Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biogeochemistry of marine dimethylsulfide

Abstract

The marine trace gas dimethylsulfide (DMS) supplies sulfur to the atmosphere at a rate of 15–40 Tg S per year, contributing to the production of atmospheric sulfate aerosols that influence cloud radiative properties and thereby climate. The resulting climate cooling effect of DMS is an estimated −1.7 to −2.3 W m2, which is similar in magnitude to the warming effect of anthropogenic CO2 emissions (1.83 ± 0.2 W m2). In this Review, we describe the production and cycling of marine DMS and its fate in the atmosphere. Advances in molecular genetics and large-scale biogeochemical measurements have revealed the global prevalence of DMS-related processes, including in previously overlooked environments and organisms, such as sediment-dwelling bacteria. Most marine DMS (>90%) is degraded or consumed in the water column, but the remainder is emitted to the atmosphere, where it contributes to the formation of cloud condensation nuclei. Large uncertainties (up to ±10 W m2) associated with the global impact of DMS emissions arise from the use of crudely defined biological parameters, such as total chlorophyll, in models. Constraining and modelling the biogeochemical processes that control DMS production are key to better estimating the influence of DMS on climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: History of dimethylsulfide biogeochemistry research.
Fig. 2: The marine biogeochemical dimethylsulfoniopropionate and dimethylsulfide cycle.
Fig. 3: DMS fluxes and burdens.
Fig. 4: Dimethylsulfoniopropionate biosynthesis and degradation.
Fig. 5: Atmospheric dimethylsulfide-related processes.
Fig. 6: Future projections of global dimethylsulfide flux.

Similar content being viewed by others

References

  1. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987). Hypothesized the bio-regulation of climate via effect of temperature and sunlight on DMS production.

    Article  Google Scholar 

  2. Mahajan, A. S. et al. Quantifying the impacts of an updated global dimethyl sulfide climatology on cloud microphysics and aerosol radiative forcing. J. Geophys. Res. Atmos. 120, 2524–2536 (2015).

    Article  Google Scholar 

  3. Fiddes, S. L., Woodhouse, M. T., Nicholls, Z., Lane, T. P. & Schofield, R. Cloud, precipitation and radiation responses to large perturbations in global dimethyl sulfide. Atmos. Chem. Phys. 18, 10177–10198 (2018).

    Article  Google Scholar 

  4. Shaw, G. E. Bio-controlled thermostasis involving the sulfur cycle. Clim. Change 5, 297–303 (1983).

    Article  Google Scholar 

  5. Ayers, G. & Cainey, J. The CLAW hypothesis: a review of the major developments. Environ. Chem. 4, 366–374 (2007).

    Article  Google Scholar 

  6. Meskhidze, N. & Nenes, A. Phytoplankton and cloudiness in the Southern Ocean. Science 314, 1419–1423 (2006).

    Article  Google Scholar 

  7. Twohy, C. H. & Anderson, J. R. Droplet nuclei in non-precipitating clouds: composition and size matter. Environ. Res. Lett. 3, 045002 (2008).

    Article  Google Scholar 

  8. Bigg, E. K. Sources, nature and influence on climate of marine airborne particles. Environ. Chem. 4, 155–161 (2007).

    Article  Google Scholar 

  9. Vallina, S. M., Simo, R. & Manizza, M. Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming. Proc. Natl Acad. Sci. USA 104, 16004–16009 (2007).

    Article  Google Scholar 

  10. Woodhouse, M. T. et al. Low sensitivity of cloud condensation nuclei to changes in the sea–air flux of dimethyl-sulphide. Atmos. Chem. Phys. 10, 7545–7559 (2010).

    Article  Google Scholar 

  11. Quinn, P. K. & Bates, T. S. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480, 51–56 (2011). DMS control over climate brought into question.

    Article  Google Scholar 

  12. Mansour, K. et al. Linking marine biological activity to aerosol chemical composition and cloud‐relevant properties over the North Atlantic Ocean. J. Geophys. Res. Atmos. 125, e2019JD032246 (2020).

    Article  Google Scholar 

  13. McCoy, I. L. et al. Influences of recent particle formation on Southern Ocean aerosol variability and low cloud properties. J. Geophys. Res. Atmos. 126, e2020JD033529 (2021).

    Article  Google Scholar 

  14. Sanchez, K. J. et al. Substantial seasonal contribution of observed biogenic sulfate particles to cloud condensation nuclei. Sci. Rep. 8, 3235 (2018). New measurements of atmospheric aerosols show importance of algae-derived DMS for CCN in the North Atlantic.

    Article  Google Scholar 

  15. Quinn, P. et al. Seasonal variations in western North Atlantic remote marine aerosol properties. J. Geophys. Res. Atmos. 124, 14240–14261 (2019).

    Article  Google Scholar 

  16. Saliba, G. et al. Seasonal differences and variability of concentrations, chemical composition, and cloud condensation nuclei of marine aerosol over the North Atlantic. J. Geophys. Res. Atmos. 125, e2020JD033145 (2020).

    Article  Google Scholar 

  17. Carslaw, K. S. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013). Evidence of large contribution of DMS-derived aerosols to uncertainty in indirect forcing.

    Article  Google Scholar 

  18. Fung, K. M. et al. Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing. Atmos. Chem. Phys. 22, 1549–1573 (2022).

    Article  Google Scholar 

  19. Faloona, I. Sulfur processing in the marine atmospheric boundary layer: a review and critical assessment of modeling uncertainties. Atmos. Environ. 43, 2841–2854 (2009).

    Article  Google Scholar 

  20. Chen, Q., Sherwen, T., Evans, M. & Alexander, B. DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry. Atmos. Chem, Phys. 18, 13617–13637 (2018).

    Article  Google Scholar 

  21. Thomas, M. A. et al. Quantification of DMS aerosol–cloud–climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario. Atmos. Chem. Phys. 10, 7425–7438 (2010).

    Article  Google Scholar 

  22. Etminan, M., Myhre, G., Highwood, E. & Shine, K. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).

    Article  Google Scholar 

  23. Lana, A. et al. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Glob. Biogeochem. Cycles 25, GB1004 (2011). Updated global DMS climatology.

    Article  Google Scholar 

  24. Galí, M., Levasseur, M., Devred, E., Simó, R. & Babin, M. Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales. Biogeosciences 15, 3497–3519 (2018).

    Article  Google Scholar 

  25. Wang, W.-L. et al. Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network. Biogeosciences 17, 5335–5354 (2020).

    Article  Google Scholar 

  26. Schaefer, H., Myronova, N. & Boden, R. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 61, 315–334 (2010).

    Article  Google Scholar 

  27. Brimblecombe, P. & Shooter, D. Photo-oxidation of dimethylsulphide in aqueous solution. Mar. Chem. 19, 343–353 (1986).

    Article  Google Scholar 

  28. Brimblecombe, P. Treatise on Geo77chemistry: Second Edition 559–591 (Elsevier Inc., 2013).

  29. Kiene, R. P., Linn, L. J. & Bruton, J. A. New and important roles for DMSP in marine microbial communuties. J. Sea Res. 43, 209–224 (2000).

    Article  Google Scholar 

  30. Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849 (2011).

    Article  Google Scholar 

  31. Galí, M., Devred, E., Levasseur, M., Royer, S.-J. & Babin, M. A remote sensing algorithm for planktonic dimethylsulfoniopropionate (DMSP) and an analysis of global patterns. Remote Sens. Environ. 171, 171–184 (2015).

    Article  Google Scholar 

  32. van Duyl, F. C., Gieskes, W. W., Kop, A. J. & Lewis, W. E. Biological control of short-term variations in the concentration of DMSP and DMS during a Phaeocystis spring bloom. J. Sea Res. 40, 221–231 (1998).

    Article  Google Scholar 

  33. Speeckaert, G., Borges, A. V., Champenois, W., Royer, C. & Gypens, N. Annual cycle of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) related to phytoplankton succession in the Southern North Sea. Sci. Total Environ. 622, 362–372 (2018).

    Article  Google Scholar 

  34. Kiene, R. P. et al. Unprecedented DMSP concentrations in a massive Dinoflagellate bloom in Monterey Bay, CA. Geophys. Res. Lett. 46, 12279–12288 (2019).

    Article  Google Scholar 

  35. Williams, B. T. et al. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0527-1 (2019).

    Article  Google Scholar 

  36. Van Bergeijk, S., Schönefeldt, K., Stal, L. & Huisman, J. Production and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in a diatom-dominated intertidal sediment. Mar. Ecol. Prog. Ser. 231, 37–46 (2002).

    Article  Google Scholar 

  37. Zheng, Y. et al. Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments. Nat. Commun. 11, 4658 (2020).

    Article  Google Scholar 

  38. Trevena, A. J. & Jones, G. B. Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting. Mar. Chem. 98, 210–222 (2006).

    Article  Google Scholar 

  39. Raina, J.-B. et al. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502, 677–680 (2013).

    Article  Google Scholar 

  40. Tapiolas, D. M., Raina, J.-B., Lutz, A., Willis, B. L. & Motti, C. A. Direct measurement of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative nuclear magnetic resonance (qNMR) spectroscopy. J. Exp. Mar. Biol. Ecol. 443, 85–89 (2013).

    Article  Google Scholar 

  41. Burdett, H. L., Hatton, A. D. & Kamenos, N. A. Coralline algae as a globally significant pool of marine dimethylated sulfur. Glob. Biogeochem. Cycles 29, 1845–1853 (2015).

    Article  Google Scholar 

  42. Deschaseaux, E., Jones, G. & Swan, H. Dimethylated sulfur compounds in coral-reef ecosystems. Environ. Chem. 13, 239–251 (2015).

    Article  Google Scholar 

  43. Swan, H. B. et al. Dimethyl sulfide and other biogenic volatile organic compound emissions from branching coral and reef seawater: potential sources of secondary aerosol over the Great Barrier Reef. J. Atmos. Chem. 73, 303–328 (2016).

    Article  Google Scholar 

  44. Van Alstyne, K. L. The distribution of DMSP in green macroalgae from northern New Zealand, eastern Australia and southern Tasmania. J. Mar. Biol. Assoc. UK 88, 799–805 (2008).

    Article  Google Scholar 

  45. Otte, M. L. & Morris, J. T. Dimethylsulphoniopropionate (DMSP) in Spartina alterniflora Loisel. Aquat. Bot. 48, 239–259 (1994).

    Article  Google Scholar 

  46. Kocsis, M. G. et al. Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora 1: evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant Physiol. 117, 273–281 (1998).

    Article  Google Scholar 

  47. Fiddes, S. L., Woodhouse, M. T., Lane, T. P. & Schofield, R. Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs. Atmos. Chem. Phys. 21, 5883–5903 (2021).

    Article  Google Scholar 

  48. Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–320 (2002). Evidence that DMSP, DMS and DMSO may serve as a cellular antioxidant system.

    Article  Google Scholar 

  49. Stefels, J. et al. The analysis of dimethylsulfide and dimethylsulfoniopropionate in sea ice: dry-crushing and melting using stable isotope additions. Mar. Chem. 128–129, 34–43 (2011).

    Google Scholar 

  50. Stefels, J. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 43, 183–197 (2000).

    Article  Google Scholar 

  51. Gardner, S. G., Raina, J.-B., Ralph, P. J. & Petrou, K. Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress. J. Exp. Biol. https://doi.org/10.1242/jeb.153049 (2017).

    Article  Google Scholar 

  52. Hopkins, F. E., Bell, T. G., Yang, M., Suggett, D. J. & Steinke, M. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Sci. Rep. 6, 36031 (2016).

    Article  Google Scholar 

  53. Deschaseaux, E. S. et al. Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol. Oceanogr. 59, 758–768 (2014).

    Article  Google Scholar 

  54. Stefels, J., Steinke, M., Turner, S., Malin, G. & Belviso, S. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83, 245–275 (2007).

    Article  Google Scholar 

  55. Keller, M. D., Bellows, W. K. & Guillard, R. R. L. in Biogenic Sulfur in the Environment (eds Cooper, W. J. & Saltzman, E. S.) Ch. 11 (American Chemical Society, 1989).

  56. Curson, A. R. J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. https://doi.org/10.1038/s41564-018-0119-5 (2018). DSYB enzyme, which controls DMSP synthesis, identified in many phytoplankton and corals.

    Article  Google Scholar 

  57. Todd, J. et al. Mechanistic insight into DsyB/DSYB, key enzymes in marine dimethylsulfoniopropionate synthesis. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-454893/v1 (2021).

    Article  Google Scholar 

  58. Bullock, H. A., Luo, H. & Whitman, W. B. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00637 (2017).

    Article  Google Scholar 

  59. McParland, E. L., Lee, M. D., Webb, E. A., Alexander, H. & Levine, N. M. DMSP synthesis genes distinguish two types of DMSP producer phenotypes. Environ. Microbiol. 23, 1656–1669 (2021).

    Article  Google Scholar 

  60. Kageyama, H., Tanaka, Y., Shibata, A., Waditee-Sirisattha, R. & Takabe, T. Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: identification of a gene encoding MTHB-methyltransferase. Arch. Biochem. Biophys. 645, 100–106 (2018).

    Article  Google Scholar 

  61. Otte, M. L., Wilson, G., Morris, J. T. & Moran, B. M. Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. J. Exp. Bot. 55, 1919–1925 (2004).

    Article  Google Scholar 

  62. Liao, C. & Seebeck, F. P. In vitro reconstitution of bacterial DMSP biosynthesis. Angew. Chem. 131, 3591–3594 (2019).

    Article  Google Scholar 

  63. Kitaguchi, H., Uchida, A. & Ishida, Y. Purification and characterization of l-methionine decarboxylase from Crypthecodinium cohnii. Fish. Sci. 65, 613–617 (1999).

    Article  Google Scholar 

  64. Wolfe, G. V. & Steinke, M. Grazing‐activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160 (1996).

    Article  Google Scholar 

  65. Archer, S., Stelfox-Widdicombe, C., Malin, G. & Burkill, P. Is dimethyl sulphide production related to microzooplankton herbivory in the southern North Sea? J. Plankton Res. 25, 235–242 (2003).

    Article  Google Scholar 

  66. Malin, G., Wilson, W. H., Bratbak, G., Liss, P. S. & Mann, N. H. Elevated production of dimethyl sulphide resulting from viral infection of cultures of Phaeocystis pouchetii. Limnol. Oceanogr. 43, 1389–1393 (1998).

    Article  Google Scholar 

  67. Evans, C. et al. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol. Oceanogr. 52, 1036–1045 (2007).

    Article  Google Scholar 

  68. Kwint, R. L. & Kramer, K. J. DMS production by plankton communities. Mar. Ecol. Prog. Ser. 121, 227–237 (1995).

    Article  Google Scholar 

  69. Laroche, D. et al. DMSP synthesis and exudation in phytoplankton: a modeling approach. Mar. Ecol. Prog. Ser. 180, 37–49 (1999).

    Article  Google Scholar 

  70. Kiene, R. P. & Linn, L. J. The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim. Cosmochim. Acta 64, 2797–2810 (2000).

    Article  Google Scholar 

  71. Moran, M. A., Reisch, C. R., Kiene, R. P. & Whitman, W. B. Genomic insights into bacterial DMSP transformations. Annu. Rev. Mar. Sci. 4, 523–542 (2012).

    Article  Google Scholar 

  72. Simó, R. et al. The quantitative role of microzooplankton grazing in dimethylsulfide (DMS) production in the NW Mediterranean. Biogeochemistry 141, 125–142 (2018).

    Article  Google Scholar 

  73. Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).

    Article  Google Scholar 

  74. Darroch, L. J. et al. Effect of short-term light- and UV-stress on DMSP, DMS, and DMSP lyase activity in Emiliania huxleyi. Aquat. Microb. Ecol. 74, 173–185 (2015).

    Article  Google Scholar 

  75. Alcolombri, U. et al. Identification of the algal dimethyl sulfide-releasing enzyme: a missing link in the marine sulfur cycle. Science 348, 1466–1469 (2015).

    Article  Google Scholar 

  76. Stefels, J., Gieskes, W. W. C. & Dijkhuizen, L. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds Visscher, P. T., Kiene, R. P., Keller, M. D. & Kirst, G. O.) (Plenum, 1996).

  77. Steinke, M., Daniel, C. & Kirst, G. O. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds Visscher, P. T., Kiene, R. P., Keller, M. D. & Kirst, G. O.) (Plenum, 1996).

  78. Steinke, M., Wolfe, G. V. & Kirst, G. O. Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. Prog. Ser. 175, 215–225 (1998).

    Article  Google Scholar 

  79. Steinke, M., Stefels, J. & Stamhuis, E. Dimethyl sulfide triggers search behavior in copepods. Limnol. Oceanogr. 51, 1925–1930 (2006).

    Article  Google Scholar 

  80. Breckels, M., Bode, N., Codling, E. & Steinke, M. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus. Mar. Drugs 11, 2486 (2013).

    Article  Google Scholar 

  81. Todd, J. D. et al. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315, 666–669 (2007).

    Article  Google Scholar 

  82. Curson, A. R. J., Rogers, R., Todd, J. D., Brearley, C. A. & Johnston, A. W. B. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ. Microbiol. 10, 757–767 (2008).

    Article  Google Scholar 

  83. Todd, J. D. et al. DddQ, a novel, cupin‐containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ. Microbiol. 13, 427–438 (2011).

    Article  Google Scholar 

  84. Todd, J. D., Kirkwood, M., Newton-Payne, S. & Johnston, A. W. DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J. 6, 223–226 (2012).

    Article  Google Scholar 

  85. Curson, A. R., Sullivan, M. J., Todd, J. D. & Johnston, A. W. DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria. ISME J. 5, 1191–1200 (2011).

    Article  Google Scholar 

  86. Sun, J. et al. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat. Microbiol. 1, 16065 (2016).

    Article  Google Scholar 

  87. Todd, J. D., Curson, A. R. J., Dupont, C. L., Nicholson, P. & Johnston, A. W. B. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ. Microbiol. 11, 1376–1385 (2009). Novel gene dddP identified in bacteria for conversion of DMSP to DMS.

    Article  Google Scholar 

  88. Li, C.-Y. et al. A novel ATP dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA. eLife 10, e64045 (2021).

    Google Scholar 

  89. Liu, J. et al. Novel insights into bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Front. Microbiol. 9, 3206 (2018).

    Article  Google Scholar 

  90. Lee, P. A. & De Mora, S. J. Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role. J. Phycol. 35, 8–18 (1999).

    Article  Google Scholar 

  91. Andreae, M. O. Dimethylsulfoxide in marine and freshwaters. Limnol. Oceanogr. 25, 1054–1063 (1980).

    Article  Google Scholar 

  92. Thume, K. et al. The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle. Nature 563, 412–415 (2018).

    Article  Google Scholar 

  93. Dixon, J. L., Hopkins, F. E., Stephens, J. A. & Schäfer, H. Seasonal changes in microbial dissolved organic sulfur transformations in coastal waters. Microorganisms 8, 337 (2020).

    Article  Google Scholar 

  94. Spiese, C. E., Kieber, D. J., Nomura, C. T. & Kiene, R. P. Reduction of dimethylsulfoxide to dimethylsulfide by marine phytoplankton. Limnol. Oceanogr. 54, 560–570 (2009).

    Article  Google Scholar 

  95. McCrindle, S. L., Kappler, U. & McEwan, A. G. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv. Microb. Physiol. 50, 147–198 (2005).

    Article  Google Scholar 

  96. Simó, R., Grimalt, J. O. & Albaiges, J. Dissolved dimethylsulphide, dimethylsulphoniopropionate and dimethylsulphoxide in western Mediterranean waters. Deep Sea Res. II 44, 929–950 (1997).

    Article  Google Scholar 

  97. Kiene, R. P. & Gerard, G. Determination of trace levels of dimethylsulfoxide (DMSO) in seawater and rainwater. Mar. Chem. 47, 1–12 (1994).

    Article  Google Scholar 

  98. Hatton, A., Malin, G., Turner, S. & Liss, P. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds 405–412 (Springer, 1996).

  99. Carrión, O. et al. Methanethiol-dependent dimethylsulfide production in soil environments. ISME J. 11, 2379–2390 (2017).

    Article  Google Scholar 

  100. Carrión, O. et al. A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments. Nat. Commun. 6, 6579 (2015).

    Article  Google Scholar 

  101. Pinhassi, J. et al. Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom. Appl. Environ. Microbiol. 71, 7650–7660 (2005).

    Article  Google Scholar 

  102. Howard, E. C., Sun, S., Biers, E. J. & Moran, M. A. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ. Microbiol. 10, 2397–2410 (2008).

    Article  Google Scholar 

  103. Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).

    Article  Google Scholar 

  104. Todd, J. D., Curson, A. R., Sullivan, M. J., Kirkwood, M. & Johnston, A. W. The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PLoS ONE 7, e35947 (2012).

    Article  Google Scholar 

  105. Nakamura, H., Fujimaki, K., Sampei, O. & Murai, A. Gonyol: methionine-induced sulfonium accumulation in a dinoflagellate Gonyaulax polyedra. Tetrahedron Lett. 34, 8481–8484 (1993).

    Article  Google Scholar 

  106. Nakamura, H. Synthesis of (±)-gonyauline, an endogenous substance shortening the period of circadian rhythm in the unicellular alga Gonyaulax polyedra. J. Chem. Soc. Perkin Trans. 1, 3219–3220 (1990).

    Article  Google Scholar 

  107. Cosquer, A. et al. Nanomolar levels of dimethylsulfoniopropionate, dimethylsulfonioacetate, and glycine betaine are sufficient to confer osmoprotection to Escherichia coli. Appl. Environ. Microbiol. 65, 3304–3311 (1999).

    Article  Google Scholar 

  108. Gebser, B., Thume, K., Steinke, M. & Pohnert, G. Phytoplankton‐derived zwitterionic gonyol and dimethylsulfonioacetate interfere with microbial dimethylsulfoniopropionate sulfur cycling. MicrobiologyOpen 9, e1014 (2020).

    Article  Google Scholar 

  109. Burkhardt, I., Lauterbach, L., Brock, N. L. & Dickschat, J. S. Chemical differentiation of three DMSP lyases from the marine Roseobacter group. Org. Biomol. Chem. 15, 4432–4439 (2017).

    Article  Google Scholar 

  110. Gregory, G. J., Boas, K. E., Boyd, E. F. & Stabb, E. V. The organosulfur compound dimethylsulfoniopropionate (DMSP) is utilized as an osmoprotectant by Vibrio species. Appl. Environ. Microbiol. 87, e02235-20 (2021).

    Article  Google Scholar 

  111. Theseira, A. M., Nielsen, D. A. & Petrou, K. Uptake of dimethylsulphoniopropionate (DMSP) reduces free reactive oxygen species (ROS) during late exponential growth in the diatom Thalassiosira weissflogii grown under three salinities. Mar. Biol. 167, 127 (2020).

    Article  Google Scholar 

  112. Archer, S. D., Widdicombe, C. E., Tarran, G. A., Rees, A. P. & Burkill, P. H. Production and turnover of particulate dimethylsulphoniopropionate during a Coccolithophore bloom in the northern North Sea. Aquat. Microb. Ecol. 24, 225–241 (2001).

    Article  Google Scholar 

  113. Saló, V., Simó, R., Vila‐Costa, M. & Calbet, A. Sulfur assimilation by Oxyrrhis marina feeding on a 35 S‐DMSP‐labelled prey. Environ. Microbiol. 11, 3063–3072 (2009).

    Article  Google Scholar 

  114. Kappler, U. & Schäfer, H. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment 279–313 (Springer, 2014).

  115. Toole, D. A., Kieber, D. J., Kiene, R. P., Siegel, D. A. & Nelson, N. B. Photolysis and the dimethylsulfide (DMS) summer paradox in the Sargasso Sea. Limnol. Oceanogr. 48, 1088–1100 (2003).

    Article  Google Scholar 

  116. Toole, D., Slezak, D., Kiene, R., Kieber, D. & Siegel, D. Effects of solar radiation on dimethylsulfide cycling in the western Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 53, 136–153 (2006).

    Article  Google Scholar 

  117. Kieber, D. J., Jiao, J. F., Kiene, R. P. & Bates, T. S. Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean. J. Geophys. Res. Oceans 101, 3715–3722 (1996).

    Article  Google Scholar 

  118. Galí, M., Devred, E., Pérez, G. L., Kieber, D. J. & Simó, R. Global ocean dimethylsulfide photolysis rates quantified with a spectrally and vertically resolved model. Limnol. Oceanogr. Lett. https://doi.org/10.31223/X5VM0C (2022).

    Article  Google Scholar 

  119. Simo, R., Hatton, A. D., Malin, G. & Liss, P. S. Particulate dimethyl sulphoxide in seawater: production by microplankton. Mar. Ecol. Prog. Ser. 167, 291–296 (1998).

    Article  Google Scholar 

  120. del Valle, D. A., Kieber, D. J., John, B. & Kiene, R. P. Light‐stimulated production of dissolved DMSO by a particle‐associated process in the Ross Sea, Antarctica. Limnol. Oceanogr. 52, 2456–2466 (2007).

    Article  Google Scholar 

  121. del Valle, D. A., Kieber, D. J., Toole, D. A., Bisgrove, J. & Kiene, R. P. Dissolved DMSO production via biological and photochemical oxidation of dissolved DMS in the Ross Sea, Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 56, 166–177 (2009).

    Article  Google Scholar 

  122. Zeyer, J., Eicher, P., Wakeham, S. G. & Schwarzenbach, R. P. Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl. Environ. Microbiol. 53, 2026–2032 (1987).

    Article  Google Scholar 

  123. Vogt, C., Rabenstein, A., Rethmeier, J. & Fischer, U. Dimethyl sulphoxide reduction with reduced sulphur compounds as electron donors by anoxygenic phototrophic bacteria. Microbiology 143, 767–773 (1997).

    Article  Google Scholar 

  124. Hanlon, S. P., Toh, T. H., Solomon, P. S., Holt, R. A. & Mcewan, A. G. Dimethylsulfide: acceptor oxidoreductase from Rhodobacter sulfidophilus: the purified enzyme contains b‐type Haem and a Pterin molybdenum cofactor. Eur. J. Biochem. 239, 391–396 (1996).

    Article  Google Scholar 

  125. Fuse, H., Takimura, O., Murakami, K., Yamaoka, Y. & Omori, T. Utilization of dimethyl sulfide as a sulfur source with the aid of light by Marinobacterium sp. strain DMS-S1. Appl. Environ. Microbiol. 66, 5527–5532 (2000).

    Article  Google Scholar 

  126. Omori, T., Saiki, Y., Kasuga, K. & Kodama, T. Desulfurization of alkyl and aromatic sulfides and sulfonates by dibenzothiophene-desulfurizing Rhodococcus sp. strain SY1. Biosci. Biotechnol. Biochem. 59, 1195–1198 (1995).

    Article  Google Scholar 

  127. Sorokin, D. Y., Jones, B. E. & Kuenen, J. G. An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 4, 145–155 (2000).

    Article  Google Scholar 

  128. De Bont, J., Van Dijken, J. & Harder, W. Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. Microbiology 127, 315–323 (1981).

    Article  Google Scholar 

  129. Boden, R. et al. Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J. Bacteriol. 193, 1250–1258 (2011).

    Article  Google Scholar 

  130. Song, D. et al. Metagenomic insights into the cycling of dimethylsulfoniopropionate and related molecules in the Eastern China Marginal Seas. Front. Microbiol. 11, 157 (2020).

    Article  Google Scholar 

  131. Suylen, G., Large, P., Van Dijken, J. & Kuenen, J. Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulphur compounds by Hyphomicrobium EG. Microbiology 133, 2989–2997 (1987).

    Article  Google Scholar 

  132. Eyice, Ö. et al. Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME J. 12, 145–160 (2018).

    Article  Google Scholar 

  133. Anthony, C. The Biochemistry of Methylotrophs Vol. 439 (Academic Press, 1982).

  134. Neufeld, J. D., Boden, R., Moussard, H., Schafer, H. & Murrell, J. C. Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment. Appl. Environ. Microbiol. 74, 7321–7328 (2008).

    Article  Google Scholar 

  135. Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).

    Article  Google Scholar 

  136. Vorobev, A. et al. Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics. Genome Res. 30, 647–659 (2020).

    Article  Google Scholar 

  137. Teng, Z.-J. et al. Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. Microbiome 9, 207 (2021).

    Article  Google Scholar 

  138. Sun, H. et al. DMSP-producing bacteria are more abundant in the surface microlayer than subsurface seawater of the East China Sea. Microb. Ecol. 80, 350–365 (2020).

    Article  Google Scholar 

  139. Li, C.-Y. et al. Mechanistic insights into the key marine dimethylsulfoniopropionate synthesis enzyme DsyB/DSYB. mLife 1, 114–130 (2022).

    Article  Google Scholar 

  140. Kettle, A. J. et al. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Glob. Biogeochem. Cycles 13, 399–444 (1999).

    Article  Google Scholar 

  141. Bell, T. G. et al. Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds. Atmos. Chem. Phys. 17, 9019–9033 (2017).

    Article  Google Scholar 

  142. Nightingale, P. D. et al. In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387 (2000).

    Article  Google Scholar 

  143. Huebert, B. J. et al. Measurement of the sea–air DMS flux and transfer velocity using eddy correlation. Geophys. Res. Lett. https://doi.org/10.1029/2004GL021567 (2004). First eddy correlation measurement of DMS seaair fluxes.

    Article  Google Scholar 

  144. Marandino, C. A., De Bruyn, W. J., Miller, S. D. & Saltzman, E. S. Eddy correlation measurements of the air/sea flux of dimethylsulfide over the North Pacific Ocean. J. Geophys. Res. Atmos. https://doi.org/10.1029/2006JD007293 (2007).

    Article  Google Scholar 

  145. Bell, T. G. et al. Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean. Atmos. Chem. Phys. 15, 1783–1794 (2015).

    Article  Google Scholar 

  146. Goddijn‐Murphy, L., Woolf, D. K. & Marandino, C. Space‐based retrievals of air–sea gas transfer velocities using altimeters: calibration for dimethyl sulfide. J. Geophys. Res. Oceans https://doi.org/10.1029/2011JC007535 (2012).

    Article  Google Scholar 

  147. Blomquist, B. W. et al. Wind speed and sea state dependencies of air–sea gas transfer: results from the high wind speed gas exchange study (HiWinGS). J. Geophys. Res. Ocean. 122, 8034–8062 (2017).

    Article  Google Scholar 

  148. Liss, P. & Merlivat, L. in The Role of AirSea Exchange in Geochemical Cycling (ed. Buat-Menard, P.) (D Reidel, 1986).

  149. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).

    Article  Google Scholar 

  150. Bock, J. et al. Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models. Biogeosciences 18, 3823–3860 (2021).

    Article  Google Scholar 

  151. Hulswar, S. et al. Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3). Earth Syst. Sci. Data 14, 2963–2987 (2022).

    Article  Google Scholar 

  152. Simó, R. & Dachs, J. Global ocean emission of dimethylsulfide predicted from biogeophysical data. Global Biogeochem. Cycles https://doi.org/10.1029/2001GB001829 (2002).

    Article  Google Scholar 

  153. Vallina, S. M. & Simo, R. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315, 506–508 (2007).

    Article  Google Scholar 

  154. Humphries, G. R., Deal, C. J., Elliott, S. & Huettmann, F. Spatial predictions of sea surface dimethylsulfide concentrations in the High Arctic. Biogeochemistry 110, 287–301 (2012).

    Article  Google Scholar 

  155. Kloster, S. et al. DMS cycle in the marine ocean–atmosphere system — a global model study. Biogeosciences 3, 29–51 (2006).

    Article  Google Scholar 

  156. Nguyen, B. C., Mihalopoulos, N. & Belviso, S. Seasonal variation of atmospheric dimethyl sulphide at Amsterdam Island in the Southern Indian Ocean. J. Atmos. Chem. 11, 123–141 (1990).

    Article  Google Scholar 

  157. Ayers, G., Gillett, R., Ivey, J., Schäfer, B. & Gabric, A. Short‐term variability in marine atmospheric dimethylsulfide concentration. Geophys. Res. Lett. 22, 2513–2516 (1995).

    Article  Google Scholar 

  158. Kouvarakis, G. & Mihalopoulos, N. Seasonal variation of dimethylsulfide in the gas phase and of methanesulfonate and non-sea-salt sulfate in the aerosols phase in the Eastern Mediterranean atmosphere. Atmos. Environ. 36, 929–938 (2002).

    Article  Google Scholar 

  159. Gershenzon, M., Davidovits, P., Jayne, J., Kolb, C. & Worsnop, D. Simultaneous uptake of DMS and ozone on water. J. Phys. Chem. A 105, 7031–7036 (2001).

    Article  Google Scholar 

  160. Bonifacic, M., Schaefer, K., Moeckel, H. & Asmus, K. Primary steps in the reactions of organic disulfides with hydroxyl radicals in aqueous solution. J. Phys. Chem. 79, 1496–1502 (1975).

    Article  Google Scholar 

  161. Boucher, O. et al. DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation. Atmos. Chem. Phys. 3, 49–65 (2003).

    Article  Google Scholar 

  162. von Glasow, R. & Crutzen, P. J. Tropospheric halogen chemistry. Treatise Geochem. 4, 347 (2003).

    Google Scholar 

  163. Hoffmann, E. H. et al. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry. Proc. Natl Acad. Sci. USA 113, 11776–11781 (2016).

    Article  Google Scholar 

  164. Zhu, L., Nenes, A., Wine, P. H. & Nicovich, J. M. Effects of aqueous organosulfur chemistry on particulate methanesulfonate to non–sea salt sulfate ratios in the marine atmosphere. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006326 (2006).

    Article  Google Scholar 

  165. Barnes, I., Hjorth, J. & Mihalopoulos, N. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem. Rev. 106, 940–975 (2006).

    Article  Google Scholar 

  166. von Glasow, R. & Crutzen, P. J. Model study of multiphase DMS oxidation with a focus on halogens. Atmos. Chem. Phys. 4, 589–608 (2004). First comprehensive model study of atmospheric multiphase DMS oxidation.

    Article  Google Scholar 

  167. Glasow, R. V., von Kuhlmann, R., Lawrence, M. G., Platt, U. & Crutzen, P. J. Impact of reactive bromine chemistry in the troposphere. Atmos. Chem. Phys. 4, 2481–2497 (2004).

    Article  Google Scholar 

  168. Ayers, G. P. & Gras, J. L. Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 353, 834–835 (1991).

    Article  Google Scholar 

  169. Kukui, A., Borissenko, D., Laverdet, G. & Le Bras, G. Gas-phase reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid using turbulent flow reactor and chemical ionization mass spectrometry. J. Phys. Chem. A 107, 5732–5742 (2003).

    Article  Google Scholar 

  170. Lu, Y. et al. A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing. Atmos. Chem. Phys. 19, 1971–1983 (2019).

    Article  Google Scholar 

  171. Facchini, M. C. et al. Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 42, 9116–9121 (2008).

    Article  Google Scholar 

  172. Dall’Osto, M. et al. Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. J. Geophys. Res. Atmos. 117, 017522 (2012).

    Google Scholar 

  173. Chen, H. & Finlayson-Pitts, B. J. New particle formation from methanesulfonic acid and amines/ammonia as a function of temperature. Environ. Sci. Technol. 51, 243–252 (2017).

    Article  Google Scholar 

  174. Hodshire, A. L. et al. The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmos. Chem. Phys. 19, 3137–3160 (2019).

    Article  Google Scholar 

  175. Dawson, M. L. et al. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. Proc. Natl Acad. Sci. USA 109, 18719–18724 (2012).

    Article  Google Scholar 

  176. Chen, H. et al. New particle formation and growth from methanesulfonic acid, trimethylamine and water. Phys. Chem. Chem. Phys. 17, 13699–13709 (2015).

    Article  Google Scholar 

  177. Ning, A. et al. A molecular-scale study on the role of methanesulfinic acid in marine new particle formation. Atmos. Environ. 227, 117378 (2020).

    Article  Google Scholar 

  178. Berndt, T. et al. Fast peroxy radical isomerization and OH recycling in the reaction of OH radicals with dimethyl sulfide. J. Phys. Chem. Lett. https://doi.org/10.1021/acs.jpclett.9b02567 (2019). Identification of new and more rapid DMS atmospheric oxidation pathway.

    Article  Google Scholar 

  179. Veres, P. R. et al. Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proc. Natl Acad. Sci. USA 117, 4505–4510 (2020). Discovery of major DMS gas-phase oxidation product HPMTF, which could account for >30% of oceanic DMS emissions and strongly influence new particle formation and growth.

    Article  Google Scholar 

  180. Bates, T. S. et al. Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. Atmos. 103, 16369–16383 (1998).

    Article  Google Scholar 

  181. Twohy, C. H. et al. Cloud‐nucleating particles over the Southern Ocean in a changing climate. Earths Future 9, e2020EF001673 (2021).

    Article  Google Scholar 

  182. Sanchez, K. J. et al. Measurement report: cloud processes and the transport of biological emissions affect Southern Ocean particle and cloud condensation nuclei concentrations. Atmos. Chem. Phys. 21, 3427–3446 (2021).

    Article  Google Scholar 

  183. Yin, F., Grosjean, D., Flagan, R. C. & Seinfeld, J. H. Photooxidation of dimethyl sulfide and dimethyl disulfide. II: mechanism evaluation. J. Atmos. Chem. 11, 365–399 (1990).

    Article  Google Scholar 

  184. Yin, F., Grosjean, D. & Seinfeld, J. H. Photooxidation of dimethyl sulfide and dimethyl disulfide. I: mechanism development. J. Atmos. Chem. 11, 309–364 (1990).

    Article  Google Scholar 

  185. Khan, M. A. H. et al. A modelling study of the atmospheric chemistry of DMS using the global model, STOCHEM-CRI. Atmos. Environ. 127, 69–79 (2016).

    Article  Google Scholar 

  186. Revell, L. E. et al. The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry–climate model. Atmos. Chem. Phys. 19, 15447–15466 (2019).

    Article  Google Scholar 

  187. Wang, S., Maltrud, M., Elliott, S., Cameron-Smith, P. & Jonko, A. Influence of dimethyl sulfide on the carbon cycle and biological production. Biogeochemistry 138, 49–68 (2018).

    Article  Google Scholar 

  188. Swan, H. B. The potential for great barrier reef regional climate regulation via dimethylsulfide atmospheric oxidation products. Front. Mar. Sci. 9, 869166 (2022).

    Article  Google Scholar 

  189. Bell, T. G. et al. Predictability of seawater DMS during the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES). Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.596763 (2021). Current state-of-the-art approaches for estimating seawater DMS hindered by unrealistic representation of biological processes and poorly predict DMS during episodes of enhanced net production.

    Article  Google Scholar 

  190. Halloran, P., Bell, T. & Totterdell, I. Can we trust empirical marine DMS parameterisations within projections of future climate? Biogeosciences 7, 1645–1656 (2010).

    Article  Google Scholar 

  191. Elliott, S. Dependence of DMS global sea–air flux distribution on transfer velocity and concentration field type. J. Geophys. Res. Biogeosci. 114, G02001 (2009).

    Article  Google Scholar 

  192. Tesdal, J.-E., Christian, J. R., Monahan, A. H. & von Salzen, K. Evaluation of diverse approaches for estimating sea-surface DMS concentration and air–sea exchange at global scale. Environ. Chem. 13, 390–412 (2016).

    Article  Google Scholar 

  193. Tesdal, J. E., Christian, J. R., Monahan, A. H. & von Salzen, K. Sensitivity of modelled sulfate aerosol and its radiative effect on climate to ocean DMS concentration and air–sea flux. Atmos. Chem. Phys. 16, 10847–10864 (2016).

    Article  Google Scholar 

  194. Galí, M. et al. Diel patterns of oceanic dimethylsulfide (DMS) cycling: microbial and physical drivers. Glob. Biogeochem. Cycles 27, 620–636 (2013).

    Article  Google Scholar 

  195. Stefels, J., Dacey, J. W. & Elzenga, J. T. M. In vivo DMSP‐biosynthesis measurements using stable‐isotope incorporation and proton‐transfer‐reaction mass spectrometry (PTR‐MS). Limnol. Oceanogr. Methods 7, 595–611 (2009).

    Article  Google Scholar 

  196. Litchman, E. & Klausmeier, C. A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639 (2008).

    Article  Google Scholar 

  197. Archer, S. D., Gilbert, F. J., Allen, J. I., Blackford, J. & Nightingale, P. D. Modelling of the seasonal patterns of dimethylsulphide production and fate during 1989 at a site in the North Sea. Can. J. Fish. Aquat. Sci. 61, 765–787 (2004).

    Article  Google Scholar 

  198. McParland, E. L. & Levine, N. M. The role of differential DMSP production and community composition in predicting variability of global surface DMSP concentrations. Limnol. Oceanogr. 64, 757–773 (2019).

    Article  Google Scholar 

  199. Wang, S., Maltrud, M. E., Burrows, S. M., Elliott, S. M. & Cameron‐Smith, P. Impacts of shifts in phytoplankton community on clouds and climate via the sulfur cycle. Glob. Biogeochem. Cycles 32, 1005–1026 (2018).

    Article  Google Scholar 

  200. Saltzman, E., De Bruyn, W., Lawler, M., Marandino, C. & McCormick, C. A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater. Ocean. Sci. 5, 537–546 (2009).

    Article  Google Scholar 

  201. Tortell, P. D. Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol. Oceanogr. Methods 3, 24–37 (2005).

    Article  Google Scholar 

  202. Bell, T. G. et al. Seawater DMS variability during the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES). Front. Mar. Sci. 7, 1200 (2020).

    Google Scholar 

  203. Kameyama, S. et al. Equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS) for sensitive, high-resolution measurement of dimethyl sulfide dissolved in seawater. Anal. Chem. 81, 9021–9026 (2009).

    Article  Google Scholar 

  204. Bolas, C. G. et al. iDirac: a field-portable instrument for long-term autonomous measurements of isoprene and selected VOCs. Atmos. Meas. Tech. 13, 821–838 (2020).

    Article  Google Scholar 

  205. Okane, D. et al. High sensitivity monitoring device for onboard measurement of dimethyl sulfide and dimethylsulfoniopropionate in seawater and an oceanic atmosphere. Anal. Chem. 91, 10484–10491 (2019).

    Article  Google Scholar 

  206. Leng, G. et al. Automated, high frequency, on-line dimethyl sulfide measurements in natural waters using a novel ‘microslug’ gas–liquid segmented flow method with chemiluminescence detection. Talanta 221, 121595 (2021).

    Article  Google Scholar 

  207. Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).

    Article  Google Scholar 

  208. McNabb, B. J. & Tortell, P. D. Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms. Biogeosciences 19, 1705–1721 (2022).

    Article  Google Scholar 

  209. Hopkins, F. E. et al. The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate. R. Soc. Proc. A 476, 20190769 (2020). Review of impacts ocean acidification on DMS production.

    Article  Google Scholar 

  210. Bopp, L., Aumont, O., Belviso, S. & Monfray, P. Potential impact of climate change on marine dimethyl sulphide emissions. Tellus B 55, 11–22 (2003). First model estimate of response of DMS production and flux to climate change.

    Article  Google Scholar 

  211. Bopp, L. et al. Will marine dimethyl sulphide emissions amplify of alleviate global warming? A model study. Can. J. Fish. Aquat. Sci. 61, 826–835 (2004).

    Article  Google Scholar 

  212. Gabric, A. J., Bo, Q. U., Patricia, M. & Anthony, H. C. The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus B 57, 391–403 (2005).

    Article  Google Scholar 

  213. Kloster, S. et al. Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. J. Geophys. Res. https://doi.org/10.1029/2006JG000224 (2007).

    Article  Google Scholar 

  214. Cameron-Smith, P., Elliott, S., Maltrud, M., Erickson, D. & Wingenter, O. Changes in dimethyl sulfide oceanic distribution due to climate change. Geophys. Res. Lett. 38, L07704 (2011).

    Article  Google Scholar 

  215. Menzo, Z., Elliott, S., Hartin, C., Hoffman, F. & Wang, S. Climate change impacts on natural sulfur production: ocean acidification and community shifts. Atmosphere 9, 167 (2018).

    Article  Google Scholar 

  216. Six, K. D. et al. Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nat. Clim. Change 3, 975 (2013).

    Article  Google Scholar 

  217. Schwinger, J. et al. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model. Biogeosciences 14, 3633–3648 (2017). A fully coupled model study demonstrating climate sensitivity to ocean acidification-driven reduction in DMS flux.

    Article  Google Scholar 

  218. Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change — a review. Glob. Change Biol. 24, 2239–2261 (2018).

    Article  Google Scholar 

  219. GESAMP. High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques. Report No. 1020-4873, 144 (2019).

  220. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    Article  Google Scholar 

  221. Turner, S. M., Harvey, M. J., Law, C. S., Nightingale, P. D. & Liss, P. S. Iron-induced changes in oceanic sulfur biogeochemistry. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020296 (2004).

    Article  Google Scholar 

  222. Wingenter, O. W., Elliot, S. M. & Blake, D. R. New directions: enhancing the natural sulfur cycle to slow global warming. Atmos. Environ. 41, 7373–7375 (2007).

    Article  Google Scholar 

  223. Vogt, M., Vallina, S. & von Glasow, R. New directions: correspondence on ‘enhancing the natural cycle to slow global warming’. Atmos. Environ. 42, 4803–4805 (2008).

    Article  Google Scholar 

  224. Law, C. S. Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Mar. Ecol. Prog. Ser. 364, 283–288 (2008).

    Article  Google Scholar 

  225. Lovelock, J. E., Maggs, R. J. & Rasmussen, R. A. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237, 452–453 (1972).

    Article  Google Scholar 

  226. Haas, P. The liberation of methyl sulphide by seaweed. Biochem. J. 29, 1297–1299 (1935).

    Article  Google Scholar 

  227. Challenger, F. & Simpson, M. I. Studies on biological methylation. Part 12. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethylsulphonium hydroxide and its salts. J. Chem. Soc. 3, 1591–1597 (1948).

    Article  Google Scholar 

  228. Ishida, Y. Physiological Studies on Evolution of Dimethyl Sulfide from Unicellular Marine Algae. Dissertation, Kyoto Univ. (1969).

  229. Andreae, M. O. Determination of trace quantities of dimethylsulfoxide in aqueous solutions. Anal. Chem. 52, 150–153 (1980).

    Article  Google Scholar 

  230. Andreae, M. O. & Raemdonck, H. Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 221, 744–747 (1983).

    Article  Google Scholar 

  231. Dacey, J. W. H., Wakeham, S. G. & Howes, B. L. Henry’s law constants for dimethylsulfide in freshwater and seawater. Geophys. Res. Lett. 11, 991–994 (1984).

    Article  Google Scholar 

  232. Dacey, J. W. & Wakeham, S. G. Oceanic dimethylsulfide: production during zooplankton grazing on phytoplankton. Science 233, 1314–1316 (1986).

    Article  Google Scholar 

  233. Erikson, D. J., Ghan, S. J. & Penner, J. E. Global ocean-to-atmosphere dimethyl sulfide flux. J. Geophys. Res. 95, 7543–7552 (1990).

    Article  Google Scholar 

  234. Kiene, R. P. & Bates, T. S. Biological removal of dimethyl sulphide from sea water. Nature 345, 702–705 (1990).

    Article  Google Scholar 

  235. Kiene, R. P. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56, 3292–3297 (1990).

    Article  Google Scholar 

  236. Ayers, G. P., Ivey, J. P. & Gillett, R. W. Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air. Nature 349, 404–406 (1991).

    Article  Google Scholar 

  237. Kiene, R. P. Dynamics of dimethyl sulfide and dimethylsulfoniopropionate in oceanic water samples. Mar. Chem. 37, 29–52 (1992).

    Article  Google Scholar 

  238. Bates, T. S. et al. The cycling of sulfur in surface seawater of the northeast Pacific. J. Geophys. Res. Ocean. 99, 7835–7843 (1994).

    Article  Google Scholar 

  239. Levasseur, M., Gosselin, M. & Michaud, S. A new source of dimethylsulfide (DMS) for the arctic atmosphere: ice diatoms. Mar. Biol. 121, 381–387 (1994).

    Article  Google Scholar 

  240. Hill, R. W., Dacey, J. W. & Krupp, D. A. Dimethylsulfoniopropionate in reef corals. Bull. Mar. Sci. 57, 489–494 (1995).

    Google Scholar 

  241. Nevitt, G. A., Veit, R. R. & Kareiva, P. Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds. Nature 376, 680 (1995).

    Article  Google Scholar 

  242. Zubkov, M. V. et al. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ. Microbiol. 3, 304–311 (2001).

    Article  Google Scholar 

  243. Burkhill, P. H. et al. Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep Sea Res. II 49, 2863–2885 (2002).

    Article  Google Scholar 

  244. Gunson, J. R. et al. Climate sensitivity to ocean dimethylsulphide emissions. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024982 (2006).

    Article  Google Scholar 

  245. Vogt, M. et al. Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment. Biogeosciences 5, 407–419 (2008).

    Article  Google Scholar 

  246. Hopkins, F. E., Turner, S. M., Nightingale, P. D., Steinke, M. & Liss, P. S. Ocean acidification and marine biogenic trace gas production. Proc. Natl Acad. Sci. USA 107, 760–765 (2010).

    Article  Google Scholar 

  247. Archer, S. D. et al. Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences 10, 1893–1908 (2013). Experimental evidence of DMS sensitivity to ocean acidification in the Arctic.

    Article  Google Scholar 

  248. Leaitch, W. R. et al. Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud. Elem. Sci. Anthr. 1, 000017 (2013). Evidence of DMS control on Arctic aerosol and cloud processes.

    Article  Google Scholar 

  249. Savoca, M. S. & Nevitt, G. A. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc. Natl Acad. Sci. USA 111, 4157–4161 (2014).

    Article  Google Scholar 

  250. Savoca, M. S., Wohlfeil, M. E., Ebeler, S. E. & Nevitt, G. A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. https://doi.org/10.1126/sciadv.1600395 (2016).

    Article  Google Scholar 

  251. Lidbury, I. et al. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle. Environ. Microbiol. 18, 2754–2766 (2016).

    Article  Google Scholar 

  252. Jackson, R. L., Gabric, A. J., Cropp, R. & Woodhouse, M. T. Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs. Biogeosciences 17, 2181–2204 (2020).

    Article  Google Scholar 

  253. Swan, H. B., Jones, G. B., Deschaseaux, E. S. & Eyre, B. D. Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef, Australia. Biogeosciences 14, 229 (2017).

    Article  Google Scholar 

  254. Spiro, P. A., Jacob, D. J. & Logan, J. A. Global inventory of sulfur emissions with 1×1 resolution. J. Geophys. Res. Atmos. 97, 6023–6036 (1992).

    Article  Google Scholar 

  255. Steudler, P. & Peterson, B. Contribution of gaseous sulphur from salt marshes to the global sulphur cycle. Nature 311, 455–457 (1984).

    Article  Google Scholar 

  256. Ksionzek, K. B. et al. Dissolved organic sulfur in the ocean: biogeochemistry of a petagram inventory. Science 354, 456–459 (2016).

    Article  Google Scholar 

  257. Webb, A. et al. Extreme spikes in DMS flux double estimates of biogenic sulfur export from the Antarctic coastal zone to the atmosphere. Sci. Rep. 9, 2233 (2019).

    Article  Google Scholar 

  258. Galí, M. et al. DMS emissions from the Arctic marginal ice zone. Elem. Sci. Anthr. https://doi.org/10.1525/elementa.2020.00113 (2021).

    Article  Google Scholar 

  259. Gage, D. A. et al. A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature 387, 891 (1997).

    Article  Google Scholar 

  260. James, F., Paquet, L., Sparace, S. A., Gage, D. A. & Hanson, A. D. Evidence implicating dimethylsulfoniopropionaldehyde as an intermediate in dimethylsulfoniopropionate biosynthesis. Plant Physiol. 108, 1439–1448 (1995).

    Article  Google Scholar 

  261. Uchida, A., Ooguri, T., Ishida, T., Kitaguchi, H. & Ishida, Y. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds 97–107 (Springer, 1996).

  262. Bourgis, F. et al. S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11, 1485–1497 (1999).

    Article  Google Scholar 

  263. Kocsis, M. G. et al. Insertional inactivation of the methionine S-methyltransferase gene eliminates the S-methylmethionine cycle and increases the methylation ratio. Plant Physiol. 131, 1808–1815 (2003).

    Article  Google Scholar 

  264. Trottmann, F. et al. Sulfonium acids loaded onto an unusual thiotemplate assembly line construct the cyclopropanol warhead of a Burkholderia virulence factor. Angew. Chem. Int. Ed. Engl. 59, 13511–13515 (2020).

    Article  Google Scholar 

  265. Howard, E. C. et al. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UK Research and Innovation via the Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council, through the following grants: NE/L004151/1 (Microbial degradation of DMSO in the marine environment), NE/R010382/1 (Is bacterial DMS consumption dependent on methylamines in marine waters?), NE/P012930/1 (A multidisciplinary study of DMSP production and lysis — from enzymes to organisms to process modelling), NE/X001075/1 (Dimethylsulfoniopropionate cycling in terrestrial environments (DMSP InTerrest)), NE/W009277/1 (ConstrAining the Role of sulfur in the Earth System (CARES)) and BB/X005968/1 (Earth’s coolest organosulfur molecule: understanding how agriculture can be more cooling to the climate). Support was also provided by the US National Science Foundation through grant 1807163 (Surface exchange of climate-active trace gases in a sea–ice environment during MOSAiC). The authors thank X. Zhu and B. Williams from the University of East Anglia for discussions and input that informed this Review.

Author information

Authors and Affiliations

Authors

Contributions

F.E.H. initiated writing of the Review and organized the writing processes. All the authors contributed equally to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Frances E. Hopkins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Sonya Fiddes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkins, F.E., Archer, S.D., Bell, T.G. et al. The biogeochemistry of marine dimethylsulfide. Nat Rev Earth Environ 4, 361–376 (2023). https://doi.org/10.1038/s43017-023-00428-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00428-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology