uchida, H. & Watanabe, M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt–Ru alloy. J. Phys. Chem. B 108, 2654–2659 (2004).

    Article  Google Scholar 

  169. Ly, H. K. et al. 2nd coordination sphere controlled electron transfer of iron hangman complexes on electrodes probed by surface enhanced vibrational spectroscopy. Chem. Sci. 6, 6999–7007 (2015).

    Article  ADS  Google Scholar 

  170. Wagner, A. et al. Host−guest chemistry meets electrocatalysis: cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 10, 751–761 (2020).

    Article  Google Scholar 

  171. Groysman, S. & Holm, R. H. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Biochemistry 48, 2310–2320 (2009).

    Article  Google Scholar 

  172. Zhong, H. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal–organic frameworks. Nat. Commun. 11, 1409 (2020).

    Article  ADS  Google Scholar 

  173. Kielb, P. et al. Hydrogen evolution by cobalt hangman porphyrins under operating conditions studied by vibrational spectro-electrochemistry. Catal. Sci. Technol. 8, 1849–1857 (2018).

    Article  Google Scholar 

  174. Sengupta, K., Chatterjee, S., Samanta, S. & Dey, A. Direct observation of intermediates formed during steady-state electrocatalytic O2 reduction by iron porphyrins. Proc. Natl Acad. Sci. USA 110, 8431–8436 (2013).

    Article  ADS  Google Scholar 

  175. Kass, D. et al. Stoichiometric formation of an oxoiron(IV) complex by a soluble methane monooxygenase type activation of O2 at an iron(II)-cyclam center. J. Am. Chem. Soc. 142, 38 (2020).

    Article  Google Scholar 

  176. Ragupathy, P., Bhat, S. D. & Kalaiselvi, N. Electrochemical energy storage and conversion: an overview. Wiley Interdiscip. Rev. Energy Environ. 12, e464 (2023).

    Google Scholar 

  177. Ge, W. et al. Dynamically formed surfactant assembly at the electrified electrode–electrolyte interface boosting CO2 electroreduction. J. Am. Chem. Soc. 144, 6613–6622 (2022).

    Article  Google Scholar 

  178. Vivek, J. P., Berry, N. G., Zou, J., Nichols, R. J. & Hardwick, L. J. In situ surface-enhanced infrared spectroscopy to identify oxygen reduction products in nonaqueous metal−oxygen batteries. J. Phys. Chem. C. 121, 31 (2017).

    Article  Google Scholar 

  179. Zhang, Y.-J., Su, Z.-F., Li, J.-F. & Lipkowski, J. What vibrational spectroscopy tells about water structure at the electrified palladium−water interface. J. Phys. Chem. C. 124, 13240–13248 (2020).

    Article  Google Scholar 

  180. Quirk, A., Unni, B. & Burgess, I. J. Surface enhanced infrared studies of 4-methoxypyridine adsorption on gold film electrodes. Langmuir 32, 2184–2191 (2016).

    Article  Google Scholar 

  181. Ruff, A., Conzuelo, F. & Schuhmann, W. Bioelectrocatalysis as the basis for the design of enzyme-based biofuel cells and semi-artificial biophotoelectrodes. Nat. Catal. 3, 214–224 (2019).

    Article  Google Scholar 

  182. Ataka, K. & Heberle, J. Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes. J. Am. Chem. Soc. 126, 9445–9457 (2004).

    Article  Google Scholar 

  183. Krassen, H. et al. Tailor-made modification of a gold surface for the chemical binding of a high-activity [FeFe] hydrogenase. Eur. J. Inorg. Chem. 2011, 1138–1146 (2011).

    Article  Google Scholar 

  184. Wisitruangsakul, N. et al. Monitoring catalysis of the membrane bound hydrogenase from Ralstonia eutropha H16 by surface enhanced IR absorption spectroscopy. Angew. Chem. Int. Ed. 48, 611–613 (2009).

    Article  Google Scholar 

  185. Gutiérrez-Sanz, O. et al. Induction of a proton gradient across a gold-supported biomimetic membrane by electroenzymatic H2 oxidation. Angew. Chem. Int. Ed. 54, 2684–2687 (2015).

    Article  Google Scholar 

  186. Melin, F. et al. Direct electrochemistry of cytochrome bo3 oxidase at a series of gold nanoparticles-modified electrodes. Electrochem. Commun. 26, 105–108 (2013).

    Article  Google Scholar 

  187. Kato, M. et al. Surface-enhanced infrared absorption spectroscopy of bacterial nitric oxide reductase under electrochemical control using a vibrational probe of carbon monoxide. J. Phys. Chem. Lett. 9, 5196–5200 (2018).

    Article  Google Scholar 

  188. Gutiérrez-Sanz, O. et al. Catalytic activity and proton translocation of reconstituted respiratory complex I monitored by surface-enhanced infrared absorption spectroscopy. Langmuir 34, 5703–5711 (2018).

    Article  Google Scholar 

  189. Busalmen, J. P., Esteve-Nuñez, A., Berná, A. & Feliu, J. M. ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens. Bioelectrochemistry 78, 25–29 (2010).

    Article  Google Scholar 

  190. Busalmen, J. P., Esteve-Núñez, A., Berná, A. & Feliu, J. M. C-type cytochromes wire electricity-producing bacteria to electrodes. Angew. Chem. Int. Ed. 47, 4874–4877 (2008). This article describes the electrochemical communication between bacteria relevant for microbial fuel cells and electrodes studied using SEIRAS.

    Article  Google Scholar 

  191. Kadir, L. A., Stacey, M. & Barrett-Jolley, R. Emerging roles of the membrane potential: action beyond the action potential. Front. Physiol. 9, 1661 (2018).

    Article  Google Scholar 

  192. Kendall, J. K. R. et al. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity. ChemPhysChem 11, 2191–2198 (2010).

    Article  Google Scholar 

  193. Zhu, M. et al. Revealing the nanoarchitectonics of amyloid β-aggregation on two-dimensional biomimetic membranes by surface-enhanced infrared absorption spectroscopy. ChemistryOpen 12, e202200253 (2023).

    Article  Google Scholar 

  194. Baumann, A. et al. In-situ observation of membrane protein folding during cell-free expression. PLoS ONE 11, e0151051 (2016). This article describes the expression and folding of a membrane protein into model membranes monitored using SEIRAS.

    Article  Google Scholar 

  195. Natan, M. J. Concluding remarks surface enhanced Raman scattering. Faraday Discuss. 132, 321–328 (2006).

    Article  ADS  Google Scholar 

  196. Killian, M., Villa-Aleman, E., Sun, Z., Crittenden, S. & Leverette, C. Dependence of surface-enhanced infrared absorption (SEIRA) enhancement and spectral quality on the choice of underlying substrate: a closer look at silver (Ag) films prepared by physical vapor deposition (PVD). Appl. Spectrosc. 65, 272–283 (2011).

    Article  ADS  Google Scholar 

  197. Ohta, N., Nomura, K. & Yagi, I. Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy. Langmuir 26, 18097–18104 (2010).

    Article  Google Scholar 

  198. Kozuch, J., Petrusch, N., Gkogkou, D., Gernert, U. & Weidinger, I. M. Calculating average surface enhancement factors of randomly nanostructured electrodes by a combination of SERS and impedance spectroscopy. Phys. Chem. Chem. Phys. 17, 21220–21225 (2015).

    Article  Google Scholar 

  199. Yang, X. et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv. Mater. 30, 1704896 (2018).

    Article  Google Scholar 

  200. Huo, S.-J., Wang, J.-Y., Yao, J.-L. & Cai, W.-B. Exploring electrosorption at iron electrode with in situ surface-enhanced infrared absorption spectroscopy. Anal. Chem. 82, 5117–5124 (2010). This article uses iron surfaces as SEIRA-active substrates in electrochemical studies.

    Article  Google Scholar 

  201. Cerjan, B., Yang, X., Nordlander, P. & Halas, N. J. Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy. ACS Photonics 3, 354–360 (2016).

    Article  Google Scholar 

  202. Pellegrini, G. et al. Benchmarking the use of heavily doped Ge for plasmonics and sensing in the mid-infrared. ACS Photonics 5, 3601–3607 (2018).

    Article  Google Scholar 

  203. Abb, M., Wang, Y., Papasimakis, N., De Groot, C. H. & Muskens, O. L. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett. 14, 346–352 (2014).

    Article  ADS  Google Scholar 

  204. Zhong, W., Ye, L., Du, J. & Jing, C. Surface-enhanced infrared absorption spectroscopy for analyzing nucleophilic molecules using ethylene glycol decorated TiO2 nanosheet. ACS Appl. Mater. Interfaces 14, 54313–54319 (2022).

    Article  Google Scholar 

  205. Anderson, M. S. Enhanced infrared absorption with dielectric nanoparticles. Appl. Phys. Lett. 83, 2964 (2003).

    Article  ADS  Google Scholar 

  206. Anderson, M. S. Surface enhanced infrared absorption by coupling phonon and plasmon resonance. Appl. Phys. Lett. 87, 144102 (2005).

    Article  ADS  Google Scholar 

  207. Mishra, V. Affinity tags for protein purification. Curr. Protein Pept. Sci. 21, 821–830 (2020).

    Article  Google Scholar 

  208. McConnell, E. M., Nguyen, J. & Li, Y. Aptamer-based biosensors for environmental monitoring. Front. Chem. 8, 434 (2020).

    Article  ADS  Google Scholar 

  209. Welch, N. G., Scoble, J. A., Muir, B. W. & Pigram, P. J. Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases 12, 02D301 (2017).

    Article  Google Scholar 

  210. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). This article visualizes plasmonic standing waves in graphene via infrared nano-imaging.

    Article  ADS  Google Scholar 

  211. Zheng, Z. B. et al. Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures. Light. Sci. Appl. 6, e17057 (2017).

    Article  Google Scholar 

  212. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  ADS  Google Scholar 

  213. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 2890 (2013).

    Article  ADS  Google Scholar 

  214. Kaltenecker, K. J., Gölz, T., Bau, E. & Keilmann, F. Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water. Sci. Rep. 11, 21860 (2021).

    Article  ADS  Google Scholar 

  215. Kurouski, D., Dazzi, A., Zenobi, R. & Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 49, 3315–3347 (2020).

    Article  Google Scholar 

  216. Alonso-González, P. et al. Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Opt. Express 21, 1270–1280 (2013).

    Article  ADS  Google Scholar 

  217. Ruggeri, F. S., Mannini, B., Schmid, R., Vendruscolo, M. & Knowles, T. P. J. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun. 11, 2945 (2020).

    Article  ADS  Google Scholar 

  218. Toma, A. et al. Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots. Nano Lett. 15, 386–391 (2015).

    Article  ADS  Google Scholar 

  219. Ueno, K., Nozawa, S. & Misawa, H. Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves. Opt. Express 23, 28584 (2015).

    Article  ADS  Google Scholar 

  220. Donaldson, P. M. & Hamm, P. Gold nanoparticle capping layers: structure, dynamics, and surface enhancement measured using 2D-IR spectroscopy. Angew. Chem. Int. Ed. 52, 634–638 (2013). This article uses the SEIRA effect to enhance signals in two-dimensional IR spectroscopy.

    Article  Google Scholar 

  221. Birdsall, E. R. et al. Structure changes of a membrane polypeptide under an applied voltage observed with surface-enhanced 2D IR spectroscopy. J. Phys. Chem. Lett. 12, 1786–1792 (2021).

    Article  Google Scholar 

  222. Selig, O., Siffels, R. & Rezus, Y. L. A. Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas. Phys. Rev. Lett. 114, 233004 (2014).

    Article  ADS  Google Scholar 

  223. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Sinausia and C. Vogt (Technion, Israel) and G. Rose (Johns Hopkins University, USA) for valuable comments. J.K. and J.H. acknowledge the German Research Foundation (DFG) for support via the Sonderforschungsbereich 1078 (SFB 1078) ‘Protonation Dynamics in Protein Function’ (project number 221545957; projects A01, B03, B09). J.K. is further supported by a DFG Individual Research Grant (project number 500707750); J.H. receives additional funding from the SFB 1349 ‘Fluor-Specific Interactions: Fundamentals and Functions’ (project number 387284271 — project C05) and the Cluster of Excellence ‘UniSysCat’ (project number 390540038). K.A. and J.H. further acknowledge funding by DFG HE 206318-1.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jacek Kozuch or Joachim Heberle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Ian Burgess, Wen-Bin Cai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Affinity tags

Chemical motives or amino acid sequences that have a high affinity for a certain (macro)molecule, such that it binds specifically even in the presence of other molecules.

Changes in dipole moment

The intensity of signals in infrared spectra is dependent on the change in dipole moment during a vibration; on a quantum-mechanical level, this is expressed by the transition dipole moment, a measure for the probability of vibrational excitations.

Lithography

A collection of methods that are used for the fabrication of (nano)scale structures using laser sources (photolithography) or ion/electron beams (scanning lithography) often in combination with stamps or masks.

Localized surface plasmon resonance

(LSPR). A resonance formed by the constructive interference of surface plasmon polaritons that are confined in nano-antennas or between nanoparticles.

Non-resonant SEIRA

(nrSEIRA). Broad spectral infrared surface enhancement obtained via the modulation of the metal’s dielectric function by the vibrations of the adsorbed molecules.

Operando SEIRAS

Operando (or in situ) surface-enhanced infrared absorption spectroscopy (SEIRAS) records spectral changes while a chemical reaction occurs at the metal interface, such that substrates, intermediates and/or products can be detected.

Oscillating dipoles

The charge distribution of molecules can be described by net charge, dipolar charge separation and higher multipoles. During vibrations the net charge remains constant, but the charge separation fluctuates periodically, as in oscillating dipoles.

Resonant SEIRA

(rSEIRA). Narrow spectral infrared surface enhancement via an enhanced near field at the metal surface that is generated through excitation of localized surface plasmon resonances.

SEIRA spectroelectrochemistry

Surface-enhanced infrared absorption (SEIRA) spectra are recorded of processes that are initiated or controlled by the electrochemical potential at a SEIRA-active electrode surface.

Surface-selection rule

Non-resonant surface-enhanced infrared absorption (SEIRA) and resonant SEIRA only enhance the infrared absorption for molecular vibrations with dipole changes along the surface normal, allowing to determine molecular orientations.

Surface plasmon polariton

A quasiparticle describing the coupling of surface plasmons with photons, which propagates along the surface of the material.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozuch, J., Ataka, K. & Heberle, J. Surface-enhanced infrared absorption spectroscopy. Nat Rev Methods Primers 3, 70 (2023). https://doi.org/10.1038/s43586-023-00253-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00253-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing