Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Subduction erosion and arc volcanism

Abstract

Tectonic or subduction erosion refers to the removal of upper-plate material from the forearc at convergent margins. Subduction erosion has been suggested to represent a major process associated with the transfer of crustal material into the Earth’s mantle at subduction zones. However, few studies have attempted to trace the fate of eroded forearc crust beneath volcanic arcs, where the eroded crust might first emerge after mixing with the upper mantle, owing to the formidable challenge associated with quantifying the rate of subduction erosion and the contribution of eroded crust to arc magmas. In this Review, we summarize the evidence for subduction erosion at convergent margins and show that, through integration of geochemical and geological data in arc settings where critical crustal lithologies can be accessed, quantification of the contribution of eroded forearc crust to arc magmas is possible. We further emphasize the importance of establishing arc–forearc compositional links and illustrate the role of arc petrogenetic models for determining whether the eroded forearc crust contributes substantially (that is, greater than a few percent) to the construction of new arc crust in subduction zones or whether it is primarily exported to the deeper mantle.

Key points

  • Subduction zones recycle upper-plate crust by subduction erosion in volumes that can exceed those of the subducted trench sediments.

  • The composition of the eroded crust is varied and can include upper and lower continental crust, as well as oceanic crust.

  • Strong, compositional forearc–arc links exist.

  • Arc magma petrogenesis plays a key role in elucidating forearc–arc connectivity.

  • Tectonically eroded crust can refertilize shallow and deep mantle alike.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Subduction zone cartoon of erosive margin.
Fig. 2: Classification of margins as erosive or accretionary and comparison to arc εNd values.
Fig. 3: Geochemical variations of global arcs with details from the Trans-Mexican Volcanic Belt.
Fig. 4: Arc and forearc compositional variations in the western Trans-Mexican Volcanic Belt.
Fig. 5: U–Pb dating of Malinche zircons.
Fig. 6: Major element vs isotopic systematics of global arc magmas.
Fig. 7: Isotopic systematics of global arc magmas.

Similar content being viewed by others

References

  1. Huene, R. V. & Scholl, D. W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279–316 (1991).

    Google Scholar 

  2. Morris, J. D., Leeman, W. P. & Tera, F. The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics. Nature 344, 31–36 (1990).

    Google Scholar 

  3. Plank, T. & Langmuir, C. H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362, 739–743 (1993).

    Google Scholar 

  4. White, W. M. & Patchett, J. Hf–Nd–Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth Planet. Sci. Lett. 67, 167–185 (1984).

    Google Scholar 

  5. White, W. M. Probing the Earth’s deep interior through geochemistry. Geochem. Perspect. 4, 95–251 (2015).

    Google Scholar 

  6. Plank, T. & Langmuir, C. H. The geochemical composition of subducting sediment and its consequences for the crust and the mantle. Chem. Geol. 145, 325–394 (1998).

    Google Scholar 

  7. Clift, P. D., Vannucchi, P. & Morgan, J. P. Crustal redistribution, crust–mantle recycling and Phanerozoic evolution of the continental crust. Earth Sci. Rev. 97, 80–104 (2009).

    Google Scholar 

  8. Vannucchi, P., Morgan, J. P. & Balestrieri, M. L. Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications. Gondwana Res. 40, 184–198 (2016).

    Google Scholar 

  9. Clift, P. D. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004).

    Google Scholar 

  10. Scholl, D. W. & von Huene, R. in 4-D Framework of Continental Crust Vol. 200 (eds Hatcher, R. D. Jr, Carlson, M. P., McBride, J. H. & Catalán, J. R. M.) 9–32 (Geological Society of America, 2007).

  11. Kay, R. W., Sun, S. S. & Lee-Hu, C. N. Pb and Sr isotopes in volcanic rocks from the Aleutian Islands and Pribilof Islands, Alaska. Geochim. Cosmochim. Acta 42, 263–273 (1978).

    Google Scholar 

  12. Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J. C. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat. Geosci. 1, 64–67 (2008).

    Google Scholar 

  13. Chauvel, C., Marini, J.-C., Plank, T. & Ludden, J. N. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochem. Geophys. Geosyst. 10, Q01001 (2009).

    Google Scholar 

  14. Andersen, M. B. et al. The terrestrial uranium isotope cycle. Nature 517, 256–359 (2015).

    Google Scholar 

  15. Hofmann, A. W. in Treatise on Geochemistry Vol. 2 (eds Holland, H. D., Turekian, K. K. & Carlson, R. W.) 61–101 (Elsevier, 2003).

  16. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).

    Google Scholar 

  17. Parolari, M., Gómez-Tuena, A., Cavazos-Tovar, J. G. & Hernández-Quevedo, G. A balancing act of crust creation and destruction along the western Mexican convergent margin. Geology 46, 455–458 (2018).

    Google Scholar 

  18. Straub, S. M. et al. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt. Geochim. Cosmochim. Acta 166, 29–52 (2015).

    Google Scholar 

  19. Mahlburg Kay, S., Godoy, E. & Kurtz, A. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol. Soc. Am. Bull. 117, 67–88 (2005).

    Google Scholar 

  20. Stern, C. R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284–308 (2011).

    Google Scholar 

  21. Willbold, M. & Stracke, A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 7, Q04004 (2006).

    Google Scholar 

  22. Stracke, A. Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem. Geol. 330–331, 274–299 (2012).

    Google Scholar 

  23. Stern, R. J. & Scholl, D. W. Yin and yang of continental crust creation and destruction by plate tectonic processes. Int. Geol. Rev. 52, 1–31 (2010).

    Google Scholar 

  24. Huene, R. V., Ranero, C. R. & Vannucchi, P. Generic model of subduction erosion. Geology 32, 913–916 (2004).

    Google Scholar 

  25. Vannucchi, P., Scholl, D. W., Meschede, M. & McDougall-Reid, K. Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: Combined implications from ODP Leg 170, seismic offshore data and regional geology of the Nicoya Peninsula. Tectonics 20, 649–668 (2001).

    Google Scholar 

  26. Vannucchi, P. et al. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones. J. Geophys. Res. 108, 2511 (2003).

    Google Scholar 

  27. Ranero, C. R. & Huene, R. V. Subduction erosion along the Middle American convergent margin. Nature 404, 748–752 (2000).

    Google Scholar 

  28. Vannucchi, P., Galeotti, S., Clift, P. D., Ranero, C. R. & Huene, R. V. Long-term subduction-erosion long the Guatemalan margin of the Middle American Trench. Geology 32, 617–620 (2004).

    Google Scholar 

  29. Morris, J. D., Gosse, J., Brachfeld, S. & Tera, F. Cosmogenic Be-10 and the solid Earth: studies in geomagnetism, subduction zone processes, and active tectonics. Rev. Mineral. Geochem. 50, 207–270 (2002).

    Google Scholar 

  30. Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520 (1994).

    Google Scholar 

  31. Kelemen, P. B., Hanghoi, K. & Greene, A. R. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 593–659 (Elsevier-Pergamon, 2003).

  32. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from subducted slab to juvenile crust at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    Google Scholar 

  33. Nielsen, S. G. & Marschall, H. R. Geochemical evidence for mélange melting in global arcs. Sci. Adv. 3, 1602402 (2017).

    Google Scholar 

  34. Yogodzinski, G. M., Vervoort, J. D., Brown, S. T. & Gerseny, M. Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc. Earth Planet. Sci. Lett. 300, 226–238 (2010).

    Google Scholar 

  35. Yogodzinski, G. M. et al. The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the western Aleutians. J. Petrol. 56, 441–492 (2015).

    Google Scholar 

  36. Castillo, P. R., Lonsdale, P. F., Moran, C. L. & Hawkins, J. W. Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga–Kermadec Trench: Implications for the generation of arc lavas. Lithos 112, 87–102 (2009).

    Google Scholar 

  37. Kendrick, M. A. et al. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth Planet. Sci. Lett. 400, 165–176 (2014).

    Google Scholar 

  38. Barnes, J. D., Sharp, Z. D. & Fischer, T. P. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology 36, 883–886 (2008).

    Google Scholar 

  39. Barnes, J. D. & Straub, S. M. Chlorine stable isotope variations in Izu Bonin tephra: Implications for serpentinite subduction. Chem. Geol. 272, 62–74 (2010).

    Google Scholar 

  40. Hildreth, W. & Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).

    Google Scholar 

  41. Seely, D. R., Vail, P. R. & Walton, G. G. in The Geology of Continental Margins (eds Burk, C. A. & Drake, C. L.) 249–260 (Springer, 1974).

  42. Karig, D. E. Tectonic erosion at trenches. Earth Planet. Sci. Lett. 21, 209–212 (1974).

    Google Scholar 

  43. Karig, D. E. & Sharman, G. F. Subduction and accretion in trenches. Earth Planet. Sci. Lett. 86, 377–389 (1975).

    Google Scholar 

  44. Dickinson, W. R. Plate tectonics in geologic history. Science 174, 107–113 (1971).

    Google Scholar 

  45. Hussong, D. M., Edwards, P. B., Johnson, S. H., Campbell, J. F. & Sutton, G. H. in The Geophysics of the Pacific Ocean Basin and its Margin Vol. 19 (eds Sutton, G. H., Manghani, M. H., Moberly, R. & Mcafee, E. U.) 71–85 (American Geophysical Union, 1976).

  46. Scholl, D. W., Huene, R. V., Vallier, T. L. & Howell, D. G. Sedimentary masses and concepts about tectonic processes at underthrust ocean margins. Geochim. Cosmochim. Acta 8, 564–568 (1980).

    Google Scholar 

  47. Vannucchi, P. et al. Past seismic slip-to-the-trench recorded in Central America megathrust. Nat. Geosci. 10, 935–940 (2017).

    Google Scholar 

  48. Tatsumi, Y. & Eggins, E. Subduction Zone Magmatism (Blackwell, 1995).

  49. Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).

    Google Scholar 

  50. Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H.-J. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4, 641–646 (2011).

    Google Scholar 

  51. Marschall, H. R. & Schumacher, J. C. Arc magmas sourced from mélange diapirs in subduction zones. Nat. Geosci. 5, 862–867 (2012).

    Google Scholar 

  52. Gerya, T. V., Yuen, D. A. & Sevre, E. O. D. Dynamical causes for incipient magma chambers above slabs. Geology 32, 89–92 (2004).

    Google Scholar 

  53. Mibe, K., Kawamoto, T., Matsukage, K. N., Fei, Y. & Ono, S. Slab melting versus slab dehydration in subduction-zone magmatism. Proc. Natl Acad. Sci. USA 108, 8177–8182 (2011).

    Google Scholar 

  54. Cruz-Uribe, A. M., Marschall, H. R., Gaetani, G. A. & Le Roux, V. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs — An experimental study. Geology 46, 343–346 (2018).

    Google Scholar 

  55. Codillo, E. A., Le Roux, V. & Marschall, H. R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge. Nat. Comm. 9, 2864 (2018).

    Google Scholar 

  56. Scholl, D. W. & Von Huene, R. in Earth Accretionary Systems in Space and Time Vol. 318 (eds Cawood, P. A. & Kroener, A.) 105–125 (Geological Society of London, 2009).

  57. Clift, P., Schouten, H. & Vannucchi, P. in Earth Accretionary Systems in Space and Time Vol. 318 (eds Cawood, P. A. & Kroener, A.) 75–103 (Geological Society of London, 2009).

  58. Rutland, R. W. R. Andean orogeny and ocean floor spreading. Nature 233, 252–255 (1971).

    Google Scholar 

  59. Ziegler, A. M., Barrett, S. F. & Scotese, C. R. Palaeoclimate, sedimentation and continental accretion. Philos. Trans. R. Soc. Lond. Ser. A 301, 253–264 (1981).

    Google Scholar 

  60. Miller, H. Das Problem des hypothetischen “Pazifischen Kontinentes” gesehen von der chilenischen Pazifikküste. Geol. Rundsch. 59, 927–938 (1970).

    Google Scholar 

  61. Miller, H. Vergleichende Studien an prämesozoischen Gesteinen Chiles unter besonderer Berücksichtigung ihrer Kleintektonik. Geotek. Forsch. 36, 1–64 (1970).

    Google Scholar 

  62. Murauchi, J. in The Ocean World Vol. 303–305 (ed. Uda, M.) (Proceedings of the Joint Oceanographic Assembly, 1971).

  63. Bangs, N. L. B., Gulick, S. P. S. & Shipley, T. H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone. Geology 34, 701–704 (2006).

    Google Scholar 

  64. Huene, R. V. & Lallemand, S. Tectonic erosion along the Japan and Peru convergent margins. Geol. Soc. Am. Bull. 102, 704–720 (1990).

    Google Scholar 

  65. Schaaf, P. et al. Paleogene continental margin truncation in southwestern Mexico: Geochronological evidence. Tectonics 14, 1339–1350 (1995).

    Google Scholar 

  66. Morán-Zenteno, D. J. et al. Cenozoic magmatism of the Sierra Madre del Sur and tectonic truncation of the Pacific margin of southern Mexico. Earth Sci. Rev. 183, 85–114 (2018).

    Google Scholar 

  67. Isozaki, Y., Aoki, K., Nakama, T. & Yanai, S. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res. 18, 82–105 (2010).

    Google Scholar 

  68. Hussong, D. M. & Uyeda, S. in Initial Reports of the Deep Sea Drilling Project Vol. 60 (eds Hussong, D. M. & Uyeda, S.) 909–929 (U.S. Government Printing Office, 1982).

  69. Seely, D. R. & Dickinson, W. R. in Geology of Continental Margins (eds Curray, J. R. et al) 1–22 (American Association of Petroleum Geologists, 1977).

  70. Dickinson, W. R. & Seely, D. R. Structure and stratigraphy of forearc regions. AAPG Bull. 63, 2–31 (1979).

    Google Scholar 

  71. Karig, D. E., Caldwell, J. G. & Paramentier, E. M. Effects of accretion on the geometry of the descending lithosphere. J. Geophys. Res. 81, 6281–6291 (1976).

    Google Scholar 

  72. Dickinson, W. R. in Tectonics of Sedimentary Basins (eds Busby, C. J. & Ingersoll, R. V.) 221–261 (Blackwell, 1995).

  73. Fuller, C. W., Willett, S. D. & Brandon, M. T. Formation of forearc basins and their influence on subduction zone earthquakes. Geology 34, 65–68 (2006).

    Google Scholar 

  74. Noda, A. Forearc basins: types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–889 (2016).

    Google Scholar 

  75. Huene, R. V. & Culotta, R. Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics 160, 75–90 (1989).

    Google Scholar 

  76. Boston, B., Moore, G. F., Nakamura, Y. & Kodaira, S. Forearc slope deformation above the Japan Trench megathrust: Implications for subduction erosion. Earth Planet. Sci. Lett. 462, 26–34 (2017).

    Google Scholar 

  77. Regalla, C., Fisher, D. M., Kirby, E. & Furlong, K. P. Relationship between outer forearc subsidence and plate boundary kinematics along the Northeast Japan convergent margin. Geochem. Geophys. Geosyst. 14, 5227–5243 (2013).

    Google Scholar 

  78. Regalla, C., Fisher, D. M., Kirby, E., Oakley, D. & Taylor, S. Slip inversion along inner fore-arc faults, Eastern Tohoku, Japan. Tectonics 36, 2647–2668 (2017).

    Google Scholar 

  79. Ranero, C. R. et al. Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem. Geophys. Geosyst. 9, Q03S04 (2008).

    Google Scholar 

  80. Sallarès, V., Charvis, P., Flueh, E. R. & Bialas, J. Seismic structure of Cocos and Malpelo Volcanic Ridges and implications for hot spot-ridge interaction. J. Geophys. Res. Solid Earth 108, 2564 (2003).

    Google Scholar 

  81. Vannucchi, P. et al. Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins. Geology 41, 995–998 (2013).

    Google Scholar 

  82. Morell, K. D., Fisher, D. M. & Bangs, N. Plio-quaternary outer forearc deformation and mass balance of the southern Costa Rica convergent margin. J. Geophys. Res. Solid Earth 124, 9795–9815 (2019).

    Google Scholar 

  83. Riedinger, N. et al. Interplay of subduction tectonics, sedimentation, and carbon cycling. Geochem. Geophys. Geosyst. 20, 4939–4955 (2019).

    Google Scholar 

  84. Zeumann, S. & Hampel, A. Deformation of erosive and accretive forearcs during subduction of migrating and non-migrating aseismic ridges: Results from 3-D finite element models and application to the Central American, Peruvian, and Ryukyu margins. Tectonics 34, 1769–1791 (2015).

    Google Scholar 

  85. Edwards, J. H., Kluesner, J. W., Silver, E. A. & Bangs, N. L. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction. Geosphere 14, 510–534 (2018).

    Google Scholar 

  86. Ranero, C. R. & Sallares, V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench. Geology 32, 549–552 (2004).

    Google Scholar 

  87. Hensen, C., Wallmann, K., Schmidt, M., Ranero, C. R. & Suess, E. Fluid expulsion related to mud extrusion off Costa Rica — A window to the subducting slab. Geology 32, 201–204 (2004).

    Google Scholar 

  88. Vannucchi, P., Sage, F., Morgan, J. P., Remitti, F. & Collot, J. Y. Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochem. Geophys. Geosyst. 13, Q02003 (2012).

    Google Scholar 

  89. Cloos, M. & Shreve, R. L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl. Geophys. 128, 456–500 (1988).

    Google Scholar 

  90. Cloos, M. & Shreve, R. L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins. 2. Implications and discussion. Pure Appl. Geophys. 128, 501–545 (1988).

    Google Scholar 

  91. Clift, P. D. & Hartley, A. Slow rates of subduction erosion along the Andean margin and reduced global crustal recycling. Geology 35, 503–506 (2007).

    Google Scholar 

  92. Sutherland, R. et al. Reactivation of tectonics, crustal underplating, and uplift after 60 Myr of passive subsidence, Raukumara Basin, Hikurangi-Kermadec fore arc, New Zealand: implications for global growth and recycling of continents. Tectonics 28, TC5017 (2009).

    Google Scholar 

  93. Scholl, D. W. Seismic imaging evidence that forearc underplating built the accretionary rock record of coastal North and South America. Geol. Mag. 1–14 https://doi.org/10.1017/S0016756819000955 (2019).

  94. Polonia, A., Torelli, L., Brancolini, G. & Loreto, M. F. Tectonic accretion versus erosion along the southern Chile trench: Oblique subduction and margin segmentation. Tectonics 26, TC3005 (2007).

    Google Scholar 

  95. Bassett, D. et al. Three-dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: implications for the growth of continental crust by subduction erosion and tectonic underplating. Geochem. Geophys. Geosyst. 11, Q10013 (2010).

    Google Scholar 

  96. Bangs, N. L., Christeson, G. L. & Shipley, T. H. Structure of the Lesser Antilles subduction zone backstop and its role in a large accretionary system. J. Geophys. Res. 108, 2358 (2003).

    Google Scholar 

  97. Armstrong, R. L. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981).

    Google Scholar 

  98. Vervoort, J. D. & Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533–556 (1999).

    Google Scholar 

  99. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Google Scholar 

  100. Willbold, M. & Stracke, A. Formation of enriched mantle components by recycling of upper and lower continental crust. Chem. Geol. 276, 188–197 (2010).

    Google Scholar 

  101. Workman, R. K. et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosyst. 5, Q04008 (2004).

    Google Scholar 

  102. Kelley, K. A., Plank, T., Farr, L., Ludden, J. & Staudigel, H. Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369–383 (2005).

    Google Scholar 

  103. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Google Scholar 

  104. Perfit, M. R., Gust, D. A., Bence, A. E., Arculus, R. J. & Taylor, S. R. Chemical characteristics of island-arc basalts: implications for mantle sources. Chem. Geol. 30, 227–256 (1980).

    Google Scholar 

  105. Turner, S. J., Langmuir, C. H., Dungan, M. A. & Escrig, S. The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1. Earth Planet. Sci. Lett. 472, 216–228 (2017).

    Google Scholar 

  106. Hawkesworth, C. J., Gallagher, K., Hergt, J. M. & McDermott, F. Mantle and slab contributions in arc magmas. Annu. Rev. Earth Planet. Sci. 21, 175–204 (1993).

    Google Scholar 

  107. Rogers, G. & Hawkesworth, C. J. A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Plant. Sci. Lett. 91, 271–285 (1989).

    Google Scholar 

  108. Vervoort, J. D., Plank, T. & Prytulak, J. The Hf–Nd isotopic composition of marine sediments. Geochim. Cosmochim. Acta 75, 5903–5926 (2011).

    Google Scholar 

  109. Ludden, J. N., Plank, T., Larson, R. & Escutia, C. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 185 (eds Ludden, J. N., Plank, T., & Escutia, C.) 1–35 (Ocean Drilling Program, 2006).

  110. Contreras-Reyes, E. et al. (eds) in The Evolution of the Chilean-Argentinean Andes (eds Folguera, A. et al.) 3–29 (Springer, 2018).

  111. Holm, P. M., Søager, N., Thorup Dyhr, C. & Rohde Nielsen, M. Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust. Contrib. Mineral. Petrol. 167, 1004 (2014).

    Google Scholar 

  112. Stern, C. R. Role of subduction erosion in the generation of Andean magmas. Geology 19, 78–81 (1991).

    Google Scholar 

  113. Mahlburg Kay, S., Mpodozis, C. & Gardeweg, M. in Orogenic Andesites and Crustal Growth Vol. 385 (eds Gomez-Tuena, A., Straub, S. M., & Zellmer, G. F.) 303–334 (Geological Society of London, 2014).

  114. Goss, A. R., Mahlburg Kay, S. & Mpodozis, C. Andean adakite-like high-Mg andesites on the northern margin of the Chilean–Pampean flat-slab (27–28.5°S) associated with frontal arc migration and fore-arc subduction erosion. J. Petrol. 54, 2193–2234 (2013).

    Google Scholar 

  115. Goss, A. R. & Kay, S. M. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~28°S, ~68°W). Earth Planet. Sci. Lett. 279, 97–109 (2009).

    Google Scholar 

  116. Mahlburg Kay, S. & Mpodozis, C. Magmatism as a probe to the Neogene shallowing of the Nazca Plate beneath the modern Chilean flat-slab. J. S. Am. Earth Sci. 15, 39–57 (2002).

    Google Scholar 

  117. Jicha, B. R. & Mahlburg Kay, S. Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians. J. Volcanol. Geotherm. Res. 360, 84–99 (2018).

    Google Scholar 

  118. Mahlburg Kay, S. et al. The calc-alkaline Hidden Bay and Kagalaska plutons and the construction of the central Aleutian oceanic arc crust. J. Petrol. 60, 393–439 (2019).

    Google Scholar 

  119. Karlstrom, L., Lee, C. T. A. & Manga, M. The role of magmatically driven lithospheric thickening on arc front migration. Geochem. Geophys. Geosyst. 15, 2655–2675 (2014).

    Google Scholar 

  120. Giambiagi, L. et al. in Geodynamic Processes in the Andes of Central Chile and Argentina Vol. 399 (eds Sepúlveda, S. A. et al.) 63 (Geological Society of London, 2015).

  121. Holm, P. M., Søager, S., Alfastsen, M. & Bertotto, G. W. Subduction zone mantle enrichment by fluids and Zr–Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina. Lithos 262, 135–152 (2016).

    Google Scholar 

  122. Wieser, P. E. et al. New constraints from Central Chile on the origins of enriched continental compositions in thick-crusted arc magmas. Geochim. Cosmochim. Acta 267, 51–74 (2019).

    Google Scholar 

  123. Mahlburg Kay, S., Mpodozis, C. & Coira, B. in Geology and Ore Deposits of the Central Andes Vol. 7 (ed. Skinner, B. J.) 27–59 (Society of Economic Geologists, 1999).

  124. Ramos, V. A. The Grenville-age basement of the Andes. J. S. Am. Earth Sci. 29, 77–91 (2010).

    Google Scholar 

  125. Woerner, G., Moorbath, S. & Harmon, R. S. Andean Cenozoic volcanic centers reflect basement isotopic remains. Geology 20, 1103–1106 (1992).

    Google Scholar 

  126. van Keken, P. E. et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Inter. 171, 187–197 (2008).

    Google Scholar 

  127. Turner, S. J. & Langmuir, C. H. What processes control the chemical compositions of arc front stratovolcanoes? Geochem. Geophys. Geosyst. 16, 1865–1893 (2015).

    Google Scholar 

  128. Turner, S. J., Langmuir, C. H., Katz, R. F., Dungan, M. A. & Escrig, S. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure. Nat Geosci. 9, 772–776 (2016).

    Google Scholar 

  129. Jacques, G. et al. Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): constraints on mantle wedge and slab input compositions. Geochim. Cosmochim. Acta 123, 218–243 (2013).

    Google Scholar 

  130. Vannucchi, P., Morgan, J. P., Silver, E. A. & Kluesner, J. W. Origin and dynamics of depositionary subduction margins. Geochem. Geophys. Geosyst. 17, 1966–1974 (2016).

    Google Scholar 

  131. Schindlbeck, J. C. et al. Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 2. Implications for magma production rates and subduction erosion. Geochem. Geophys. Geosyst. 17, 4585–4604 (2016).

    Google Scholar 

  132. Gazel, E. et al. Galapagos-OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction. Geochem. Geophys. Geosyst. 10, Q02S11 (2009).

    Google Scholar 

  133. Goss, A. R. & Kay, S. M. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochem. Geophys. Geosyst. 7, Q05016 (2006).

    Google Scholar 

  134. Herrstrom, E. A., Reagan, M. K. & Morris, J. D. Variations in lava composition associated with flow of asthenosphere beneath southern Central America. Geology 23, 617–620 (1995).

    Google Scholar 

  135. Abratis, M. & Woerner, G. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29, 127–130 (2001).

    Google Scholar 

  136. Feigenson, M. D., Carr, M. J., Maharaj, S. V., Juliano, S. & Bolge, L. Lead isotopic compositions of Central American volcanoes: Influence of the Galapagos plume. Geochem. Geophys. Geosyst. 5, Q06001 (2004).

    Google Scholar 

  137. Gazel, E. et al. Continental crust generated in oceanic arcs. Nat Geosci. 8, 321–327 (2015).

    Google Scholar 

  138. Gómez-Tuena, A., Cavazos-Tovar, J. G., Parolari, M., Straub, S. M. & Espinasa-Pereña, R. Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas. Lithos 322, 52–66 (2018).

    Google Scholar 

  139. Gómez-Tuena, A., Mori, L. & Straub, S. M. Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth Sci. Rev. 183, 153–181 (2018).

    Google Scholar 

  140. Gómez-Tuena, A., Díaz-Bravo, B., Vázquez-Duarte, A., Pérez-Arvizu, O. & Laura Mori, L. in Orogenic Andesites and Crustal Growth Vol. 385 (eds Gomez-Tuena, A., Straub, S. M., & Zellmer, G. F.) 65–101 (Geological Society of London, 2014).

  141. Gómez-Tuena, A. et al. Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochem. Geophys. Geosyst. 8, 8912 (2003).

    Google Scholar 

  142. Morán-Zenteno, D. J., Corona-Chavez, P. & Tolson, G. Uplift and subduction erosion in southwestern Mexico since the Oligocene: pluton geobarometry constraints. Earth Planet. Sci. Lett. 141, 51–65 (1996).

    Google Scholar 

  143. Keppie, D. F., Hynes, A. J., Lee, J. K. W. & Norman, M. Oligocene-Miocene back-thrusting in southern Mexico linked to the rapid subduction erosion of a large forearc block. Tectonics 31, TC2008 (2012).

    Google Scholar 

  144. Ducea, M. N. et al. Rates of sediment recycling beneath the Acapulco trench: Constraints from (U-Th)/He thermochronology. J. Geophys. Res. 109, B09404 (2004).

    Google Scholar 

  145. Cavazos-Tovar, J. G., Gómez-Tuena, A. & Parolari, M. The origin and evolution of the Mexican Cordillera as registered in modern detrital zircons. Gondwana Res. 86, 83–102 (2020).

    Google Scholar 

  146. Pindell, J. L. et al. A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 55, 121–138 (1988).

    Google Scholar 

  147. Rogers, R. D., Mann, P. & Emmet, P. A. Tectonic terranes of the Chortis block based on integration of regional aeromagnetic and geologic data. Geol. Soc. Am. Spec. Pap. 428, 65–88 (2007).

    Google Scholar 

  148. Ferrari, L. et al. Late Cretaceous-Oligocene magmatic record in southern Mexico: The case for a temporal slab window along the evolving Caribbean-North America-Farallon triple boundary. Tectonics 33, 1738–1765 (2014).

    Google Scholar 

  149. Silva-Romo, G. et al. Timing of the Cenozoic basins of Southern Mexico and its relationship with the Pacific truncation process: Subduction erosion or detachment of the Chortís block. J. S. Am. Earth Sci. 83, 178–194 (2018).

    Google Scholar 

  150. Straub, S. M. et al. Formation of hybrid arc andesites beneath thick continental crust. Earth Planet. Sci. Lett. 303, 337–347 (2011).

    Google Scholar 

  151. Wallace, P. J. & Carmichael, I. S. E. Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contrib. Mineral. Petrol. 135, 291–314 (1999).

    Google Scholar 

  152. Rasoazanamparany, C. et al. Temporal and compositional evolution of Jorullo volcano, Mexico: implications for magmatic processes associated with a monogenetic eruption. Chem. Geol. 434, 62–80 (2016).

    Google Scholar 

  153. Ortega-Gutiérrez, F., Martiny, B. M., Morán-Zenteno, D. J., Reyes-Salas, A. M. & Solé-Viñas, J. Petrology of very high temperature crustal xenoliths in the Puente Negro intrusion: a sapphire-spinel-bearing Oligocene andesite, Mixteco terrane, southern Mexico. Rev. Mex. Cienc. Geol. 28, 593–629 (2011).

    Google Scholar 

  154. Ortega-Gutiérrez, F. et al. Petrology of high-grade crustal xenoliths in the Chalcatzingo Miocene subvolcanic field, southern Mexico: buried basement of the Guerrero-Morelos platform and tectonostratigraphic implications. Int. Geol. Rev. 54, 1597–1634 (2012).

    Google Scholar 

  155. Ortega-Gutiérrez, F., Gómez-Tuena, A., Elías-Herrera, M., Reyes-Salas, M. & Macías-Romo, C. Petrology and geochemistry of the Valle de Santiago lower-crust xenoliths: Young tectonothermal processes beneath the central Trans-Mexican volcanic belt. Lithosphere 6, 335–360 (2014).

    Google Scholar 

  156. Plank, T. in Treatise on Geochemistry 2nd edn Vol. 4 (eds Holland, H. & Turekian, K.) 607–629 (Elsevier, 2014).

  157. Keppie, J. D., Dostal, J., Murphy, J. B. & Nance, R. D. Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: From rifted Rheic margin to active Pacific margin. Tectonophysics 461, 277–290 (2008).

    Google Scholar 

  158. Ranero, C. R., Vannucchi, P., Huene, R. V. & Proponents, C. Drilling the seismogenic zone of an erosional convergent margin: IODP Costa Rica Seismogenesis Project CRISP. Sci. Drill. Spec. Issue 1, 51–54 (2007).

    Google Scholar 

  159. Straub, S. M., LaGatta, A. B., Martin-Del Pozzo, A. L. & Langmuir, C. H. Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem. Geophys. Geosyst. 9, Q03007 (2008).

    Google Scholar 

  160. Straub, S. M. et al. in Orogenic Andesites and Crustal Growth Vol. 385 (eds Gomez-Tuena, A, Straub, S. M., & Zellmer, G. F.) 31–64 (Geological Society of London, 2014).

  161. Morris, J. D. & Hart, S. R. Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta 47, 2015–2030 (1983).

    Google Scholar 

  162. Ringwood, A. E. The petrological evolution of island arc systems. J. Geol. Soc. 130, 183–204 (1974).

    Google Scholar 

  163. Gill, J. Orogenic Andesites and Plate Tectonics (Springer, 1981).

  164. Kelemen, P. B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120, 1–19 (1995).

    Google Scholar 

  165. Plank, T. & Langmuir, C. H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet. Sci. Lett. 90, 349–370 (1988).

    Google Scholar 

  166. Turner, S. J. & Langmuir, C. H. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth Planet. Sci. Lett. 422, 182–193 (2015).

    Google Scholar 

  167. Carmichael, I. S. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contrib. Mineral. Petrol. 143, 641–663 (2002).

    Google Scholar 

  168. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J. M.) 183–280 (American Geophysical Union, 1992).

  169. Hirose, K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25, 42–44 (1997).

    Google Scholar 

  170. Wood, B. J. & Turner, S. P. Origin of primitive high-Mg andesite: Constraints from natural examples and experiments. Earth Planet. Sci. Lett. 283, 59–66 (2009).

    Google Scholar 

  171. Grove, T. L. & Till, C. B. H2O-rich mantle melting near the slab–wedge interface. Contrib. Mineral. Petrol. 174, 80 (2019).

    Google Scholar 

  172. Gómez-Tuena, A., Langmuir, C. H., Goldstein, S. L., Straub, S. M. & Ortega-Gutierrez, F. Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt. J. Petrol. 48, 537–562 (2007).

    Google Scholar 

  173. Defant, M. & Drummond, M. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).

    Google Scholar 

  174. Kay, R. W. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J. Volcanol. Geotherm. Res. 4, 117–132 (1978).

    Google Scholar 

  175. Yogodzinksi, G., Volynets, O. N., Koloskov, A. V., Seliverstov, N. I. & Matvenko, V. V. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians. J. Petrol. 35, 163–204 (1994).

    Google Scholar 

  176. Kogiso, T., Hirschmann, M. & Pertermann, M. High-pressure partial melting of mafic lithologies in the mantle. J. Petrol. 45, 2407–2422 (2004).

    Google Scholar 

  177. Hauri, E. Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996).

    Google Scholar 

  178. Gómez-Tuena, A. et al. The origin of a primitive trondhjemite from the Trans-Mexican Volcanic Belt and its implications for the construction of a modern continental arc. Geology 36, 471–474 (2008).

    Google Scholar 

  179. Bindeman, I. N., Ponomareva, V. V., Bailey, J. C. & Valley, J. W. Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim. Cosmochim. Acta 68, 841–865 (2004).

    Google Scholar 

  180. Bryant, J. A., Yogodzinksi, G. M. & Churikova, T. G. High-Mg# andesitic lavas of the Shisheisky Complex, Northern Kamchatka: implications for primitive calc-alkaline magmatism. Contrib. Mineral. Petrol. 161, 791–810 (2011).

    Google Scholar 

  181. Portnyagin, M., Bindeman, I. N., Hoernle, K., Hauff, F. in: Volcanism and Subduction: The Kamchatka Region (eds Eichelberger, J., Gordeev, E., Izbekov, P., Kasahara, M. & Lees, J.) Geophysical Monograph Series. 199–239 (American Geophysical Union, 2007).

  182. Price, R. C. et al. The anatomy of an andesite volcano: a time–stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu Volcano, New Zealand. J. Petrol. 53, 2139–2189 (2012).

    Google Scholar 

  183. Cameron, E. et al. The petrology, geochronology and geochemistry of Hauhungatahi volcano, SW Taupo Volcanic Zone. J. Volcanol. Geotherm. Res. 190, 179–191 (2010).

    Google Scholar 

  184. Beier, C., Haase, K. M., Brandl, P. A. & Krumm, S. H. Primitive andesites from the Taupo Volcanic Zone formed by magma mixing. Contrib. Mineral. Petrol. 173, 33 (2017).

    Google Scholar 

  185. Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Koloskov, A. V. & Kay, S. M. Magnesian andesite in the western Aleutian Komandorsly region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull. 107, 505–519 (1995).

    Google Scholar 

  186. Borg, L. E., Clynne, M. A. & Bullen, T. D. The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, California. Can. Mineral. 35, 425–452 (1997).

    Google Scholar 

  187. Bullen, T. D. & Clynne, M. A. Trace element and isotopic constraints on magmatic evolution at Lassen Volcanic center. J. Geophys. Res. 95, 19671–19691 (1990).

    Google Scholar 

  188. Sisson, T. W., Salters, V. J. M. & Larson, P. B. Petrogenesis of Mount Rainier andesite: Magma flux and geologic controls on the contrasting differentiation styles at stratovolcanoes of the southern Washington Cascades. Geol. Soc. Am. Bull. 126, 122–144 (2014).

    Google Scholar 

  189. Grove, T. L., Parman, S. W., Bowring, S. A., Price, R. C. & Baker, M. B. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib. Mineral. Petrol. 142, 375–396 (2002).

    Google Scholar 

  190. Kelemen, P. B. & Behn, M. D. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nat. Geosci. 9, 197–205 (2016).

    Google Scholar 

  191. Hacker, B. R., Kelemen, P. B. & Behn, M. D. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett. 307, 501–516 (2011).

    Google Scholar 

  192. Eichelberger, J. C. Andesitic volcanism and crustal evolution. Nature 275, 21–27 (1978).

    Google Scholar 

  193. Reubi, O. & Blundy, J. Assimilation of plutonic roots, formation of high-K ‘exotic’ melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. J. Petrol. 49, 2221–2243 (2009).

    Google Scholar 

  194. Streck, M. J., Leeman, W. P. & Chesley, J. High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35, 351–354 (2007).

    Google Scholar 

  195. Kent, A. J. R., Darr, C., Koleszar, A. M., Salisbury, M. J. & Cooper, K. M. Preferential eruption of andesitic magmas through recharge filtering. Nat. Geosci. 3, 631–636 (2010).

    Google Scholar 

  196. Nixon, G. T. Petrology of the younger andesites and dacites of Iztaccihuatl Volcano, Mexico: II. Chemical stratigraphy, magma mixing, and the composition of basaltic magma influx. J. Petrol. 29, 265–303 (1988b).

    Google Scholar 

  197. Straub, S. M. & Martin-Del Pozzo, A. L. The significance of phenocryst diversity in tephra from recent eruptions at Popocatepetl volcano (Central Mexico). Contrib. Mineral. Petrol. 140, 487–510 (2001).

    Google Scholar 

  198. Streck, M. J. & Leeman, W. P. Petrology of “Mt. Shasta” high-magnesian andesite (HMA): A product of multi-stage crustal assembly. Am. Mineral. 102, 216–240 (2018).

    Google Scholar 

  199. Leeman, W. P. & Smith, D. J. The role of magma mixing, identification of mafic magma inputs, and structure of the underlying magmatic system at Mount St. Helens. Am. Mineral. 103, 1925–1944 (2018).

    Google Scholar 

  200. Mamani, M., Tassara, A. & Woerner, G. Composition and structural control of crustal domains in the central Andes. Geochem. Geophys. Geosyst. 9, Q03006 (2008).

    Google Scholar 

  201. Farner, M. J. & Lee, C. A. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: a global study. Earth Planet. Sci. Lett. 470, 96–107 (2017).

    Google Scholar 

  202. Bindeman, I. N. & Bailey, T. R. Trace elements in anorthite megacrysts from the Kurile Island Arc: a window to across-arc geochemical variations in magma compositions. Earth Planet. Sci. Lett. 169, 209–226 (1999).

    Google Scholar 

  203. Sas, M., Debari, S. M., Clynne, M. A. & Rusk, B. G. Using mineral geochemistry to decipher slab, mantle, and crustal input in the generation of high-Mg andesites and basaltic andesites from the northern Cascade Arc. Am. Mineral. 102, 948–965 (2017).

    Google Scholar 

  204. Zamboni, D. et al. New insights into the Aeolian Islands and other arc source compositions from high-precision olivine chemistry. Lithos 272–273, 185–191 (2017).

    Google Scholar 

  205. Kent, A. J. R. & Elliott, T. R. Melt inclusions from Marianas arc lavas: implications for the composition and formation of island arc magmas. Chem. Geol. 183, 265–288 (2002).

    Google Scholar 

  206. Rowe, M. C., Nielsen, R. L. & Kent, A. J. K. Anomalously high Fe contents in rehomogenized olivine-hosted melt inclusions from oxidized magmas. Am. Mineral. 91, 82–91 (2006).

    Google Scholar 

  207. Straub, S. M. et al. The processes of melt differentiation in arc volcanic rocks: Insights from OIB-type arc magmas in the central Mexican Volcanic Belt. J. Petrol. 54, 665–701 (2013).

    Google Scholar 

  208. McGee, L. E., Beier, C., Smith, I. E. M. & Turner, S. P. Dynamics of melting beneath a small-scale basaltic system: a U-Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contrib. Mineral. Petrol. 162, 547–563 (2011).

    Google Scholar 

  209. Larrea, P., Widom, E., Siebe, C., Salinas, S. & Kuentz, D. A re-interpretation of the petrogenesis of Paricutin volcano: Distinguishing crustal contamination from mantle heterogeneity. Chem. Geol. 504, 66–82 (2019).

    Google Scholar 

  210. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Google Scholar 

  211. McKenzie, D. & O’Nions, R. K. The source regions of ocean island basalts. J. Petrol. 36, 133–159 (1995).

    Google Scholar 

  212. Marini, J. C., Chauvel, C. & Maury, R. C. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source. Contrib. Mineral. Petrol. 149, 216–232 (2005).

    Google Scholar 

  213. Klaver, K. et al. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: implications for Aegean and Aeolian arc volcanism. Geochim. Cosmochim. Acta 153, 149–168 (2015).

    Google Scholar 

  214. Rudnick, R. & Gao, S. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 1–64 (Elsevier-Pergamon, 2003).

  215. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    Google Scholar 

  216. Salters, V. J. M., Mallick, S., Hart, S. R., Langmuir, C. H. & Stracke, A. Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochem. Geophys. Geosyst. 12, Q08001 (2011).

    Google Scholar 

  217. Shimaoka, A., Imamura, M. & Kaneoka, I. Beryllium isotopic systematics in island arc volcanic rocks from northeast Japan: Implications for the incorporation of oceanic sediments into island arc magmas. Chem. Geol. 443, 158–172 (2016).

    Google Scholar 

  218. Tera, F., Brown, L., Morris, J. & Sacks, I. S. Sediment incorporation in island-arc magmas: Inferences from 10Be. Geochim. Cosmochim. Acta 50, 535–550 (1986).

    Google Scholar 

  219. Freymuth, H., Andersen, M. B. & Elliott, T. Uranium isotope fractionation during slab dehydration beneath the Izu arc. Earth Planet. Sci. Lett. 522, 244–225 (2019).

    Google Scholar 

  220. Nielsen, S. G. et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes. Geochim. Cosmochim. Acta 181, 217–237 (2016).

    Google Scholar 

  221. Bellot, N. et al. Ce isotope systematics of island arc lavas from the Lesser Antilles. Geochim. Cosmochim. Acta 168, 261–279 (2015).

    Google Scholar 

  222. Luhr, J. F., Pier, J. G., Aranda-Gomez, J. J. & Posedek, F. A. Crustal contamination in early Basin-and-Range hawaiites of the Los Encinos Volcanic Field, central México. Contrib. Mineral. Petrol. 118, 321–339 (1995).

    Google Scholar 

  223. Luhr, J. F., Aranda-Gomez, J. J. & Housh, T. San Quintin volcanic field, Baja California Norte, México: geology, petrology, and geochemistry. J. Geophys. Res. Solid Earth 100, 10353–10380 (1995).

    Google Scholar 

  224. Cai, Y. et al. Hafnium isotope evidence for slab melt contributions in hot slab arcs: an example of the Central Mexican Volcanic Belt. Chem. Geol. 377, 45–55 (2014).

    Google Scholar 

  225. Guilbaud, M.-N. et al. Petrographic, geochemical and isotopic (Sr–Nd–Pb–Os) study of Plio-Quaternary volcanics and the Tertiary basement in the Jorullo-Tacámbaro area, Michoacán-Guanajuato Volcanic Field, Mexico. J. Petrol. 60, 2317–2338 (2019).

    Google Scholar 

  226. Risse, A., Trumbull, R. B., Kay, S. M., Coira, B. & Romer, R. L. Multi-stage evolution of late Neogene mantle-derived magmas from the central Andes back-arc in the Southern Puna Plateau of Argentina. J. Petrol. 10, 1963–1995 (2013).

    Google Scholar 

  227. Søager, N., Holm, P. M. & Llambías, E. J. Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem. Geol. 349–350, 36–53 (2013).

    Google Scholar 

  228. Søager, N., Holm, P. M. & Thirlwall, M. F. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina. Lithos 212–215, 368–378 (2015).

    Google Scholar 

  229. GEOROC. Geochemistry of Rocks of the Oceans and Continents. GEOROC http://georoc.mpch-mainz.gwdg.de/georoc/ (2019).

  230. Carr, M. J., Feigenson, M. D., Bolge, L. L., Walker, J. A. & Gazel, E. RU_CAGeochem v.2, a database and sample repository for Central American volcanic rocks at Rutgers University, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/100403 (2013).

  231. Mamani, M., Wörner, G. & Sempere, T. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and spa‑ce. Geol. Soc. Am. Bull. 122, 162–182 (2010).

    Google Scholar 

  232. Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2019).

    Google Scholar 

Download references

Acknowledgements

S.M.S. acknowledges support from National Science Foundation grants OCE 09-61359, EAR 12-20481 and EAR 19-21624, and a Kyoto University Visiting Fellowship. A.G.-T.’s studies were supported by Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) grant 239494.

Author information

Authors and Affiliations

Authors

Contributions

S.M.S. conceived and drafted the manuscript, which was revised and amended by P.V. and A.G.-T. P.V. provided updated rates of forearc erosion and sediment subduction (Supplementary Information). All authors contributed to the discussion.

Corresponding author

Correspondence to Susanne M. Straub.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks A. Stracke, C. Stern, S. Kay and the other anonymous reviewer(s) for their contribution to the peer review of this work

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Subduction erosion

Tectonic removal of upper-plate material in subduction zones.

Forearc

Region between arc and trench.

Primary arc magmas

Mantle-wedge magmas prior to modification in the crustal basement.

Frontal accretion

Accretion of lower-plate material to the forearc.

Underplating

Accretion of lower-plate material to the base of the upper plate.

Frontal prism

An actively deforming wedge at the toe of the forearc.

Accretionary prism

Wedge-shaped body constructed mostly of sediment that has been scraped off the subducting plate.

Backstop

Point of coherent, resistive upper-plate rock framework closest to the trench.

Basal erosion

Tectonic removal of upper-plate material from the underside of the upper plate.

Subduction channel

Plate-boundary shear zone conveying material from the shallow part of the subduction zone towards the mantle.

Slab diapirs

Low-density material that buoyantly rises from the slab into the mantle wedge.

Slab partial melts

Partial melt released from subducted lithologies into the mantle wedge.

Hydrofracturing

Rock failure induced by overpressured fluids.

Frontal erosion

Tectonic removal of material from the frontal part of the forearc.

Arc crust production rate

Rate of arc crustal growth by addition of mantle-derived melts to arc crust per time increment, given in km3 per km of arc length per Myr, or km3/km/Myr, when normalized to the length of global arcs.

εNd

Deviation of 144Nd/143Nd from the CHondritic Uniform Reservoir (CHUR) ratio, calculated as εNd = [(144Nd/143Nd/0.51263) − 1] × 10,000.

Mg#

The molar ratio of Mg/(Mg + Fe2+) in magmas. Primary mantle melts usually have a Mg# ≥ 72.

Corner flow

Mantle-wedge flow towards the subducting slab induced by viscous coupling between the downgoing slab and overlying mantle wedge.

Slab fluids

Fluid expelled from subducting lithospheric plate into the mantle wedge.

Ambient mantle

Mantle wedge that is not affected by a slab component.

εHf

Deviation of 176Hf/177Hf from the CHondritic Uniform Reservoir (CHUR) ratio, calculated as εHf = [(176Hf/177Hf/0.282785) − 1] × 10,000.

Mélange diapirs

Slab diapirs rising from zones of the intensely sheared and mixed metamorphic sedimentary and igneous rocks at the interface between the subducted slab and the mantle.

Recharge mixing

Mixing of different magma batches incited by the ascent of new primary melt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straub, S.M., Gómez-Tuena, A. & Vannucchi, P. Subduction erosion and arc volcanism. Nat Rev Earth Environ 1, 574–589 (2020). https://doi.org/10.1038/s43017-020-0095-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-020-0095-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing