Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate change impacts on crop yields

Abstract

Climate change challenges efforts to maintain and improve crop production in many regions. In this Review, we examine yield responses to warmer temperatures, elevated carbon dioxide and changes in water availability for globally important staple cereal crops (wheat, maize, millet, sorghum and rice). Elevated CO2 can have a compensatory effect on crop yield for C3 crops (wheat and rice), but it can be offset by heat and drought. In contrast, elevated CO2 only benefits C4 plants (maize, millet and sorghum) under drought stress. Under the most severe climate change scenario and without adaptation, simulated crop yield losses range from 7% to 23%. The adverse effects in higher latitudes could potentially be offset or reversed by CO2 fertilization and adaptation options, but lower latitudes, where C4 crops are the primary crops, benefit less from CO2 fertilization. Irrigation and nutrient management are likely to be the most effective adaptation options (up to 40% in wheat yield for higher latitudes compared with baseline) but require substantial investments and might not be universally applicable, for example where there are water resource constraints. Establishing multifactor experiments (including multipurpose cultivar panels), developing biotic stress modelling routines, merging process-based and data-driven models, and using integrated impact assessments, are all essential to better capture and assess yield responses to climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbon-dioxide-, temperature- and water-availability-driven relative yield changes.
Fig. 2: Projected yield changes under temperature increase scenarios.
Fig. 3: Projected yield change compared with baseline across main crop-specific growing areas.
Fig. 4: Mean relative yield change in response to climate change under various adaptation practices.

Similar content being viewed by others

References

  1. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  2. van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021).

    Article  Google Scholar 

  3. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  Google Scholar 

  4. Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

    Article  Google Scholar 

  5. van Ittersum, M. K. et al. Yield gap analysis with local to global relevance — a review. Field Crops Res. 143, 4–17 (2013).

    Article  Google Scholar 

  6. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    Article  Google Scholar 

  7. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  Google Scholar 

  8. Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).

    Article  Google Scholar 

  9. Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173 (2019).

    Article  Google Scholar 

  10. Tausz-Posch, S., Norton, R. M., Seneweera, S., Fitzgerald, G. J. & Tausz, M. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO2 world? A FACE study. Physiol. Plant. 148, 232–245 (2013).

    Article  Google Scholar 

  11. Wang, X. et al. Effects of elevated CO2 on grain yield and quality in five wheat cultivars. J. Agron. Crop Sci. 208, 733–745 (2022).

    Article  Google Scholar 

  12. Lobell, D. B. Climate change adaptation in crop production: beware of illusions. Glob. Food Sec. 3, 72–76 (2014).

    Article  Google Scholar 

  13. Webber, H., Gaiser, T. & Ewert, F. What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa? Agric. Syst. 127, 161–177 (2014).

    Article  Google Scholar 

  14. Salm, L., Nisbett, N., Cramer, L., Gillespie, S. & Thornton, P. How climate change interacts with inequity to affect nutrition. WIREs Clim Change https://doi.org/10.1002/wcc.696 (2021).

  15. Xu, Z., Jiang, Y. & Zhou, G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front. Plant Sci. 6, 701 (2015).

    Article  Google Scholar 

  16. Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).

    Article  Google Scholar 

  17. Wang, D. et al. Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. Am. J. Bot. 95, 165–176 (2008).

    Article  Google Scholar 

  18. Wang, M. et al. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. Photosynth. Res. 126, 351–362 (2015).

    Article  Google Scholar 

  19. Ainsworth, E. A. et al. A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob. Change Biol. 8, 695–709 (2002).

    Article  Google Scholar 

  20. Högy, P. et al. Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biol. 11, 60–69 (2009).

    Article  Google Scholar 

  21. Du, Y., Lu, R. & Xia, J. Impacts of global environmental change drivers on non‐structural carbohydrates in terrestrial plants. Funct. Ecol. 34, 1525–1536 (2020).

    Article  Google Scholar 

  22. Kumar, A. et al. Yield and yield-attributing traits of rice (Oryza sativa L.) under lowland drought and suitability of early vigor as a selection criterion. Field Crops Res. 114, 99–107 (2009).

    Article  Google Scholar 

  23. Boyer, J. S. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 46, 233–235 (1970).

    Article  Google Scholar 

  24. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212 (2009).

    Article  Google Scholar 

  25. Purushothaman, R. et al. Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Res. 174, 1–11 (2015).

    Article  Google Scholar 

  26. Xu, W. et al. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. https://doi.org/10.1007/s11738-014-1760-0 (2015).

  27. Liu, E. K., Mei, X. R., Yan, C. R., Gong, D. Z. & Zhang, Y. Q. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag. 167, 75–85 (2016).

    Article  Google Scholar 

  28. Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Article  Google Scholar 

  29. Bourgault, M. et al. Early vigour in wheat: could it lead to more severe terminal drought stress under elevated atmospheric CO2 and semi-arid conditions? Glob. Change Biol. 26, 4079–4093 (2020).

    Article  Google Scholar 

  30. Chenu, K. et al. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a ‘gene-to-phenotype’ modeling approach. Genetics 183, 1507–1523 (2009).

    Article  Google Scholar 

  31. San Celedonio, R. P., de, Abeledo, L. G. & Miralles, D. J. Physiological traits associated with reductions in grain number in wheat and barley under waterlogging. Plant Soil 429, 469–481 (2018).

    Article  Google Scholar 

  32. Pan, J., Sharif, R., Xu, X. & Chen, X. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front. Plant Sci. 11, 627331 (2020).

    Article  Google Scholar 

  33. Liu, K. et al. Genetic factors increasing barley grain yields under soil waterlogging. Food Energy Sec. https://doi.org/10.1002/fes3.238 (2020).

  34. Fatima, Z. et al. The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci. Rep. 10, 18013 (2020).

    Article  Google Scholar 

  35. Mohammadi, S., Rydgren, K., Bakkestuen, V. & Gillespie, M. A. K. Impacts of recent climate change on crop yield can depend on local conditions in climatically diverse regions of Norway. Sci. Rep. 13, 3633 (2023).

    Article  Google Scholar 

  36. Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    Article  Google Scholar 

  37. Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J. & Ewert, F. Heat stress in cereals: mechanisms and modelling. Eur. J. Agron. 64, 98–113 (2015).

    Article  Google Scholar 

  38. Walker, B. J., VanLoocke, A., Bernacchi, C. J. & Ort, D. R. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant Biol. 67, 107–129 (2016).

    Article  Google Scholar 

  39. Farooq, M., Bramley, H., Palta, J. A. & Siddique, K. H. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30, 491–507 (2011).

    Article  Google Scholar 

  40. Heckathorn, S. A., Giri, A., Mishra, S. & Bista, D. in Climate Change and Plant Abiotic Stress Tolerance (eds Tuteja, N. & Gill, S. S.) 109–136 (Wiley, 2013).

  41. Giri, A., Heckathorn, S., Mishra, S. & Krause, C. Heat stress decreases levels of nutrient-uptake and -assimilation proteins in tomato roots. Plants https://doi.org/10.3390/plants6010006 (2017).

  42. Kuroyanagi, T. & Paulsen, G. M. Mediation of high-temperature injury by roots and shoots during reproductive growth of wheat. Plant Cell Environ. 11, 517–523 (1988).

    Article  Google Scholar 

  43. Lyman, N. B., Jagadish, K. S. V., Nalley, L. L., Dixon, B. L. & Siebenmorgen, T. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS ONE 8, e72157 (2013).

    Article  Google Scholar 

  44. García, G. A., Dreccer, M. F., Miralles, D. J. & Serrago, R. A. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob. Change Biol. 21, 4153–4164 (2015).

    Article  Google Scholar 

  45. Sadok, W. & Jagadish, S. V. K. The hidden costs of nighttime warming on yields. Trends Plant Sci. 25, 644–651 (2020).

    Article  Google Scholar 

  46. Peraudeau, S. et al. Increase in night temperature in rice enhances respiration rate without significant impact on biomass accumulation. Field Crops Res. 171, 67–78 (2015).

    Article  Google Scholar 

  47. Lamichhane, J. R. Rising risks of late-spring frosts in a changing climate. Nat. Clim. Change 11, 554–555 (2021).

    Article  Google Scholar 

  48. Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA 117, 12192–12200 (2020).

    Article  Google Scholar 

  49. Muleke, A. et al. Earlier crop flowering caused by global warming alleviated by irrigation. Environ. Res. Lett. 17, 44032 (2022).

    Article  Google Scholar 

  50. Zhu, P. et al. The critical benefits of snowpack insulation and snowmelt for winter wheat productivity. Nat. Clim. Change 12, 485–490 (2022).

    Article  Google Scholar 

  51. Zanis, P. et al. Climate change penalty and benefit on surface ozone: a global perspective based on CMIP6 Earth system models. Environ. Res. Lett. 17, 24014 (2022).

    Article  Google Scholar 

  52. Mills, G. et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance. Glob. Change Biol. 24, 4869–4893 (2018).

    Article  Google Scholar 

  53. Ainsworth, E. A. Understanding and improving global crop response to ozone pollution. Plant J. 90, 886–897 (2017).

    Article  Google Scholar 

  54. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  55. Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).

    Article  Google Scholar 

  56. Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).

    Article  Google Scholar 

  57. Wang, C. et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 3, 57–65 (2022).

    Article  Google Scholar 

  58. Pang, J., Ryan, M. H., Lambers, H. & Siddique, K. H. Phosphorus acquisition and utilisation in crop legumes under global change. Curr. Opin. Plant Biol. 45, 248–254 (2018).

    Article  Google Scholar 

  59. Donatelli, M. et al. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213–224 (2017).

    Article  Google Scholar 

  60. AbdElgawad, H., Hassan, Y. M., Alotaibi, M. O., Mohammed, A. E. & Saleh, A. M. C3 and C4 plant systems respond differently to the concurrent challenges of mercuric oxide nanoparticles and future climate CO2. Sci. Total Environ. 749, 142356 (2020).

    Article  Google Scholar 

  61. Wang, L., Feng, Z. & Schjoerring, J. K. Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): a meta-analytic test of current hypotheses. Agric. Ecosyst. Environ. 178, 57–63 (2013).

    Article  Google Scholar 

  62. Tardieu, F., Simonneau, T. & Muller, B. The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu. Rev. Plant Biol. 69, 733–759 (2018).

    Article  Google Scholar 

  63. Daryanto, S., Wang, L. & Jacinthe, P.-A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric. Water Manag. 179, 18–33 (2017).

    Article  Google Scholar 

  64. Tian, L.-X. et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898 (2021).

    Article  Google Scholar 

  65. Men, S. et al. Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Sci. Rep. 10, 10201 (2020).

    Article  Google Scholar 

  66. Wang, N., Wang, L. & Chen, H. Waterlogging tolerance of the invasive plant Aegilops tauschii translates to increased competitiveness compared to Triticum aestivum. Acta Physiol. Plant. https://doi.org/10.1007/s11738-021-03230-4 (2021).

  67. Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36 (1999).

    Article  Google Scholar 

  68. Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Change Biol. 20, 408–417 (2014).

    Article  Google Scholar 

  69. Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol. Plant. 171, 66–76 (2021).

    Article  Google Scholar 

  70. Zhang, T. et al. Climate change may outpace current wheat breeding yield improvements in North America. Nat. Commun. 13, 5591 (2022).

    Article  Google Scholar 

  71. Di, H., Fang, S., Liang, H., Wang, E. & Wu, D. Contrasting yield responses of winter and spring wheat to temperature rise in China. Environ. Res. Lett. 15, 124038 (2020).

    Article  Google Scholar 

  72. Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article  Google Scholar 

  73. Lesk, C. et al. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 3, 872–889 (2022).

    Article  Google Scholar 

  74. Heino, M. et al. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Sci. Rep. 13, 3583 (2023).

    Article  Google Scholar 

  75. Qaseem, M. F., Qureshi, R. & Shaheen, H. Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci. Rep. 9, 6955 (2019).

    Article  Google Scholar 

  76. Bheemanahalli, R., Vennam, R. R., Ramamoorthy, P. & Reddy, K. R. Effects of post-flowering heat and drought stresses on physiology, yield, and quality in maize (Zea mays L.). Plant Stress 6, 100106 (2022).

    Article  Google Scholar 

  77. Da Costa, M. V. J. et al. Combined drought and heat stress in rice: responses, phenotyping and strategies to improve tolerance. Rice Sci. 28, 233–242 (2021).

    Article  Google Scholar 

  78. Pradhan, A., Aher, L., Hegde, V., Jangid, K. K. & Rane, J. Cooler canopy leverages sorghum adaptation to drought and heat stress. Sci. Rep. 12, 4603 (2022).

    Article  Google Scholar 

  79. Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.2592 (2016).

  80. Zandalinas, S. I. & Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 234, 1161–1167 (2022).

    Article  Google Scholar 

  81. Savin, R. & Nicolas, M. E. Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Funct. Plant Biol 23, 201 (1996).

    Article  Google Scholar 

  82. Rizhsky, L., Liang, H. & Mittler, R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 130, 1143–1151 (2002).

    Article  Google Scholar 

  83. Sadok, W., Lopez, J. R. & Smith, K. P. Transpiration increases under high-temperature stress: potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environ. 44, 2102–2116 (2021).

    Article  Google Scholar 

  84. Li, Y., Li, H., Li, Y. & Zhang, S. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J. 5, 231–239 (2017).

    Article  Google Scholar 

  85. Abdelhakim, L. O. A. et al. The effect of individual and combined drought and heat stress under elevated CO2 on physiological responses in spring wheat genotypes. Plant Physiol. Biochem. 162, 301–314 (2021).

    Article  Google Scholar 

  86. Hussain, H. A. et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9, 3890 (2019).

    Article  Google Scholar 

  87. Tardieu, F. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J. Exp. Bot. 63, 25–31 (2012).

    Article  Google Scholar 

  88. Kimball, B. A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36–43 (2016).

    Article  Google Scholar 

  89. Wall, G. W. Elevated atmospheric CO2 alleviates drought stress in wheat. Agric. Ecosyst. Environ. 87, 261–271 (2001).

    Article  Google Scholar 

  90. O’Leary, G. J. et al. Response of wheat growth, grain yield and water use to elevated CO2 under a free-air CO2 enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Change Biol. 21, 2670–2686 (2015).

    Article  Google Scholar 

  91. Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).

    Article  Google Scholar 

  92. Manderscheid, R., Erbs, M. & Weigel, H.-J. Interactive effects of free-air CO2 enrichment and drought stress on maize growth. Eur. J. Agron. 52, 11–21 (2014).

    Article  Google Scholar 

  93. Ottman, M. J. et al. Elevated CO2 increases sorghum biomass under drought conditions. New Phytol. 150, 261–273 (2001).

    Article  Google Scholar 

  94. Widodo, W., Vu, J. C., Boote, K. J., Baker, J. T. & Allen, L. H. Elevated growth CO2 delays drought stress and accelerates recovery of rice leaf photosynthesis. Environ. Exp. Bot. 49, 259–272 (2003).

    Article  Google Scholar 

  95. Zhang, J., Jiang, H., Song, X., Jin, J. & Zhang, X. The responses of plant leaf CO2/H2O exchange and water use efficiency to drought: a meta-analysis. Sustainability 10, 551 (2018).

    Article  Google Scholar 

  96. Li, S., Li, X., Wei, Z. & Liu, F. ABA-mediated modulation of elevated CO2 on stomatal response to drought. Curr. Opin. Plant Biol. 56, 174–180 (2020).

    Article  Google Scholar 

  97. Ewert, F. et al. Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agric. Ecosyst. Environ. 93, 249–266 (2002).

    Article  Google Scholar 

  98. Abdelhakim, L. O. A., Zhou, R. & Ottosen, C.-O. Physiological responses of plants to combined drought and heat under elevated CO2. Agronomy 12, 2526 (2022).

    Article  Google Scholar 

  99. Dias de Oliveira, E. et al. Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat. Funct. Plant Biol. 40, 160–171 (2013).

    Article  Google Scholar 

  100. Broughton, K. J. et al. Warming alters the positive impact of elevated CO2 concentration on cotton growth and physiology during soil water deficit. Funct. Plant Biol. 44, 267–278 (2017).

    Article  Google Scholar 

  101. Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H. & Graß, R. Impact of heat stress on crop yield — on the importance of considering canopy temperature. Environ. Res. Lett. 9, 44012 (2014).

    Article  Google Scholar 

  102. Cao, Q., Li, G. & Liu, F. Elevated CO2 enhanced water use efficiency of wheat to progressive drought stress but not on maize. Front. Plant Sci. 13, 953712 (2022).

    Article  Google Scholar 

  103. Anwar, K., Joshi, R., Dhankher, O. P., Singla-Pareek, S. L. & Pareek, A. Elucidating the response of crop plants towards individual, combined and sequentially occurring abiotic stresses. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22116119 (2021).

  104. Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V. & Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162, 2–12 (2018).

    Article  Google Scholar 

  105. Jacques, C., Salon, C., Barnard, R. L., Vernoud, V. & Prudent, M. Drought stress memory at the plant cycle level: a review. Plants https://doi.org/10.3390/plants10091873 (2021).

  106. Sharma, B., Singh, B. N., Dwivedi, P. & Rajawat, M. V. S. Interference of climate change on plant–microbe interaction: present and future prospects. Front. Agron. https://doi.org/10.3389/fagro.2021.725804 (2022).

  107. Aggarwal, P., Vyas, S., Thornton, P. & Campbell, B. M. How much does climate change add to the challenge of feeding the planet this century? Environ. Res. Lett. 14, 43001 (2019).

    Article  Google Scholar 

  108. Xiong, W. et al. Increased ranking change in wheat breeding under climate change. Nat. Plants 7, 1207–1212 (2021).

    Article  Google Scholar 

  109. Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob. Biogeochem. Cycles 17, 6-1–6-14 (2003).

    Article  Google Scholar 

  110. White, J. W., Hoogenboom, G., Kimball, B. A. & Wall, G. W. Methodologies for simulating impacts of climate change on crop production. Field Crops Res. 124, 357–368 (2011).

    Article  Google Scholar 

  111. Hasegawa, T. et al. A global dataset for the projected impacts of climate change on four major crops. Sci. Data 9, 58 (2022).

    Article  Google Scholar 

  112. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  113. Knox, J., Daccache, A., Hess, T. & Haro, D. Meta-analysis of climate impacts and uncertainty on crop yields in Europe. Environ. Res. Lett. 11, 113004 (2016).

    Article  Google Scholar 

  114. Hamilton, E. W., Heckathorn, S. A., Joshi, P., Wang, D. & Barua, D. Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species. J. Integr. Plant Biol. 50, 1375–1387 (2008).

    Article  Google Scholar 

  115. Liu, W. et al. Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environ. Res. Lett. 16, 94045 (2021).

    Article  Google Scholar 

  116. Ostberg, S., Schewe, J., Childers, K. & Frieler, K. Changes in crop yields and their variability at different levels of global warming. Earth Syst. Dynam. 9, 479–496 (2018).

    Article  Google Scholar 

  117. Carr, T. W. et al. Climate change impacts and adaptation strategies for crops in West Africa: a systematic review. Environ. Res. Lett. 17, 53001 (2022).

    Article  Google Scholar 

  118. Faye, B. et al. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna. Environ. Res. Lett. 13, 34014 (2018).

    Article  Google Scholar 

  119. Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P. & Asseng, S. Lessons from climate modeling on the design and use of ensembles for crop modeling. Clim. Change 139, 551–564 (2016).

    Article  Google Scholar 

  120. Vesely, F. M., Paleari, L., Movedi, E., Bellocchi, G. & Confalonieri, R. Quantifying uncertainty due to stochastic weather generators in climate change impact studies. Sci. Rep. 9, 9258 (2019).

    Article  Google Scholar 

  121. Hoffmann, H. et al. Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS ONE 11, e0151782 (2016).

    Article  Google Scholar 

  122. Bassu, S. et al. How do various maize crop models vary in their responses to climate change factors. Glob. Change Biol. 20, 2301–2320 (2014).

    Article  Google Scholar 

  123. Challinor, A. J. et al. Improving the use of crop models for risk assessment and climate change adaptation. Agric. Syst. 159, 296–306 (2018).

    Article  Google Scholar 

  124. Tao, F. et al. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Glob. Change Biol. 24, 1291–1307 (2018).

    Article  Google Scholar 

  125. Chapagain, R. et al. Decomposing crop model uncertainty: a systematic review. Field Crops Res. 279, 108448 (2022).

    Article  Google Scholar 

  126. Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 54023 (2017).

    Article  Google Scholar 

  127. Fang, L. et al. Neglecting acclimation of photosynthesis under drought can cause significant errors in predicting leaf photosynthesis in wheat. Glob. Change Biol. 29, 505–521 (2023).

    Article  Google Scholar 

  128. Kropff, M. J., Teng, P. S. & Rabbinge, R. The challenge of linking pest and crop models. Agric. Syst. 49, 413–434 (1995).

    Article  Google Scholar 

  129. Stöckle, C. O. & Kemanian, A. R. Can crop models identify critical gaps in genetics, environment, and management interactions? Front. Plant Sci. 11, 737 (2020).

    Article  Google Scholar 

  130. Wada, Y. et al. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys. Res. Lett. 40, 4626–4632 (2013).

    Article  Google Scholar 

  131. Aragüés, R. et al. Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrig. Sci. 33, 67–79 (2015).

    Article  Google Scholar 

  132. Wang, J. et al. Forty years of irrigation development and reform in China. Aust. J. Agric. Resour. Econ. 64, 126–149 (2020).

    Article  Google Scholar 

  133. Moriondo, M. et al. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig. Adapt. Strateg. Glob. Change 15, 657–679 (2010).

    Article  Google Scholar 

  134. Tanaka, A. et al. Adaptation pathways of global wheat production: Importance of strategic adaptation to climate change. Sci. Rep. 5, 14312 (2015).

    Article  Google Scholar 

  135. Giller, K. E. & Ewert, F. Australian wheat beats the heat. Nat. Clim. Change 9, 189–190 (2019).

    Article  Google Scholar 

  136. Ewert, F. Opportunities in climate change? Nat. Clim. Change 2, 153–154 (2012).

    Article  Google Scholar 

  137. Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).

    Article  Google Scholar 

  138. Reckling, M. et al. Diversification improves the performance of cereals in European cropping systems. Agron. Sustain. Dev. https://doi.org/10.1007/s13593-022-00850-z (2022).

  139. Mohammed, A. & Misganaw, A. Modeling future climate change impacts on sorghum (Sorghum bicolor) production with best management options in Amhara Region, Ethiopia. CABI Agric. Biosci. https://doi.org/10.1186/s43170-022-00092-9 (2022).

  140. Kothari, K. et al. Potential benefits of genotype-based adaptation strategies for grain sorghum production in the Texas High Plains under climate change. Eur. J. Agron. 117, 126037 (2020).

    Article  Google Scholar 

  141. Carbone, G. J. et al. Response of soybean and sorghum to varying spatial scales of climate change scenarios in the southeastern United States. Clim. Change 60, 73–98 (2003).

    Article  Google Scholar 

  142. Akinseye, F. M. et al. Improving sorghum productivity under changing climatic conditions: a modelling approach. Field Crops Res. 246, 107685 (2020).

    Article  Google Scholar 

  143. Liu, T. et al. A case study of climate-smart management in foxtail millet (Setaria italica) production under future climate change in Lishu county of Jilin, China. Agric. Forest Meteorol. 292–293, 108131 (2020).

    Article  Google Scholar 

  144. Singh, P. et al. An assessment of yield gains under climate change due to genetic modification of pearl millet. Sci. Total Environ. 601–602, 1226–1237 (2017).

    Article  Google Scholar 

  145. Murrell, E. G. Can agricultural practices that mitigate or improve crop resilience to climate change also manage crop pests? Curr. Opin. Insect Sci. 23, 81–88 (2017).

    Article  Google Scholar 

  146. Levidow, L. et al. Improving water-efficient irrigation: prospects and difficulties of innovative practices. Agric. Water Manag. 146, 84–94 (2014).

    Article  Google Scholar 

  147. Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    Article  Google Scholar 

  148. Nielsen, J. Ø. & Reenberg, A. Cultural barriers to climate change adaptation: a case study from northern Burkina Faso. Glob. Environ. Change 20, 142–152 (2010).

    Article  Google Scholar 

  149. Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles https://doi.org/10.1029/2018GB006060 (2020).

  150. Chartzoulakis, K. & Bertaki, M. Sustainable water management in agriculture under climate change. Agric. Agric. Sci. Procedia 4, 88–98 (2015).

    Google Scholar 

  151. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article  Google Scholar 

  152. Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA 115, 6644–6649 (2018).

    Article  Google Scholar 

  153. Braun, Jvon The food crisis isn’t over. Nature 456, 701 (2008).

    Article  Google Scholar 

  154. Headey, D. & Fan, S. Anatomy of a crisis: the causes and consequences of surging food prices. Agric. Econ. 39, 375–391 (2008).

    Article  Google Scholar 

  155. Johnstone, S. & Mazo, J. Global warming and the Arab Spring. Survival 53, 11–17 (2011).

    Article  Google Scholar 

  156. Pugh, T. A. M. et al. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 7, 12608 (2016).

    Article  Google Scholar 

  157. Zhu, P. et al. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01492-5 (2022).

  158. Müller, C. et al. Implications of climate mitigation for future agricultural production. Environ. Res. Lett. 10, 125004 (2015).

    Article  Google Scholar 

  159. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  Google Scholar 

  160. Hasegawa, T. et al. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2, 587–595 (2021).

    Article  Google Scholar 

  161. Wheeler, T. & Braun, Jvon Climate change impacts on global food security. Science 341, 508–513 (2013).

    Article  Google Scholar 

  162. Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Phil. Trans. R. Soc. Lond. B 365, 3065–3081 (2010).

    Article  Google Scholar 

  163. Iizumi, T. & Ramankutty, N. How do weather and climate influence cropping area and intensity. Glob. Food Sec. 4, 46–50 (2015).

    Article  Google Scholar 

  164. Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).

    Article  Google Scholar 

  165. Möhring, N. et al. Pathways for advancing pesticide policies. Nat. Food 1, 535–540 (2020).

    Article  Google Scholar 

  166. Santeramo, F. G., Russo, I. & Lamonaca, E. Italian subsidised crop insurance: what the role of policy changes. Q Open https://doi.org/10.1093/qopen/qoac031 (2022).

  167. Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources — a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).

    Article  Google Scholar 

  168. Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).

    Article  Google Scholar 

  169. Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    Article  Google Scholar 

  170. Wang, D. et al. Amplifying meteorological droughts across middle- and low-latitude Northern Hemisphere. Front. Earth Sci. https://doi.org/10.3389/feart.2022.914232 (2022).

  171. You, L. et al. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 36, 770–782 (2011).

    Article  Google Scholar 

  172. Rosa, L. Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environ. Res. Lett. 17, 63008 (2022).

    Article  Google Scholar 

  173. West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    Article  Google Scholar 

  174. Johnson, J. A., Runge, C. F., Senauer, B., Foley, J. & Polasky, S. Global agriculture and carbon trade-offs. Proc. Natl Acad. Sci. USA 111, 12342–12347 (2014).

    Article  Google Scholar 

  175. Dinku, T. in Extreme Hydrology and Climate Variability (eds Melesse, A. M. et al.) 71–80 (Elsevier, 2019).

  176. Waha, K., Huth, N., Carberry, P. & Wang, E. How model and input uncertainty impact maize yield simulations in West Africa. Environ. Res. Lett. 10, 24017 (2015).

    Article  Google Scholar 

  177. Becker, A. et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013).

    Article  Google Scholar 

  178. Freduah, B. et al. Sensitivity of maize yield in smallholder systems to climate scenarios in semi-arid regions of West Africa: accounting for variability in farm management practices. Agronomy 9, 639 (2019).

    Article  Google Scholar 

  179. Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 7, 11872 (2016).

    Article  Google Scholar 

  180. Ojeda, J. J. et al. Implications of data aggregation method on crop model outputs — the case of irrigated potato systems in Tasmania, Australia. Eur. J. Agron. 126, 126276 (2021).

    Article  Google Scholar 

  181. Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

    Article  Google Scholar 

  182. Zhao, W., Qu, Y., Zhang, L. & Li, K. Spatial-aware SAR-optical time-series deep integration for crop phenology tracking. Remote Sens. Environ. 276, 113046 (2022).

    Article  Google Scholar 

  183. Chen, Y., Zhang, Z. & Tao, F. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. Eur. J. Agron. 101, 163–173 (2018).

    Article  Google Scholar 

  184. Zhou, H. et al. Improving soil moisture estimation via assimilation of remote sensing product into the DSSAT crop model and its effect on agricultural drought monitoring. Remote Sens. 14, 3187 (2022).

    Article  Google Scholar 

  185. Cheng, Z. et al. Preliminary study of soil available nutrient simulation using a modified WOFOST model and time-series remote sensing observations. Remote Sens. 10, 64 (2018).

    Article  Google Scholar 

  186. Jin, X. et al. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 92, 141–152 (2018).

    Article  Google Scholar 

  187. Arend, D. et al. From data to knowledge — big data needs stewardship, a plant phenomics perspective. Plant J. 111, 335–347 (2022).

    Article  Google Scholar 

  188. Benes, B. et al. Multiscale computational models can guide experimentation and targeted measurements for crop improvement. Plant J. 103, 21–31 (2020).

    Article  Google Scholar 

  189. Webber, H., Rezaei, E. E., Ryo, M. & Ewert, F. Framework to guide modeling single and multiple abiotic stresses in arable crops. Agric. Ecosyst. Environ. 340, 108179 (2022).

    Article  Google Scholar 

  190. Onogi, A. Integration of crop growth models and genomic prediction. Methods Mol. Biol. 2467, 359–396 (2022).

    Article  Google Scholar 

  191. Los Campos, G., de, Pérez-Rodríguez, P., Bogard, M., Gouache, D. & Crossa, J. A data-driven simulation platform to predict cultivars’ performances under uncertain weather conditions. Nat. Commun. 11, 4876 (2020).

    Article  Google Scholar 

  192. Rasche, L. & Taylor, R. A. J. EPIC‐GILSYM: modelling crop–pest insect interactions and management with a novel coupled crop–insect model. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13426 (2019).

  193. Bondad, J., Harrison, M. T., Whish, J., Sprague, S. & Barry, K. Integrated crop-disease models: new frontiers in systems thinking. Farming Syst. 1, 100004 (2023).

    Article  Google Scholar 

  194. Tonnang, H. E., Sokame, B. M., Abdel-Rahman, E. M. & Dubois, T. Measuring and modelling crop yield losses due to invasive insect pests under climate change. Curr. Opin. Insect Sci. 50, 100873 (2022).

    Article  Google Scholar 

  195. Falconnier, G. N. et al. Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-Saharan Africa. Glob. Change Biol. 26, 5942–5964 (2020).

    Article  Google Scholar 

  196. Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).

    Article  Google Scholar 

  197. Allen, L. H. et al. Fluctuations of CO2 in free-air CO2 enrichment (FACE) depress plant photosynthesis, growth, and yield. Agric. Forest Meteorol. 284, 107899 (2020).

    Article  Google Scholar 

  198. Ainsworth, E. A., Leakey, A. D. B., Ort, D. R. & Long, S. P. FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated CO2 impacts on crop yield and food supply. New Phytol. 179, 5–9 (2008).

    Article  Google Scholar 

  199. Martre, P. et al. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21, 911–925, (2015).

    Article  Google Scholar 

  200. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    Article  Google Scholar 

  201. Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    Article  Google Scholar 

  202. Knutti, R. The end of model democracy? Clim. Change 102, 395–404 (2010).

    Article  Google Scholar 

  203. Shahhosseini, M., Martinez-Feria, R. A., Hu, G. & Archontoulis, S. V. Maize yield and nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 14, 124026 (2019).

    Article  Google Scholar 

  204. Feng, P., Wang, B., Liu, D. L., Waters, C. & Yu, Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric. Forest Meteorol. 275, 100–113 (2019).

    Article  Google Scholar 

  205. Leng, G. Keeping global warming within 1.5 °C reduces future risk of yield loss in the United States: a probabilistic modeling approach. Sci. Total Environ. 644, 52–59 (2018).

    Article  Google Scholar 

  206. Ewert, F. et al. Crop modelling for integrated assessment of risk to food production from climate change. Environ. Model. Softw. 72, 287–303 (2015).

    Article  Google Scholar 

  207. Ruane, A. C. & McDermid, S. P. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Persp. https://doi.org/10.1186/s40322-017-0036-4 (2017).

  208. Ciscar, J.-C., Rising, J., Kopp, R. E. & Feyen, L. Assessing future climate change impacts in the EU and the USA: insights and lessons from two continental-scale projects. Environ. Res. Lett. 14, 84010 (2019).

    Article  Google Scholar 

  209. Piontek, F. et al. Integrated perspective on translating biophysical to economic impacts of climate change. Nat. Clim. Change 11, 563–572 (2021).

    Article  Google Scholar 

  210. Lacoste, M. et al. On-farm experimentation to transform global agriculture. Nat. Food 3, 11–18 (2022).

    Article  Google Scholar 

  211. Hu, S., Wang, Y. & Yang, L. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: a meta-analysis of 20 years FACE studies. Sci. Total Environ. 764, 142797 (2021).

    Article  Google Scholar 

  212. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–371 (2005).

    Article  Google Scholar 

  213. Li, P. et al. Photosynthesis and yield response to elevated CO2, C4 plant foxtail millet behaves similarly to C3 species. Plant Sci. 285, 239–247 (2019).

    Article  Google Scholar 

  214. Markelz, R. J. C., Strellner, R. S. & Leakey, A. D. B. Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J. Exp. Bot. 62, 3235–3246 (2011).

    Article  Google Scholar 

  215. Matsuura, A., An, P., Murata, K. & Inanaga, S. Effect of pre- and post-heading waterlogging on growth and grain yield of four millets. Plant Prod. Sci. 19, 348–359 (2016).

    Article  Google Scholar 

  216. Orchard, P. W. & Jessop, R. S. The response of sorghum and sunflower to short-term waterlogging. Plant Soil 81, 119–132 (1984).

    Article  Google Scholar 

  217. Pardales, J. R., Kono, Y. & Yamauchi, A. Response of the different root system components of sorghum to incidence of waterlogging. Environ. Exp. Bot. 31, 107–115 (1991).

    Article  Google Scholar 

  218. Zhang, R. D. et al. Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthesis 57, 1076–1083 (2019).

    Article  Google Scholar 

  219. Singh, V. et al. Genotypic differences in effects of short episodes of high-temperature stress during reproductive development in sorghum. Crop Sci. 56, 1561–1572 (2016).

    Article  Google Scholar 

  220. Prasad, P., Djanaguiraman, M., Stewart, Z. P. & Ciampitti, I. A. in Agroclimatology (eds Hatfield, J. L. et al.) 201–241 (American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2020).

  221. Hou, P. et al. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resour. Conserv. Recycl. 174, 105811 (2021).

    Article  Google Scholar 

  222. Ottman, M. J., Kimball, B. A., White, J. W. & Wall, G. W. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron. J. 104, 7–16 (2012).

    Article  Google Scholar 

  223. Kimball, B. A., White, J. W., Wall, G. W., Ottman, M. J. & Martre, P. Wheat response to a wide range of temperatures, as determined from the Hot Serial Cereal (HSC) experiment. Open Data J. Agric. Res. 4, 16–21 (2018).

    Google Scholar 

  224. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article  Google Scholar 

  225. Srivastava, A., Naresh Kumar, S. & Aggarwal, P. K. Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosyst. Environ. 138, 160–169 (2010).

    Article  Google Scholar 

  226. Getachew, F., Bayabil, H. K., Hoogenboom, G., Teshome, F. T. & Zewdu, E. Irrigation and shifting planting date as climate change adaptation strategies for sorghum. Agric. Water Manag. 255, 106988 (2021).

    Article  Google Scholar 

  227. Eyshi Rezaei, E., Gaiser, T., Siebert, S. & Ewert, F. Adaptation of crop production to climate change by crop substitution. Mitig. Adapt. Strateg. Glob. Change 20, 1155–1174 (2015).

    Article  Google Scholar 

  228. Ullah, A. et al. Assessing climate change impacts on pearl millet under arid and semi-arid environments using CSM-CERES-Millet model. Environ. Sci. Pollut. Res. Int. 26, 6745–6757 (2019).

    Article  Google Scholar 

  229. Faye, A. et al. Millet and sorghum yield simulations under climate change scenarios in Senegal. Reg. Environ. Change https://doi.org/10.1007/s10113-022-01940-0 (2022).

  230. Sultan, B. et al. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ. Res. Lett. 8, 14040 (2013).

    Article  Google Scholar 

  231. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article  Google Scholar 

  232. Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000 — global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003435 (2010).

  233. Chadalavada, K. et al. Simulating potential impacts of future climate change on post-rainy season sorghum yields in India. Sustainability 14, 334 (2022).

    Article  Google Scholar 

  234. Asseng, S., Zhu, Y., Basso, B., Wilson, T. & Cammarano, D. Simulation modeling: applications in cropping systems. In Encyclopedia of Agriculture and Food Systems, 102–112 (Elsevier, 2014).

  235. Hammer, G., Messina, C., Wu, A. & Cooper, M. Biological reality and parsimony in crop models — why we need both in crop improvement! in silico Plants https://doi.org/10.1093/insilicoplants/diz010 (2019).

  236. Wang, E. et al. Improving process-based crop models to better capture genotype×environment×management interactions. J. Exp. Bot. 70, 2389–2401 (2019).

    Article  Google Scholar 

  237. Wehner, M. et al. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth Syst. Dynam. 9, 299–311 (2018).

    Article  Google Scholar 

  238. Corbeels, M., Berre, D., Rusinamhodzi, L. & Lopez-Ridaura, S. Can we use crop modelling for identifying climate change adaptation options? Agric. Forest Meteorol. 256–257, 46–52 (2018).

    Article  Google Scholar 

  239. Webber, H., Hoffmann, M. & Rezaei, E. E. in Agroclimatology (eds Hatfield, J. L. et al.) 519–546 (American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2020).

Download references

Acknowledgements

We acknowledge the support of the Agricultural Model Intercomparison and Improvement Project AgMIP. E.E.R. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, project no. 520102751). F.E. acknowledges support by the DFG under Germany’s Excellence Strategy — EXC 2070–390732324. P.M. acknowledges support by the EU Project Horizon 2020 (grant no. 727247). J.-L.D. and P.M. acknowledge support by the Agriculture and Forestry in the Face of Climate Change: Adaptation and Mitigation (CLIMAE) Meta-Program and the AgroEcoSystem Division of the French National Research Institute for Agriculture, Food and Environment (INRAE).

Author information

Authors and Affiliations

Authors

Contributions

H.W. conceived the idea and outlined the structure. E.E.R. researched data for the article, prepared the visualizations and wrote the article. All authors contributed substantially to the discussion of the content, and reviewed and/or edited the manuscript.

Corresponding author

Correspondence to Ehsan Eyshi Rezaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Matthew Harrison and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, E.E., Webber, H., Asseng, S. et al. Climate change impacts on crop yields. Nat Rev Earth Environ 4, 831–846 (2023). https://doi.org/10.1038/s43017-023-00491-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00491-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene