Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Spatiotemporal control for integrated catalysis

Abstract

Integrated catalysis is an emerging methodology that can streamline the multi-step synthesis of complicated products in a single reaction vessel, achieving a high degree of control and reducing the waste and cost of an overall chemical process. Integrated catalysis can be defined using spatial and temporal control to couple different catalytic cycles in one pot. This Primer discusses commonly employed approaches and their underlying mechanisms and elaborates on how the integration of spatially and temporally controlled catalysis in one pot can deliver the synthesis of complex products with high efficiency. We highlight recent advances, analyse current applications and limitations, and provide an outlook for the future development of integrated catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of integrated catalysis.
Fig. 2: Different types of switchable catalysis as temporal control.
Fig. 3: Approaches to spatial control via compartmentalization of catalysts in close proximity within confined spaces.
Fig. 4: Temporal and spatial control in integrating different catalytic cycles.
Fig. 5: Applications of integrated catalysis.
Fig. 6: Organic synthesis in a robotic system.

Similar content being viewed by others

References

  1. Kätelhön, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl Acad. Sci. USA 116, 11187–11194 (2019).

    Article  ADS  Google Scholar 

  2. International Energy Agency. in Energy Technology Perspectives 2017 28 (IEA, 2017).

  3. Zweifel, G. S., Nantz, M. H. & Somfai, P. Modern Organic Synthesis: An Introduction (Wiley, 2017).

  4. Lohr, T. L. & Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 7, 477–482 (2015).

    Article  Google Scholar 

  5. Wasilke, J.-C., Obrey, S. J., Baker, R. T. & Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 105, 1001–1020 (2005).

    Article  Google Scholar 

  6. Goldman, A. S. Catalytic alkane metathesis by tandem alkane dehydrogenation–olefin metathesis. Science 312, 257–261 (2006).

    Article  ADS  Google Scholar 

  7. Leitch, D. C., Lam, Y. C., Labinger, J. A. & Bercaw, J. E. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling. J. Am. Chem. Soc. 135, 10302–10305 (2013).

    Article  Google Scholar 

  8. Lu, J., Dimroth, J. & Weck, M. Compartmentalization of incompatible catalytic transformations for tandem catalysis. J. Am. Chem. Soc. 137, 12984–12989 (2015). This paper demonstrates the preparation of a polymer micelle to encapsulate two catalysts in close proximity and use them to carry out an incompatible tandem reaction sequence.

    Article  Google Scholar 

  9. Xie, C. et al. Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Lett. 17, 3798–3802 (2017).

    Article  ADS  Google Scholar 

  10. Cho, H. J., Kim, D., Li, J., Su, D. & Xu, B. Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J. Am. Chem. Soc. 140, 13514–13520 (2018).

    Article  Google Scholar 

  11. Wei, W., Wu, S., Shen, X., Zhu, M. & Li, S. Nanoreactor with core-shell architectures used as spatiotemporal compartments for “undisturbed” tandem catalysis. J. Inorg. Organomet. Polym. Mater. 29, 1235–1242 (2019).

    Article  Google Scholar 

  12. Song, Y. et al. Multistep engineering of synergistic catalysts in a metal–organic framework for tandem C–O bond cleavage. J. Am. Chem. Soc. 142, 4872–4882 (2020).

    Article  Google Scholar 

  13. Qu, P., Kuepfert, M., Hashmi, M. & Weck, M. Compartmentalization and photoregulating pathways for incompatible tandem catalysis. J. Am. Chem. Soc. 143, 4705–4713 (2021).

    Article  Google Scholar 

  14. Shyshkanov, S., Vasilyev, D. V., Abhyankar, K. A., Stylianou, K. C. & Dyson, P. J. Tandem Pauson–Khand reaction using carbon dioxide as the C1-source. Eur. J. Inorg. Chem. https://doi.org/10.1002/ejic.202200037 (2022).

    Article  Google Scholar 

  15. Schmidt, S., Castiglione, K. & Kourist, R. Overcoming the incompatibility challenge in chemoenzymatic and multi-catalytic cascade reactions. Chem. A Eur. J. 24, 1755–1768 (2018).

    Article  Google Scholar 

  16. Meng, J. et al. Switchable catalysts used to control Suzuki cross-coupling and aza-Michael addition/asymmetric transfer hydrogenation cascade reactions. ACS Catal. 9, 8693–8701 (2019).

    Article  Google Scholar 

  17. Mattey, A. P. et al. Development of continuous flow systems to access secondary amines through previously incompatible biocatalytic cascades. Angew. Chem. Int. Ed. 60, 18660–18665 (2021).

    Article  Google Scholar 

  18. Natinsky, B. S., Jolly, B. J., Dumas, D. M. & Liu, C. Efficacy analysis of compartmentalization for ambient CH4 activation mediated by a RhII metalloradical in a nanowire array electrode. Chem. Sci. 12, 1818–1825 (2021).

    Article  Google Scholar 

  19. Rayder, T. M., Bensalah, A. T., Li, B., Byers, J. A. & Tsung, C.-K. Engineering second sphere interactions in a host–guest multicomponent catalyst system for the hydrogenation of carbon dioxide to methanol. J. Am. Chem. Soc. 143, 1630–1640 (2021). This paper describes the encapsulation of two different ruthenium catalysts alongside second-sphere amines in MOFs to enable efficient CO2 hydrogenation to methanol.

    Article  Google Scholar 

  20. Natinsky, B. S., Lu, S., Copeland, E. D., Quintana, J. C. & Liu, C. Solution catalytic cycle of incompatible steps for ambient air oxidation of methane to methanol. ACS Cent. Sci. 5, 1584–1590 (2019). This paper describes reconciling incompatible rhodium-catalysed C−H activation of methane with air-mediated methanol formation via the employment of an oxygen gradient generated by a nanowire array electrode.

    Article  Google Scholar 

  21. Hurtley, S. Location, location, location. Science 326, 1205 (2009).

    Article  ADS  Google Scholar 

  22. Chen, A. H. & Silver, P. A. Designing biological compartmentalization. Trends Cell Biol. 22, 662–670 (2012).

    Article  Google Scholar 

  23. Leenders, S. H. A. M., Gramage-Doria, R., De Bruin, B. & Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433–448 (2015).

    Article  Google Scholar 

  24. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11, 409–420 (2016).

    Article  ADS  Google Scholar 

  25. Tsitkov, S. & Hess, H. Design principles for a compartmentalized enzyme cascade reaction. ACS Catal. 9, 2432–2439 (2019).

    Article  Google Scholar 

  26. Vázquez-González, M., Wang, C. & Willner, I. Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat. Catal. 3, 256–273 (2020).

    Article  Google Scholar 

  27. Jolly, B. J., Co, N. H., Davis, A. R., Diaconescu, P. L. & Liu, C. A generalized kinetic model for compartmentalization of organometallic catalysis. Chem. Sci. 13, 1101–1110 (2022). This paper presents a theoretical framework and design principles for designing spatial confinement for a catalytic cycle with careful control of diffusivity in and out of the compartment.

    Article  Google Scholar 

  28. Corma, A. & Garcia, H. Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. ACS Catal. 348, 1391–1412 (2006).

    Google Scholar 

  29. McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108, 2646–2687 (2008).

    Article  Google Scholar 

  30. Queffelec, C., Petit, M., Janvier, P., Knight, D. A. & Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev. 112, 3777–3807 (2012).

    Article  Google Scholar 

  31. Blakemore, J. D., Gupta, A., Warren, J. J., Brunschwig, B. S. & Gray, H. B. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production. J. Am. Chem. Soc. 135, 18288–18291 (2013).

    Article  Google Scholar 

  32. Pujari, S. P., Scheres, L., Marcelis, A. T. & Zuilhof, H. Covalent surface modification of oxide surfaces. Angew. Chem. Int. Ed. 53, 6322–6356 (2014).

    Article  Google Scholar 

  33. Copéret, C. et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 116, 323–421 (2016).

    Article  Google Scholar 

  34. Wang, L., Polyansky, D. E. & Concepcion, J. J. Self-assembled bilayers as an anchoring strategy: catalysts, chromophores, and chromophore–catalyst assemblies. J. Am. Chem. Soc. 141, 8020–8024 (2019).

    Article  Google Scholar 

  35. Wu, L. et al. Stable molecular surface modification of nanostructured, mesoporous metal oxide photoanodes by silane and click chemistry. ACS Appl. Mater. Interfaces 11, 4560–4567 (2019).

    Article  Google Scholar 

  36. Lu, S., Guan, X. & Liu, C. Electricity-powered artificial root nodule. Nat. Commun. https://doi.org/10.1038/s41467-020-15314-9 (2020).

    Article  Google Scholar 

  37. Chen, Y., Wang, J., Hoar, B. B., Lu, S. & Liu, C. Machine learning-based inverse design for electrochemically controlled microscopic gradients of O2 and H2O2. Proc. Natl Acad. Sci. USA 119, e2206321119 (2022).

    Article  Google Scholar 

  38. Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    Article  Google Scholar 

  39. Leibfarth, F. A., Mattson, K. M., Fors, B. P., Collins, H. A. & Hawker, C. J. External regulation of controlled polymerizations. Angew. Chem. Int. Ed. 52, 199–210 (2013).

    Article  Google Scholar 

  40. Doerr, A. M. et al. Advances in polymerizations modulated by external stimuli. ACS Catal. 10, 14457–14515 (2020).

    Article  Google Scholar 

  41. Kaler, S. & Jones, M. D. Recent advances in externally controlled ring-opening polymerisations. Dalton Trans. 51, 1241–1256 (2022).

    Article  Google Scholar 

  42. Teator, A. J., Lastovickova, D. N. & Bielawski, C. W. Switchable polymerization catalysts. Chem. Rev. 116, 1969–1992 (2016).

    Article  Google Scholar 

  43. Choudhury, J. Recent developments on artificial switchable catalysis. Tetrahedron Lett. 59, 487–495 (2018).

    Article  Google Scholar 

  44. Lastovickova, D. N., Shao, H. L., Lu, G., Liu, P. & Bielawski, C. W. A ring-opening metathesis polymerization catalyst that exhibits redox-switchable monomer selectivities. Chem. A Eur. J. 23, 5994–6000 (2017).

    Article  Google Scholar 

  45. Zou, W. P., Pang, W. M. & Chen, C. L. Redox control in palladium catalyzed norbornene and alkyne polymerization. Inorg. Chem. Front. 4, 795–800 (2017).

    Article  Google Scholar 

  46. Anderson, W. C., Rhinehart, J. L., Tennyson, A. G. & Long, B. K. Redox-active ligands: an advanced tool to modulate polyethylene microstructure. J. Am. Chem. Soc. 138, 774–777 (2016).

    Article  Google Scholar 

  47. Lorkovic, I. M., Duff, R. R. & Wrighton, M. S. Use of the redox-active ligand 1,1′-bis(diphenylphosphino) cobaltocene to reversibly alter the rate of the rhodium(I)-catalyzed reduction and isomerization of ketones and alkenes. J. Am. Chem. Soc. 117, 3617–3618 (1995). To our knowledge, this paper is the first example demonstrating redox-switchable catalysis.

    Article  Google Scholar 

  48. Gregson, C. K. A. et al. Redox control within single-site polymerization catalysts. J. Am. Chem. Soc. 128, 7410–7411 (2006).

    Article  Google Scholar 

  49. Zhao, M. H. & Chen, C. L. Accessing multiple catalytically active states in redox-controlled olefin polymerization. ACS Catal. 7, 7490–7494 (2017).

    Article  Google Scholar 

  50. Varnado, C. D., Rosen, E. L., Collins, M. S., Lynch, V. M. & Bielawski, C. W. Synthesis and study of olefin metathesis catalysts supported by redox-switchable diaminocarbene [3] ferrocenophanes. Dalton Trans. 42, 13251–13264 (2013).

    Article  Google Scholar 

  51. Doerr, A. M., Burroughs, J. M., Legaux, N. M. & Long, B. K. Redox-switchable ring-opening polymerization by tridentate ONN-type titanium and zirconium catalysts. Catal. Sci. Technol. 10, 6501–6510 (2020).

    Article  Google Scholar 

  52. Anderson, W. C., Park, S. H., Brown, L. A., Kaiser, J. M. & Long, B. K. Accessing multiple polyethylene grades via a single redox-active olefin polymerization catalyst. Inorg. Chem. Front. 4, 1108–1112 (2017).

    Article  Google Scholar 

  53. Brown, L. A., Rhinehart, J. L. & Long, B. K. Effects of ferrocenyl proximity and monomer presence during oxidation for the redox-switchable polymerization of l-lactide. ACS Catal. 5, 6057–6060 (2015).

    Article  Google Scholar 

  54. Wei, J. N. & Diaconescu, P. L. Redox-switchable ring-opening polymerization with ferrocene derivatives. Acc. Chem. Res. 52, 415–424 (2019).

    Article  Google Scholar 

  55. Broderick, E. M. et al. Redox control of a ring-opening polymerization catalyst. J. Am. Chem. Soc. 133, 9278–9281 (2011).

    Article  Google Scholar 

  56. Broderick, E. M. & Diaconescu, P. L. Cerium(IV) catalysts for the ring-opening polymerization of lactide. Inorg. Chem. 48, 4701–4706 (2009).

    Article  Google Scholar 

  57. Biernesser, A. B., Li, B. & Byers, J. A. Redox-controlled polymerization of lactide catalyzed by bis(imino)pyridine iron bis(alkoxide) complexes. J. Am. Chem. Soc. 135, 16553–16560 (2013).

    Article  Google Scholar 

  58. Qi, M., Dong, Q., Wang, D. & Byers, J. A. Electrochemically switchable ring-opening polymerization of lactide and cyclohexene oxide. J. Am. Chem. Soc. 140, 5686–5690 (2018). This paper describes an electrochemical set-up for redox-switchable polymerization.

    Article  Google Scholar 

  59. Hern, Z. C. et al. ABC and ABAB block copolymers by electrochemically controlled ring-opening polymerization. J. Am. Chem. Soc. 143, 19802–19808 (2021).

    Article  Google Scholar 

  60. Quan, S. M., Wang, X., Zhang, R. & Diaconescu, P. L. Redox switchable copolymerization of cyclic esters and epoxides by a zirconium complex. Macromolecules 49, 6768–6778 (2016). To our knowledge, this paper reports the first example of synthesizing tri- and tetrablock copolymers by using redox-switchable copolymerization.

    Article  ADS  Google Scholar 

  61. Wei, J. N., Riffel, M. N. & Diaconescu, P. L. Redox control of aluminum ring-opening polymerization: a combined experimental and DFT investigation. Macromolecules 50, 1847–1861 (2017).

    Article  ADS  Google Scholar 

  62. Xu, X., Luo, G., Hou, Z., Diaconescu, P. L. & Luo, Y. Theoretical insight into the redox-switchable activity of group 4 metal complexes for the ring-opening polymerization of ε-caprolactone. Inorg. Chem. Front. 7, 961–971 (2020).

    Article  Google Scholar 

  63. Biernesser, A. B., Chiaie, K. R., Curley, J. B. & Byers, J. A. Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst. Angew. Chem. Int. Ed. 55, 5251–5254 (2016).

    Article  Google Scholar 

  64. Lai, A., Hern, Z. C. & Diaconescu, P. L. Switchable ring-opening polymerization by a ferrocene supported aluminum complex. ChemCatChem 11, 4210–4218 (2019).

    Article  Google Scholar 

  65. Wang, X. et al. Redox control of group 4 metal ring-opening polymerization activity toward l-lactide and ε-caprolactone. J. Am. Chem. Soc. 136, 11264–11267 (2014).

    Article  Google Scholar 

  66. Abubekerov, M. et al. Exploring oxidation state-dependent selectivity in polymerization of cyclic esters and carbonates with zinc (II) complexes. iScience 7, 120–131 (2018).

    Article  ADS  Google Scholar 

  67. Lowe, M. Y., Shu, S. S., Quan, S. M. & Diaconescu, P. L. Investigation of redox switchable titanium and zirconium catalysts for the ring opening polymerization of cyclic esters and epoxides. Inorg. Chem. Front. 4, 1798–1805 (2017).

    Article  Google Scholar 

  68. Deng, S. & Diaconescu, P. L. A switchable dimeric yttrium complex and its three catalytic states in ring opening polymerization. Inorg. Chem. Front. 8, 2088–2096 (2021).

    Article  Google Scholar 

  69. Ortuno, M. A. et al. The role of alkoxide initiator, spin state, and oxidation state in ring-opening polymerization of ε-caprolactone catalyzed by iron bis(imino)pyridine complexes. Inorg. Chem. 57, 2064–2071 (2018).

    Article  Google Scholar 

  70. Yoon, H. J., Kuwabara, J., Kim, J. H. & Mirkin, C. A. Allosteric supramolecular triple-layer catalysts. Science 330, 66–69 (2010). This paper describes using a chloride anion as a chemical switch for ring-opening polymerization.

    Article  ADS  Google Scholar 

  71. Kita, M. R. & Miller, A. J. M. Cation-modulated reactivity of iridium hydride pincer–crown ether complexes. J. Am. Chem. Soc. 136, 14519–14529 (2014). This paper describes how cations can be used to tune the reaction rate for hydrogen activation.

    Article  Google Scholar 

  72. Kita, M. R. & Miller, A. J. M. An ion-responsive pincer–crown ether catalyst system for rapid and switchable olefin isomerization. Angew. Chem. Int. Ed. 56, 5498–5502 (2017).

    Article  Google Scholar 

  73. Camp, A. M. et al. Selecting double bond positions with a single cation-responsive iridium olefin isomerization catalyst. J. Am. Chem. Soc. 143, 2792–2800 (2021).

    Article  Google Scholar 

  74. Cai, Z. Z., Xiao, D. W. & Do, L. H. Fine-tuning nickel phenoxyimine olefin polymerization catalysts: performance boosting by alkali cations. J. Am. Chem. Soc. 137, 15501–15510 (2015). This paper describes how alkali cations can be used to regulate the reaction rate for ethylene polymerization and the structure of the resulting polymer.

    Article  Google Scholar 

  75. Cai, Z. Z. & Do, L. H. Thermally robust heterobimetallic palladium–alkali catalysts for ethylene and alkyl acrylate copolymerization. Organometallics 37, 3874–3882 (2018).

    Article  Google Scholar 

  76. Tran, T. V., Karas, L. J., Wu, J. I. & Do, L. H. Elucidating secondary metal cation effects on nickel olefin polymerization catalysts. ACS Catal. 10, 10760–10772 (2020).

    Article  Google Scholar 

  77. Tran, T. V., Nguyen, Y. H. & Do, L. H. Development of highly productive nickel–sodium phenoxyphosphine ethylene polymerization catalysts and their reaction temperature profiles. Polym. Chem. 10, 3718–3721 (2019).

    Article  Google Scholar 

  78. Tran, T. V., Lee, E., Nguyen, Y. H., Nguyen, H. D. & Do, L. H. Customizing polymers by controlling cation switching dynamics in non-living polymerization. J. Am. Chem. Soc. 144, 17129–17139 (2022).

    Article  Google Scholar 

  79. Romain, C. & Williams, C. K. Chemoselective polymerization control: from mixed-monomer feedstock to copolymers. Angew. Chem. Int. Ed. 53, 1607–1610 (2014). This paper presents an example of using CO2 to shuttle a catalyst between two different polymerization cycles.

    Article  Google Scholar 

  80. Coulembier, O., Moins, S., Todd, R. & Dubois, P. External and reversible CO2 regulation of ring-opening polymerizations based on a primary alcohol propagating species. Macromolecules 47, 486–491 (2014).

    Article  ADS  Google Scholar 

  81. Lv, C. N., He, C. Z. & Pan, X. C. Oxygen-initiated and regulated controlled radical polymerization under ambient conditions. Angew. Chem. Int. Ed. 57, 9430–9433 (2018).

    Article  Google Scholar 

  82. Zhang, B. H. et al. Enzyme-initiated reversible addition-fragmentation chain transfer polymerization. Macromolecules 48, 7792–7802 (2015).

    Article  ADS  Google Scholar 

  83. Sha, S.-C. et al. Cation−π interactions in the benzylic arylation of toluenes with bimetallic catalysts. J. Am. Chem. Soc. 140, 12415–12423 (2018).

    Article  Google Scholar 

  84. Neilson, B. M. & Bielawski, C. W. Illuminating photoswitchable catalysis. ACS Catal. 3, 1874–1885 (2013).

    Article  Google Scholar 

  85. Dorel, R. & Feringa, B. Photoswitchable catalysis based on the isomerisation of double bonds. Chem. Commun. 55, 6477–6486 (2019).

    Article  Google Scholar 

  86. Wurthner, F. & Rebek, J. Light-switchable catalysis in synthetic receptors. Angew. Chem. Int. Ed. 34, 446–448 (1995).

    Article  Google Scholar 

  87. Fu, C. K., Xu, J. T. & Boyer, C. Photoacid-mediated ring opening polymerization driven by visible light. Chem. Commun. 52, 7126–7129 (2016).

    Article  Google Scholar 

  88. Berkovic, G., Krongauz, V. & Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 100, 1741–1753 (2000).

    Article  Google Scholar 

  89. Majee, D. & Presolski, S. Dithienylethene-based photoswitchable catalysts: state of the art and future perspectives. ACS Catal. 11, 2244–2252 (2021).

    Article  Google Scholar 

  90. Eisenreich, F. et al. A photoswitchable catalyst system for remote-controlled (co)polymerization in situ. Nat. Catal. 1, 516–522 (2018). This paper demonstrates how light-programmed copolymer synthesis can be achieved using a photo-switchable catalyst.

    Article  Google Scholar 

  91. Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).

    Article  Google Scholar 

  92. Xu, J. T., Jung, K., Atme, A., Shanmugam, S. & Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 136, 5508–5519 (2014).

    Article  Google Scholar 

  93. Kottisch, V., Michaudel, Q. & Fors, B. P. Photocontrolled interconversion of cationic and radical polymerizations. J. Am. Chem. Soc. 139, 10665–10668 (2017).

    Article  Google Scholar 

  94. Kracher, D. & Kourist, R. Recent developments in compartmentalization of chemoenzymatic cascade reactions. Curr. Opin. Green. Sustain. Chem. 32, 100538 (2021).

    Article  Google Scholar 

  95. Chen, W.-H., Vázquez-González, M., Zoabi, A., Abu-Reziq, R. & Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat. Catal. 1, 689–695 (2018). This article presents the spatial confinement of two to three enzyme cascades within ZIF-8 MOFs for improved intermediate channelling between active sites.

    Article  Google Scholar 

  96. Quin, M. B., Wallin, K. K., Zhang, G. & Schmidt-Dannert, C. Spatial organization of multi-enzyme biocatalytic cascades. Org. Biomol. Chem. 15, 4260–4271 (2017).

    Article  Google Scholar 

  97. Wang, C., Yue, L. & Willner, I. Controlling biocatalytic cascades with enzyme–DNA dynamic networks. Nat. Catal. 3, 941–950 (2020). This paper describes nucleic acid−enzyme conjugate networks to design triggered biocatalytic cascades to construct controlled (switchable) biocatalytic networks.

    Article  Google Scholar 

  98. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 4, 249–254 (2009).

    Article  ADS  Google Scholar 

  99. Zhang, Y. & Hess, H. Toward rational design of high-efficiency enzyme cascades. ACS Catal. 7, 6018–6027 (2017).

    Article  Google Scholar 

  100. Copéret, C. & Basset, J. M. Strategies to immobilize well-defined olefin metathesis catalysts: supported homogeneous catalysis vs. surface organometallic chemistry. Adv. Synth. Catal. 349, 78–92 (2007). This review (and the cited articles within) describes various methods to immobilize olefin metathesis catalysts onto solid supports.

    Article  Google Scholar 

  101. Gan, W., Dyson, P. J. & Laurenczy, G. Heterogeneous silica-supported ruthenium phosphine catalysts for selective formic acid decomposition. ChemCatChem 5, 3124–3130 (2013).

    Article  Google Scholar 

  102. Wu, F., Feng, Y. & Jones, C. W. Recyclable silica-supported iridium bipyridine catalyst for aromatic C–H borylation. ACS Catal. 4, 1365–1375 (2014).

    Article  Google Scholar 

  103. Sévery, L. et al. Immobilization of molecular catalysts on electrode surfaces using host–guest interactions. Nat. Chem. https://doi.org/10.1038/s41557-021-00652-y (2021).

    Article  Google Scholar 

  104. Verho, O. & Backvall, J. E. Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines. J. Am. Chem. Soc. 137, 3996–4009 (2015).

    Article  Google Scholar 

  105. Deiana, L. et al. Combined heterogeneous metal/chiral amine: multiple relay catalysis for versatile eco-friendly synthesis. Angew. Chem. Int. Ed. 53, 3447–3451 (2014).

    Article  Google Scholar 

  106. Palo-Nieto, C. et al. Integrated heterogeneous metal/enzymatic multiple relay catalysis for eco-friendly and asymmetric synthesis. ACS Catal. 6, 3932–3940 (2016).

    Article  Google Scholar 

  107. Gustafson, K. P., Lihammar, R., Verho, O., Engstrom, K. & Backvall, J.-E. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases. J. Org. Chem. 79, 3747–3751 (2014).

    Article  Google Scholar 

  108. Wang, Y. et al. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat. Commun. 11, 3577 (2020).

    Article  ADS  Google Scholar 

  109. Kodaimati, M. S., Gao, R., Root, S. E. & Whitesides, G. M. Magnetic fields enhance mass transport during electrocatalytic reduction of CO2. Chem. Catal. 2, 797–815 (2022).

    Article  Google Scholar 

  110. Aoyagi, S. et al. Control of chemical reaction involving dissolved oxygen using magnetic field gradient. Chem. Phys. 331, 137–141 (2006).

    Article  Google Scholar 

  111. Kong, Y. et al. Mesoporous silica-supported rhodium complexes alongside organic functional groups for catalysing the 1,4-addition reaction of arylboronic acid in water. Green Chem. 24, 3269–3276 (2022).

    Article  Google Scholar 

  112. Keim, W. Multiphase catalysis and its potential in catalytic processes: the story of biphasic homogeneous catalysis. Green. Chem. 5, 105–111 (2003).

    Article  Google Scholar 

  113. Bényei, A. & Joó, F. Organometallic catalysis in aqueous solutions: the biphasic transfer hydrogenation of aldehydes catalyzed by water-soluble phosphine complexes of ruthenium, rhodium and iridium. J. Mol. Catal. 58, 151–163 (1990).

    Article  Google Scholar 

  114. Cornils, B. & Kuntz, E. G. Introducing TPPTS and related ligands for industrial biphasic processes. J. Organomet. Chem. 502, 177–186 (1995).

    Article  Google Scholar 

  115. Alam, M. T. et al. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun. 8, 1–13 (2017).

    Article  ADS  Google Scholar 

  116. Avalos, J. L., Fink, G. R. & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31, 335–341 (2013).

    Article  Google Scholar 

  117. Jandt, U., You, C., Zhang, Y. H. P. & Zeng, A. P. Compartmentalization and metabolic channeling for multienzymatic biosynthesis: practical strategies and modeling approaches. Adv. Biochem. Eng. Biotechnol. 137, 41–65 (2013).

    Google Scholar 

  118. Tu, B. P. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152–1158 (2005).

    Article  ADS  Google Scholar 

  119. Zecchin, A., Stapor, P. C., Goveia, J. & Carmeliet, P. Metabolic pathway compartmentalization: an underappreciated opportunity? Curr. Opin. Biotechnol. 34, 73–81 (2015).

    Article  Google Scholar 

  120. Idan, O. & Hess, H. Origins of activity enhancement in enzyme cascades on scaffolds. ACS Nano 7, 8658–8665 (2013).

    Article  Google Scholar 

  121. Jordan, P. C. et al. Self-assembling biomolecular catalysts for hydrogen production. Nat. Chem. 8, 179–185 (2016).

    Article  Google Scholar 

  122. Simms, R. W. & Cunningham, M. F. Compartmentalization of reverse atom transfer radical polymerization in miniemulsion. Macromolecules 41, 5148–5155 (2008).

    Article  ADS  Google Scholar 

  123. Smeets, N. M. B., Heuts, J. P. A., Meuldijk, J., Cunningham, M. F. & Van Herk, A. M. Evidence of compartmentalization in catalytic chain transfer mediated emulsion polymerization of methyl methacrylate. Macromolecules 42, 7332–7341 (2009).

    Article  ADS  Google Scholar 

  124. Thomson, M. E., Smeets, N. M. B., Heuts, J. P. A., Meuldijk, J. & Cunningham, M. F. Catalytic chain transfer mediated emulsion polymerization: compartmentalization and its effects on the molecular weight distribution. Macromolecules 43, 5647–5658 (2010).

    Article  ADS  Google Scholar 

  125. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007). This article describes synthetic host−guest systems that mimic electrostatic encapsulation of enzyme pockets to enable acid-catalysed reactions in a basic environment.

    Article  ADS  Google Scholar 

  126. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis of orthoformate hydrolysis in basic solution: an enzyme-like mechanism. J. Am. Chem. Soc. 130, 11423–11429 (2008).

    Article  Google Scholar 

  127. Hart-Cooper, W. M., Clary, K. N., Toste, F. D., Bergman, R. G. & Raymond, K. N. Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. J. Am. Chem. Soc. 134, 17873–17876 (2012).

    Article  Google Scholar 

  128. Hong, C. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 51, 2447–2455 (2018).

    Article  Google Scholar 

  129. Morimoto, M. et al. Advances in supramolecular host-mediated reactivity. Nat. Catal. 3, 969–984 (2020).

    Article  Google Scholar 

  130. Dong, V. M., Fiedler, D., Carl, B., Bergman, R. G. & Raymond, K. N. Molecular recognition and stabilization of iminium ions in water. J. Am. Chem. Soc. 128, 14464–14465 (2006).

    Article  Google Scholar 

  131. Kaphan, D. M., Toste, F. D., Bergman, R. G. & Raymond, K. N. Enabling new modes of reactivity via constrictive binding in a supramolecular-assembly-catalyzed aza-Prins cyclization. J. Am. Chem. Soc. 137, 9202–9205 (2015).

    Article  Google Scholar 

  132. Davis, A., Liu, C. & Diaconescu, P. The art of compartment design for organometallic catalysis. Inorg. Chem. Front. https://doi.org/10.1039/D2QI02332F (2023).

    Article  Google Scholar 

  133. Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429 (2005).

    Article  Google Scholar 

  134. Engel, S., Fritz, E.-C. & Ravoo, B. J. New trends in the functionalization of metallic gold: from organosulfur ligands to N-heterocyclic carbenes. Chem. Soc. Rev. 46, 2057–2075 (2017).

    Article  Google Scholar 

  135. Jackson, M. N. & Surendranath, Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation. Acc. Chem. Res. 52, 3432–3441 (2019).

    Article  Google Scholar 

  136. Noda, H., Motokura, K., Miyaji, A. & Baba, T. Heterogeneous synergistic catalysis by a palladium complex and an amine on a silica surface for acceleration of the Tsuji–Trost reaction. Angew. Chem. Int. Ed. 51, 8017–8020 (2012).

    Article  Google Scholar 

  137. Park, J.-W., Park, Y. J. & Jun, C.-H. Post-grafting of silica surfaces with pre-functionalized organosilanes: new synthetic equivalents of conventional trialkoxysilanes. Chem. Commun. 47, 4860–4871 (2011).

    Article  Google Scholar 

  138. Deiana, L. et al. Enantioselective heterogeneous synergistic catalysis for asymmetric cascade transformations. Adv. Synth. Catal. 356, 2485–2492 (2014).

    Article  Google Scholar 

  139. Deiana, L. et al. Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media. Chem. Commun. 57, 8814–8817 (2021).

    Article  Google Scholar 

  140. Engstrom, K. et al. Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: an artificial metalloenzyme. Angew. Chem. Int. Ed. 52, 14006–14010 (2013). This paper presents the co-encapsulation of palladium nanoparticles and an enzyme within amine/imine functionalized silica for synergistic primary amine kinetic resolution.

    Article  Google Scholar 

  141. Conley, M. P., Copéret, C. & Thieuleux, C. Mesostructured hybrid organic–silica materials: ideal supports for well-defined heterogeneous organometallic catalysts. ACS Catal. 4, 1458–1469 (2014).

    Article  Google Scholar 

  142. Materna, K. L., Crabtree, R. H. & Brudvig, G. W. Anchoring groups for photocatalytic water oxidation on metal oxide surfaces. Chem. Soc. Rev. 46, 6099–6110 (2017).

    Article  Google Scholar 

  143. Hanna, C. M., Luu, A. & Yang, J. Y. Proton-coupled electron transfer at anthraquinone modified indium tin oxide electrodes. ACS Appl. Energy Mater. 2, 59–65 (2019).

    Article  Google Scholar 

  144. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers https://doi.org/10.1038/s43586-021-00044-z (2021).

    Article  Google Scholar 

  145. Bering, L., Thompson, J. & Micklefield, J. New reaction pathways by integrating chemo- and biocatalysis. Trends Chem. 4, 392–408 (2022).

    Article  Google Scholar 

  146. Lauder, K. et al. Photo-biocatalytic one-pot cascades for the enantioselective synthesis of 1,3-mercaptoalkanol volatile sulfur compounds. Angew. Chem. Int. Ed. 57, 5803–5807 (2018).

    Article  Google Scholar 

  147. Betori, R. C., May, C. M. & Scheidt, K. A. Combined photoredox/enzymatic C–H benzylic hydroxylations. Angew. Chem. Int. Ed. 58, 16490–16494 (2019).

    Article  Google Scholar 

  148. Sheldon, R. A. & van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42, 6223–6235 (2013).

    Article  Google Scholar 

  149. Talekar, S. et al. Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv. 3, 12485–12511 (2013).

    Article  ADS  Google Scholar 

  150. Sheldon, R. A. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl. Microbiol. Biotechnol. 92, 467–477 (2011).

    Article  Google Scholar 

  151. Cannon, G. C. et al. Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl. Environ. Microbiol. 67, 5351–5361 (2001).

    Article  ADS  Google Scholar 

  152. Tanaka, S. et al. Atomic-level models of the bacterial carboxysome shell. Science 319, 1083–1086 (2008).

    Article  ADS  Google Scholar 

  153. Vriezema, D. M. et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. Int. Ed. 46, 7378–7382 (2007).

    Article  Google Scholar 

  154. Schmidt-Dannert, C. & Lopez-Gallego, F. A roadmap for biocatalysis — functional and spatial orchestration of enzyme cascades. Microb. Biotechnol. 9, 601–609 (2016).

    Article  Google Scholar 

  155. Ouyang, Y., Zhang, P. & Willner, I. Dissipative biocatalytic cascades and gated transient biocatalytic cascades driven by nucleic acid networks. Sci. Adv. https://doi.org/10.1126/sciadv.abn3534 (2022).

    Article  Google Scholar 

  156. Heuson, E. et al. Optimisation of catalysts coupling in multi-catalytic hybrid materials: perspectives for the next revolution in catalysis. Green Chem. 23, 1942–1954 (2021).

    Article  Google Scholar 

  157. Dickie, R. A., Labana, S. S. & Bauer, R. S. in Cross-Linked Polymers: Chemistry, Properties, and Applications (American Chemical Society, 1988).

  158. Maitra, J. & Shukla, V. K. Cross-linking in hydrogels — a review. Am. J. Polym. Sci. 4, 25–31 (2014).

    Google Scholar 

  159. Delle Chiaie, K. R. et al. Redox-triggered crosslinking of a degradable polymer. Polym. Chem. 7, 4675–4681 (2016).

    Article  Google Scholar 

  160. Jia, X., Qin, C., Friedberger, T., Guan, Z. & Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2, e1501591 (2016). This paper presents how spatially separating an alkane dehydrogenation/hydrogenation catalyst and an alkene metathesis catalyst can circumvent unwanted catalyst–catalyst interactions.

    Article  ADS  Google Scholar 

  161. Haibach, M. C., Kundu, S., Brookhart, M. & Goldman, A. S. Alkane metathesis by tandem alkane-dehydrogenation–olefin-metathesis catalysis and related chemistry. Acc. Chem. Res. 45, 947–958 (2012).

    Article  Google Scholar 

  162. Coperet, C., Liao, W. C., Gordon, C. P. & Ong, T. C. Active sites in supported single-site catalysts: an NMR perspective. J. Am. Chem. Soc. 139, 10588–10596 (2017).

    Article  Google Scholar 

  163. Weisz, P. B. & Hicks, J. S. The behaviour of porous catalyst particles in view of internal mass and heat diffusion effects. Chem. Eng. Sci. 17, 265–275 (1962).

    Article  Google Scholar 

  164. Weisz, P. B. Diffusion and chemical transformation: an interdisciplinary excursion. Science 179, 433–440 (1973).

    Article  ADS  Google Scholar 

  165. Rayder, T. M., Adillon, E. H., Byers, J. A. & Tsung, C.-K. A bioinspired multicomponent catalytic system for converting carbon dioxide into methanol autocatalytically. Chem 6, 1742–1754 (2020).

    Article  Google Scholar 

  166. Wayland, B. B., Ba, S. & Sherry, A. E. Activation of methane and toluene by rhodium(II) porphyrin complexes. J. Am. Chem. Soc. 113, 5305–5311 (1991).

    Article  Google Scholar 

  167. Nielsen, D. U., Hu, X.-M., Daasbjerg, K. & Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 1, 244–254 (2018).

    Article  Google Scholar 

  168. Dodge, H. M. et al. Polyketones from carbon dioxide and ethylene by integrating electrochemical and organometallic catalysis. ACS. Catal. https://doi.org/10.1021/acscatal.3c00769 (2023).

  169. Chen, T. T., Zhu, Y. & Williams, C. K. Pentablock copolymer from tetracomponent monomer mixture using a switchable dizinc catalyst. Macromolecules 51, 5346–5351 (2018).

    Article  ADS  Google Scholar 

  170. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013). This paper demonstrates how artificial templating can mimic sequence-defined peptide synthesis.

    Article  ADS  Google Scholar 

  171. Qi, M. et al. Electrochemically switchable polymerization from surface-anchored molecular catalysts. Chem. Sci. 12, 9042–9052 (2021). This paper details the immobilization of Fe(II) and Fe(III) bis−iminopyridine catalysts onto an electrochemically active surface to generate patterned polylactide and poly(cyclohexene oxide) surfaces via switchable ring-opening polymerization.

    Article  Google Scholar 

  172. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019). This paper demonstrates how programming and automation can be integrated into laboratory chemical synthesis to improve efficiency.

    Article  Google Scholar 

  173. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article  ADS  Google Scholar 

  174. Diebolt, O., van Leeuwen, P. W. N. M. & Kamer, P. C. J. Operando spectroscopy in catalytic carbonylation reactions. ACS Catal. 2, 2357–2370 (2012).

    Article  Google Scholar 

  175. Köhnke, K. et al. Operando monitoring of mechanisms and deactivation of molecular catalysts. Green Chem. 24, 1951–1972 (2022).

    Article  Google Scholar 

  176. Webb, D. & Jamison, T. F. Continuous flow multi-step organic synthesis. Chem. Sci. 1, 675 (2010).

    Article  Google Scholar 

  177. Noël, T., Cao, Y. & Laudadio, G. The fundamentals behind the use of flow reactors in electrochemistry. Acc. Chem. Res. 52, 2858–2869 (2019).

    Article  Google Scholar 

  178. Pletcher, D., Green, R. A. & Brown, R. C. D. Flow electrolysis cells for the synthetic organic chemistry laboratory. Chem. Rev. 118, 4573–4591 (2018).

    Article  Google Scholar 

  179. Britton, J. & Jamison, T. F. The assembly and use of continuous flow systems for chemical synthesis. Nat. Protoc. 12, 2423–2446 (2017).

    Article  Google Scholar 

  180. Bannock, J. H., Krishnadasan, S. H., Heeney, M. & de Mello, J. C. A gentle introduction to the noble art of flow chemistry. Mater. Horiz. 1, 373–378 (2014).

    Article  Google Scholar 

  181. Hartman, R. L., McMullen, J. P. & Jensen, K. F. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50, 7502–7519 (2011).

    Article  Google Scholar 

  182. Jia, Z. J., Shan, G., Daniliuc, C. G., Antonchick, A. P. & Waldmann, H. Enantioselective synthesis of the spirotropanyl oxindole scaffold through bimetallic relay catalysis. Angew. Chem. Int. Ed. 57, 14493–14497 (2018).

    Article  Google Scholar 

  183. Dhiman, S., Mishra, U. K. & Ramasastry, S. S. V. One-pot trimetallic relay catalysis: a unified approach for the synthesis of beta-carbolines and other [c]-fused pyridines. Angew. Chem. Int. Ed. 55, 7737–7741 (2016).

    Article  Google Scholar 

  184. Yu, Q. L. et al. Enantioselective oxidative phenol-indole [3+2] coupling enabled by biomimetic Mn(III)/Bronsted acid relay catalysis. ACS Catal. 9, 7285–7291 (2019).

    Article  Google Scholar 

  185. Atesin, A. C., Ray, N. A., Stair, P. C. & Marks, T. J. Etheric C–O bond hydrogenolysis using a tandem lanthanide triflate/supported palladium nanoparticle catalyst system. J. Am. Chem. Soc. 134, 14682–14685 (2012).

    Article  Google Scholar 

  186. Lohr, T. L., Li, Z. & Marks, T. J. Thermodynamic strategies for C–O bond formation and cleavage via tandem catalysis. Acc. Chem. Res. 49, 824–834 (2016).

    Article  Google Scholar 

  187. Martinez, S., Veth, L., Lainer, B. & Dydio, P. Challenges and opportunities in multicatalysis. ACS Catal. 11, 3891–3915 (2021).

    Article  Google Scholar 

  188. Gromski, P. S., Granda, J. M. & Cronin, L. Universal chemical synthesis and discovery with ‘the chemputer’. Trends Chem. 2, 4–12 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation (NSF) as part of the Center for Integrated Catalysis (CHE-2023955) for supporting this work. S.D. is grateful for an INFEWS fellowship (NSF Grant DGE-1735325).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.D., B.J.J., J.A.B., L.H.D., A.J.M.M., D.W., C.L. and P.L.D.); Experimentation (S.D., B.J.J., J.R.W., Y.M., J.A.B., L.H.D., A.J.M.M., D.W., C.L. and P.L.D.); Applications (S.D., B.J.J., J.R.W., J.A.B., L.H.D., A.J.M.M., C.L. and P.L.D.); Reproducibility and data deposition (S.D., B.J.J., J.A.B., L.H.D., A.J.M.M., C.L. and P.L.D.); Limitations and optimizations (S.D., B.J.J., J.A.B., L.H.D., A.J.M.M., C.L. and P.L.D.); Outlook (S.D., B.J.J., J.A.B., L.H.D., A.J.M.M., C.L. and P.L.D.).

Corresponding author

Correspondence to Paula L. Diaconescu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CAMPUS: https://www.campusplastics.com

PolyInfo: https://polymer.nims.go.jp/en/

Polymer Property Predictor and Database: https://www.nist.gov/programs-projects/polymer-property-predictor-and-database

Glossary

Cascade or domino process

A transformation that installs two or more bonds under identical conditions and with the same mechanism.

Chemo-switchable catalysis

A reaction in which the selectivity of a catalyst can be reversibly altered by a chemical trigger.

Compartmentalization

Spatial localization of one or multiple species within a well-defined encapsulation or confinement, where entry and exit within the compartment is dependent on the chemical make-up of both the compartment and the diffusing species.

Orthogonal reactivity

Reactivity of a multistate catalyst towards different substrates: the catalyst is active in one state for one type of reaction and inactive for another, and shows the opposite trend in the other state.

Redox-switchable catalysis

The reactivity or selectivity of a catalyst that can be reversibly altered by changing its oxidation state.

Ring-opening polymerization

A chain growth polymerization reaction in which the polymer chain propagation is achieved by the reactive terminus attacking and ring opening a cyclic monomer to elongate the polymer chain and generate a new active terminus.

Surface immobilization

Spatial localization of a typically homogeneous species onto a heterogeneous support.

Tandem process

Coupled catalytic processes in which substrates are converted sequentially by two or more mechanistically distinct reactions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Jolly, B.J., Wilkes, J.R. et al. Spatiotemporal control for integrated catalysis. Nat Rev Methods Primers 3, 28 (2023). https://doi.org/10.1038/s43586-023-00207-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00207-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing