Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The physics of 3D printing with light

Abstract

The goal of 3D printing is to realize complex 3D structures by locally adding material in small volume elements called voxels — in contrast to successively subtracting material by etching, milling or machining. This field started with optics-based proposals in the 1970s. Progress has required breakthroughs in physics, chemistry, materials science, laser science and engineering. This Review focuses on the physics underlying optics-based approaches, including interference lithography, tomographic volumetric additive manufacturing, stereolithography, continuous liquid-interface printing, light-sheet printing, parallelized spatiotemporal focusing and (multi-)focus scanning. Light–matter interactions that are discussed include one-photon, two-photon, multi-photon or cascaded nonlinear optical absorption processes for excitation and stimulated-emission depletion or excited-state absorption followed by reverse intersystem crossing for de-excitation. The future physics challenges lie in further boosting three metrics: spatial resolution, rate of voxel creation and range of available dissimilar material properties. Engineering challenges lie in achieving these metrics in compact, low-cost and low-energy-consumption instruments and in identifying new applications.

Key points

  • Three-dimensional printing with light is an additive manufacturing process in which light irradiation locally adds a solid material (typically from a liquid ‘ink’), rather than subtracting it from a solid by machining or drilling, to form complex 3D structures from the macroscale to the nanoscale.

  • All current light-based 3D printing modalities (including interference lithography, spatial focusing, spatiotemporal focusing, tomographic volumetric additive manufacturing and layer-by-layer approaches) can be seen as approximations of an ideal light exposure scheme in which a tailored 3D pattern of light exposes an ink in a single shot.

  • Light shone during 3D printing couples to the ink via electric-dipole-mediated light–matter interactions to dedicated trigger (photoinitiator) molecules; sometimes ordinary one-photon absorption suffices, yet often other processes such as multi-photon absorption or two-colour two-step absorption are needed to sufficiently localize the excitation in 3D space.

  • Material formation from the ink following the light trigger is highly material dependent, with different chemical and physical processes involved for the formation of polymers, metals and semiconductors.

  • Although researchers strive to improve the speed and resolution of 3D printing technologies, the formation of a certain voxel unavoidably requires delivering a certain light energy; therefore, increasing the number of voxels printed per unit time requires increasing light power.

  • The challenges of 3D printing remain: enable ever finer feature sizes, increase print speed, open the door to more dissimilar materials and make 3D laser printers more compact and less expensive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Partial wave representations of generating spatiotemporal light patterns for use in 3D printing.
Fig. 2: Iso-intensity surfaces of light patterns generated via various light shaping processes.
Fig. 3: Energy level diagram of light-matter interactions for 3D printing.
Fig. 4: Three-dimensional-printed structures using light-based printing processes.
Fig. 5: Three-dimensional printing speed of various light-based processes.

Similar content being viewed by others

Data availability

A maintained and updated version of Fig. 5 is provided at https://3DprintingSpeed.com.

References

  1. Gottwald, J. F. Liquid metal recorder. US Patent US3596285A (1971).

  2. Sachs, E. M., Haggerty, J. S., Cima, M. J. & Williams, P. A. Three-dimensional printing techniques. US Patent US5204055A (1993).

  3. de Gans, B. J., Duineveld, P. C. & Schubert, U. S. Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16, 203–213 (2004).

    Article  Google Scholar 

  4. Delrot, P., Modestino, M. A., Gallaire, F., Psaltis, D. & Moser, C. Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusing. Phys. Rev. Appl. 6, 024003 (2016).

    Article  ADS  Google Scholar 

  5. Crump, S. S. Apparatus and method for creating three-dimensional objects. US Patent US5121329A (1992).

  6. Landauer, R. Light faster than light? Nature 365, 692–693 (1993).

    Article  ADS  Google Scholar 

  7. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hell, S. W. Strategy for far-field optical imaging and writing without diffraction limit. Phys. Lett. A 326, 140–145 (2004).

    Article  ADS  CAS  Google Scholar 

  10. Thiel, M., Ott, J., Radke, A., Kaschke, J. & Wegener, M. Dip-in depletion optical lithography of three-dimensional chiral polarizers. Opt. Lett. 38, 4252 (2013).

    Article  ADS  PubMed  Google Scholar 

  11. Kaschke, J. & Wegener, M. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett. 40, 3986 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fischer, J. et al. Exploring the mechanisms in STED-enhanced direct laser writing. Adv. Opt. Mater. 3, 221–232 (2015).

    Article  MathSciNet  CAS  Google Scholar 

  13. Müller, P. et al. STED-inspired laser lithography based on photoswitchable spirothiopyran moieties. Chem. Mater. 31, 1966–1972 (2019).

    Article  Google Scholar 

  14. Liaros, N. & Fourkas, J. T. Ten years of two-color photolithography [Invited]. Opt. Mater. Express 9, 3006 (2019).

    Article  ADS  CAS  Google Scholar 

  15. He, M. et al. 3D sub‐diffraction printing by multicolor photoinhibition lithography: from optics to chemistry. Laser Photon Rev. 16, 2100229 (2022).

    Article  ADS  CAS  Google Scholar 

  16. Somers, P. et al. Photo-activated polymerization inhibition process in photoinitiator systems for high-throughput 3D nanoprinting. Nanophotonics https://doi.org/10.1515/NANOPH-2022-0611 (2023).

  17. Jones, D. E. H. Ariadne. New Scientist. 80 (1974).

  18. Swainson, W. K. Method, medium and apparatus for producing three-dimensional figure product. US Patent US4041476A (1971).

  19. Ford, J. E. et al. in Photonics for Processors, Neural Networks, and Memories Vol. 2026 (eds Horner, J. L. et al.) 604–613 (SPIE, 1993).

  20. Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photonics 16, 784–791 (2022).

    Article  ADS  CAS  Google Scholar 

  22. Kodama, H. Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer. Rev. Sci. Instrum. 52, 1770–1773 (1981).

    Article  ADS  Google Scholar 

  23. Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. US Patent US4575330A (1986).

  24. Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wu, X. Imaging and forming method using projection operation and back projection method. European Patent EP3333629A4 (2016).

  27. Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Loterie, D., Delrot, P. & Moser, C. High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 11, 852 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melde, K. et al. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. Sci. Adv. 9, eadf6182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pang, Y. K. et al. Chiral microstructures (spirals) fabrication by holographic lithography. Opt. Express 13, 7615 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Liu, L. et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction. Nanophotonics 8, 1087–1093 (2019).

    Article  Google Scholar 

  33. Cai, L. Z., Yang, X. L. & Wang, Y. R. All fourteen Bravais lattices can be formed by interference of four noncoplanar beams. Opt. Lett. 27, 900 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Meisel, D. C., Wegener, M. & Busch, K. Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: symmetries and complete photonic band gaps. Phys. Rev. B Condens. Matter Mater. Phys. 70, 165104 (2004).

    Article  ADS  Google Scholar 

  35. Kadic, M., Milton, G. W., van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Article  Google Scholar 

  36. Feth, N., Enkrich, C., Wegener, M. & Linden, S. Large-area magnetic metamaterials via compact interference lithography. Opt. Express 15, 501 (2007).

    Article  ADS  PubMed  Google Scholar 

  37. Behera, S. & Joseph, J. Design and realization of functional metamaterial basis structures through optical phase manipulation based interference lithography. J. Opt. 19, 105103 (2017).

    Article  ADS  Google Scholar 

  38. Miklyaev, Y. V. et al. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Appl. Phys. Lett. 82, 1284–1286 (2003).

    Article  ADS  CAS  Google Scholar 

  39. Divliansky, I., Mayer, T. S., Holliday, K. S. & Crespi, V. H. Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography. Appl. Phys. Lett. 82, 1667–1669 (2003).

    Article  ADS  CAS  Google Scholar 

  40. Wu, L., Zhong, Y., Chan, C. T., Wong, K. S. & Wang, G. P. Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography. Appl. Phys. Lett. 86, 241102 (2005).

    Article  ADS  Google Scholar 

  41. Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Ullal, C. K. et al. Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures. Appl. Phys. Lett. 84, 5434–5436 (2004).

    Article  ADS  CAS  Google Scholar 

  43. Leibovici, M. C. R. & Gaylord, T. K. Photonic-crystal waveguide structure by pattern-integrated interference lithography. Opt. Lett. 40, 2806 (2015).

    Article  ADS  PubMed  Google Scholar 

  44. Leibovici, M. C. R. & Gaylord, T. K. Custom-modified three-dimensional periodic microstructures by pattern-integrated interference lithography. J. Opt. Soc. Am. A 31, 1515 (2014).

    Article  ADS  Google Scholar 

  45. Ohlinger, K., Lutkenhaus, J., Arigong, B., Zhang, H. & Lin, Y. Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography. J. Appl. Phys. https://doi.org/10.1063/1.4837635 (2013).

  46. Wolf, E. Electromagnetic diffraction in optical systems — I. An integral representation of the image field. Proc. R. Soc. Lond. A Math. Phys. Sci. 253, 349–357 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  47. Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch. für Mikrosk. Anat. 9, 413–468 (1873).

    Article  Google Scholar 

  48. Gu, M. & Sheppard, C. J. R. Comparison of three‐dimensional imaging properties between two‐photon and single‐photon fluorescence microscopy. J. Microsc. 177, 128–137 (1995).

    Article  Google Scholar 

  49. Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon Rev. 7, 22–44 (2013).

    Article  ADS  CAS  Google Scholar 

  50. Wong, S. et al. Direct laser writing of three-dimensional photonic crystals with a complete photonic band gap in chalcogenide glasses. Adv. Mater. 18, 265–269 (2006).

    Article  CAS  Google Scholar 

  51. Williams, H. E., Luo, Z. & Kuebler, S. M. Effect of refractive index mismatch on multi-photon direct laser writing. Opt. Express 20, 25030 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Deckard, C. Method and apparatus for producing parts by selective sintering. US Patent US4863538A (1989).

  53. Gu, D. D., Meiners, W., Wissenbach, K. & Poprawe, R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2012).

    Article  CAS  Google Scholar 

  54. Matsuo, S., Juodkazis, S. & Misawa, H. Femtosecond laser microfabrication of periodic structures using a microlens array. Appl. Phys. A 80, 683–685 (2005).

    Article  ADS  CAS  Google Scholar 

  55. Obata, K. et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt. Express 18, 17193–17200 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt. Lasers Eng. 70, 26–32 (2015).

    Article  Google Scholar 

  57. Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. https://doi.org/10.1038/s41467-019-10249-2 (2019).

  58. Hahn, V. et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials. Adv. Funct. Mater. 30, 1907795 (2020).

    Article  CAS  Google Scholar 

  59. Manousidaki, M., Papazoglou, D. G., Farsari, M. & Tzortzakis, S. 3D holographic light shaping for advanced multiphoton polymerization. Opt. Lett. 45, 85 (2020).

    Article  ADS  Google Scholar 

  60. Ouyang, W. et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kiefer, P. et al. A multi-photon (7×7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light Adv. Manuf. (in the press).

  62. Keller, J., Schönle, A. & Hell, S. W. Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt. Express 15, 3361 (2007).

    Article  ADS  PubMed  Google Scholar 

  63. Arlt, J. & Padgett, M. J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett. 25, 191 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Zhang, S. J. et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Appl. Phys. Lett. 105, 061101 (2014).

    Article  ADS  Google Scholar 

  65. Tang, J., Ren, J. & Han, K. Y. Fluorescence imaging with tailored light. Nanophotonics 8, 2111–2128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

  67. Haist, T., Schönleber, M. & Tiziani, H. J. Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays. Opt. Commun. 140, 299–308 (1997).

    Article  ADS  CAS  Google Scholar 

  68. Yang, L. et al. Projection two-photon polymerization using a spatial light modulator. Opt. Commun. 331, 82–86 (2014).

    Article  ADS  CAS  Google Scholar 

  69. Yang, L. et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Opt. Lett. 42, 743 (2017).

    Article  ADS  PubMed  Google Scholar 

  70. Yang, D., Liu, L., Gong, Q. & Li, Y. Rapid two‐photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering. Macromol. Rapid Commun. 40, 1900041 (2019).

    Article  Google Scholar 

  71. Durfee, C. G., Greco, M., Block, E., Vitek, D. & Squier, J. A. Intuitive analysis of space-time focusing with double-ABCD calculation. Opt. Express 20, 14244 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  72. Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468 (2005).

    Article  ADS  PubMed  Google Scholar 

  73. Zhu, G., van Howe, J., Durst, M., Zipfel, W. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153 (2005).

    Article  ADS  PubMed  Google Scholar 

  74. Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light Sci. Appl. 10, 199 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chu, W. et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization. Adv. Mater. Technol. 3, 1700396 (2018).

    Article  Google Scholar 

  76. Kim, D. & So, P. T. C. High-throughput three-dimensional lithographic microfabrication. Opt. Lett. 35, 1602 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Li, Y.-C. et al. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation. Opt. Express 20, 19030 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Sun, B. et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl. 7, 17117 (2017).

    Article  ADS  Google Scholar 

  80. Dinc, N. U. et al. From 3D to 2D and back again. Nanophotonics https://doi.org/10.1515/nanoph-2022-0512 (2023).

    Article  Google Scholar 

  81. Radon, J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 5, 170–176 (1986).

    Article  CAS  PubMed  Google Scholar 

  82. Bhattacharya, I., Toombs, J. & Taylor, H. High fidelity volumetric additive manufacturing. Addit. Manuf. 47, 102299 (2021).

    CAS  Google Scholar 

  83. Rackson, C. M. et al. Object-space optimization of tomographic reconstructions for additive manufacturing. Addit. Manuf. 48, 102367 (2021).

    PubMed  PubMed Central  Google Scholar 

  84. Madrid-Wolff, J., Boniface, A., Loterie, D., Delrot, P. & Moser, C. Controlling light in scattering materials for volumetric additive manufacturing. Adv. Sci. 9, 2105144 (2022).

    Article  CAS  Google Scholar 

  85. Bertsch, A., Jézéquel, J. Y. & André, J. C. Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique. J. Photochem. Photobiol. A Chem. 107, 275–281 (1997).

    Article  CAS  Google Scholar 

  86. Sun, C., Fang, N., Wu, D. M. & Zhang, X. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuators A Phys. 121, 113–120 (2005).

    Article  CAS  Google Scholar 

  87. Huang, Y. M. & Jiang, C. P. On-line force monitoring of platform ascending rapid prototyping system. J. Mater. Process. Technol. 159, 257–264 (2005).

    Article  CAS  Google Scholar 

  88. Jin, J., Yang, J., Mao, H. & Chen, Y. A vibration-assisted method to reduce separation force for stereolithography. J. Manuf. Process. 34, 793–801 (2018).

    Article  Google Scholar 

  89. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. De Beer, M. P. et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv. 5, eaau8723 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Anandakrishnan, N. et al. Fast stereolithography printing of large-scale biocompatible hydrogel models. Adv. Healthc. Mater. 10, 2002103 (2020).

    Article  Google Scholar 

  93. Mueller, P., Thiel, M. & Wegener, M. 3D direct laser writing using a 405 nm diode laser. Opt. Lett. 39, 6847 (2014).

    Article  ADS  PubMed  Google Scholar 

  94. Wickberg, A. et al. Second-harmonic generation by 3D laminate metacrystals. Adv. Opt. Mater. 7, 1801235 (2019).

    Article  Google Scholar 

  95. Sanli, U. T. et al. High-resolution kinoform X-ray optics printed via 405 nm 3D laser lithography. Adv. Mater. Technol. 7, 2101695 (2022).

    Article  CAS  Google Scholar 

  96. Wang, H. et al. Two‐photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater https://doi.org/10.1002/adfm.202214211 (2023).

  97. Dirac, P. A. M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. Ser. A 114, 243–265 (1927).

    Article  ADS  CAS  Google Scholar 

  98. Schäfer, W. & Wegener, M. Interaction of Matter and Electromagnetic Fields. In: Semiconductor Optics and Transport Phenomena. Advanced Texts in Physics. 7–49 (Springer, 2002).

  99. Poynting, J. H. X. V. On the transfer of energy in the electromagnetic field. Philos. Trans. R. Soc. Lond. 175, 343–361 (1884).

    ADS  Google Scholar 

  100. Mauri, A. et al. Two- and three-photon processes in photoinitiators for 3D laser printing. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-1797484/v1 (2022).

  101. Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photonics 15, 932–938 (2021).

    Article  ADS  CAS  Google Scholar 

  102. Liaros, N. et al. Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone. iScience 25, 103600 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Yang, L. et al. On the Schwarzschild effect in 3D two-photon laser lithography. Adv. Opt. Mater. 7, 1901040 (2019).

    Article  CAS  Google Scholar 

  104. Johnson, J. E., Chen, Y. & Xu, X. Model for polymerization and self-deactivation in two-photon nanolithography. Opt. Express 30, 26824 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Kiefer, P. et al. Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting. Adv. Opt. Mater. 8, 2000895 (2020).

    Article  CAS  Google Scholar 

  106. Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Göppert‐Mayer, M. Über elementarakte mit zwei quantensprüngen. Ann. Phys. 401, 273–294 (1931).

    Article  Google Scholar 

  108. Strickler, J. H. & Webb, W. W. in CAN-AM Eastern '90 Vol. 1398 (eds Antos, R. L. & Krisiloff, A. J.) 107–118 (SPIE, 1991).

  109. Boyd, R. W. Nonlinear Optics (Academic, 2008).

  110. Pucher, N. et al. Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process. Macromolecules 42, 6519–6528 (2009).

    Article  ADS  CAS  Google Scholar 

  111. Li, Z. et al. A straightforward synthesis and structure-activity relationship of highly efficient initiators for two-photon polymerization. Macromolecules 46, 352–361 (2013).

    Article  ADS  CAS  Google Scholar 

  112. Nazir, R. et al. Donor-acceptor type thioxanthones: synthesis, optical properties, and two-photon induced polymerization. Macromolecules 48, 2466–2472 (2015).

    Article  ADS  CAS  Google Scholar 

  113. Chi, T. et al. Substituted thioxanthone-based photoinitiators for efficient two-photon direct laser writing polymerization with two-color resolution. ACS Appl. Polym. Mater. 3, 1426–1435 (2021).

    Article  CAS  Google Scholar 

  114. Ladika, D. et al. Synthesis and application of triphenylamine-based aldehydes as photo-initiators for multi-photon lithography. Appl. Phys. A Mater. Sci. Process. 128, (2022).

  115. Lunzer, M. et al. Beyond the threshold: a study of chalcogenophene-based two-photon initiators. Chem. Mater. 34, 3042–3052 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition rate. Opt. Express 21, 26244 (2013).

    Article  ADS  PubMed  Google Scholar 

  117. Tomova, Z., Liaros, N., Gutierrez Razo, S. A., Wolf, S. M. & Fourkas, J. T. In situ measurement of the effective nonlinear absorption order in multiphoton photoresists. Laser Photon Rev. 10, 849–854 (2016).

    Article  ADS  CAS  Google Scholar 

  118. Maruo, S. & Ikuta, K. Three-dimensional microfabrication by use of single-photon-absorbed polymerization. Appl. Phys. Lett. 76, 2656–2658 (2000).

    Article  ADS  CAS  Google Scholar 

  119. Delrot, P., Loterie, D., Psaltis, D. & Moser, C. Single-photon three-dimensional microfabrication through a multimode optical fiber. Opt. Express 26, 1766 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  120. Hsu, S. et al. High‐speed one‐photon 3D nanolithography using controlled initiator depletion and inhibitor transport. Adv. Opt. Mater. 10, 2102262 (2022).

    Article  CAS  Google Scholar 

  121. Bojanowski, N. M. et al. Search for alternative two‐step‐absorption photoinitiators for 3D laser nanoprinting. Adv. Funct. Mater. 33, 2212482 (2022).

    Article  Google Scholar 

  122. Rocheva, V. V. et al. High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci. Rep. 8, 3663 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  123. Chen, Y. et al. Noninvasive in vivo 3D bioprinting. Sci. Adv. 6, eba7406 (2020).

    Article  ADS  Google Scholar 

  124. Zhu, J., Zhang, Q., Yang, T., Liu, Y. & Liu, R. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nat. Commun. 11, 3462 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Zhang, Q., Boniface, A., Parashar, V. K., Gijs, M. A. M. & Moser, C. Multi-photon polymerization using upconversion nanoparticles for tunable feature-size printing. Nanophotonics https://doi.org/10.1515/nanoph-2022-0598 (2023).

  127. Schloemer, T. et al. Nanoengineering triplet–triplet annihilation upconversion: from materials to real-world applications. ACS Nano 17, 3259–3288 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Limberg, D. K., Kang, J. H. & Hayward, R. C. Triplet-triplet annihilation photopolymerization for high-resolution 3D printing. J. Am. Chem. Soc. 144, 5226–5232 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Luo, Z. et al. Three-dimensional nanolithography with visible continuous wave laser through triplet up-conversion. J. Phys. Chem. Lett. 14, 709–715 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Hahn, V. et al. Challenges and opportunities in 3D laser printing based on (1 + 1)-photon absorption. ACS Photonics 10, 24–33 (2023).

    Article  CAS  Google Scholar 

  131. Samsonas, D. et al. 3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration. Nanophotonics https://doi.org/10.1515/nanoph-2022-0629 (2023).

    Article  Google Scholar 

  132. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  133. Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]. Opt. Mater. Express 1, 614 (2011).

    Article  ADS  CAS  Google Scholar 

  135. Wollhofen, R., Katzmann, J., Hrelescu, C., Jacak, J. & Klar, T. A. 120 nm resolution and 55 nm structure size in STED-lithography. Opt. Express 21, 10831 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Fang, T.-S., Brown, R. E., Kwan, C. L. & Singer, L. A. Photophysical studies on benzil. Time resolution of the prompt and delayed emissions and a photokinetic study indicating deactivation of the triplet by reversible exciplex formation. J. Phys. Chem. 82, 2489–2496 (1978).

    Article  CAS  Google Scholar 

  137. Yang, L. et al. Laser printed microelectronics. Nat. Commun. 14, 1103 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, L. et al. In situ diagnostics and role of light-induced forces in metal laser nanoprinting. Laser Photon. Rev. 16, 2100411 (2022).

    Article  ADS  CAS  Google Scholar 

  139. Tabrizi, S., Cao, Y. Y., Lin, H. & Jia, B. H. Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures. Sci. China Phys. Mech. Astron. 60, 034201 (2017).

    Article  ADS  Google Scholar 

  140. Spiegel, C. A. et al. 4D printing at the microscale. Adv. Funct. Mater. 30, 1907615 (2020).

    Article  CAS  Google Scholar 

  141. Lay, C. L. et al. Two-photon-assisted polymerization and reduction: emerging formulations and applications. ACS Appl. Mater. Interfaces 12, 10061–10079 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Hobich, J., Blasco, E., Wegener, M., Mutlu, H. & Barner‐Kowollik, C. Synergistic, orthogonal, and antagonistic photochemistry for light‐induced 3D printing. Macromol. Chem. Phys. 224, 2200318 (2022).

    Article  Google Scholar 

  143. Kowsari, K., Akbari, S., Wang, D., Fang, N. X. & Ge, Q. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Print. Addit. Manuf. 5, 185–193 (2018).

    Article  Google Scholar 

  144. Mayer, F. et al. Multimaterial 3D laser microprinting using an integrated microfluidic system. Sci. Adv. 5, eaau9160 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Maruyama, T., Hirata, H., Furukawa, T. & Maruo, S. Multi-material microstereolithography using a palette with multicolor photocurable resins. Opt. Mater. Express 10, 2522 (2020).

    Article  ADS  CAS  Google Scholar 

  146. Yang, L., Mayer, F., Bunz, U. H. F., Blasco, E. & Wegener, M. Multi-material multi-photon 3D laser micro- and nanoprinting. Light Adv. Manuf. 2, 1 (2021).

    Article  Google Scholar 

  147. Mueller, J. B., Fischer, J., Mayer, F., Kadic, M. & Wegener, M. Polymerization kinetics in three-dimensional direct laser writing. Adv. Mater. 26, 6566–6571 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Mueller, J. B., Fischer, J., Mange, Y. J., Nann, T. & Wegener, M. In-situ local temperature measurement during three-dimensional direct laser writing. Appl. Phys. Lett. 103, 123107 (2013).

    Article  ADS  Google Scholar 

  149. Cao, Y. Y., Takeyasu, N., Tanaka, T., Duan, X. M. & Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5, 1144–1148 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Lu, W.-E. et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction. Opt. Mater. Express 3, 1660 (2013).

    Article  ADS  Google Scholar 

  151. Lee, M. R. et al. Direct metal writing and precise positioning of gold nanoparticles within microfluidic channels for SERS sensing of gaseous analytes. ACS Appl. Mater. Interfaces 9, 39584–39593 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Komori, T., Furukawa, T., Iijima, M. & Maruo, S. Multi-scale laser direct writing of conductive metal microstructures using a 405-nm blue laser. Opt. Express 28, 8363 (2020).

    Article  ADS  PubMed  Google Scholar 

  153. Barton, P. et al. Fabrication of silver nanostructures using femtosecond laser-induced photoreduction. Nanotechnology 28, 505302 (2017).

    Article  PubMed  Google Scholar 

  154. Zarzar, L. D. et al. Multiphoton lithography of nanocrystalline platinum and palladium for site-specific catalysis in 3D microenvironments. J. Am. Chem. Soc. 134, 4007–4010 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  CAS  Google Scholar 

  156. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  157. Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377–445 (1908).

    Article  Google Scholar 

  158. Maruo, S. & Saeki, T. Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt. Express 16, 1174 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  159. Blasco, E. et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Adv. Mater. 28, 3592–3595 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nat. Commun. https://doi.org/10.1038/s41467-018-03071-9 (2018).

  161. Shukla, S., Furlani, E. P., Vidal, X., Swihart, M. T. & Prasad, P. N. Two-photon lithography of sub-wavelength metallic structures in a polymer matrix. Adv. Mater. 22, 3695–3699 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Shukla, S. et al. Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction. ACS Nano 5, 1947–1957 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Yeo, J. et al. Rapid, one-step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth. Adv. Funct. Mater. 23, 3316–3323 (2013).

    Article  CAS  Google Scholar 

  164. Farrell, J. et al. Advances in selective laser sintering of polymers. Int. J. Extrem. Manuf. 4, 042002 (2022).

    Article  Google Scholar 

  165. Qu, J., Kadic, M., Naber, A. & Wegener, M. Micro-structured two-component 3D metamaterials with negative thermal-expansion coefficient from positive constituents. Sci. Rep. 7, 40643 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  166. Münchinger, A., Hsu, L. Y., Fürniß, F., Blasco, E. & Wegener, M. 3D optomechanical metamaterials. Mater. Today 59, 9–17 (2022).

    Article  Google Scholar 

  167. Groß, M. F. et al. Tetramode metamaterials as phonon polarizers. Adv. Mater. 35, e2211801 (2023).

    Article  PubMed  Google Scholar 

  168. Žukauskas, A. et al. Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics. Laser Photon. Rev. 9, 706–712 (2015).

    Article  ADS  Google Scholar 

  169. Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554–560 (2016).

    Article  ADS  CAS  Google Scholar 

  170. Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  171. Kiyan, R., Bagratashvili, V. N., Kurselis, K., Popov, V. K. & Chichkov, B. N. 3D fabrication of all-polymer conductive microstructures by two photon polymerization. Opt. Express 21, 31029–31035 (2013).

    Article  ADS  PubMed  Google Scholar 

  172. Li, J. et al. Hybrid additive manufacturing of 3D electronic systems. J. Micromech. Microeng. 26, 105005 (2016).

    Article  ADS  Google Scholar 

  173. Mu, Q. et al. Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 18, 74–83 (2017).

    CAS  Google Scholar 

  174. Qian, D. et al. Flexible and rapid fabrication of silver microheaters with spatial-modulated multifoci by femtosecond laser multiphoton reduction. Opt. Lett. 43, 5335 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  175. Takenouchi, M., Mukai, M., Furukawa, T. & Maruo, S. Fabrication of flexible wiring with intrinsically conducting polymers using blue-laser microstereolithography. Polymers 14, 4949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  177. Frenzel, T., Findeisen, C., Kadic, M., Gumbsch, P. & Wegener, M. Tailored buckling microlattices as reusable light-weight shock absorbers. Adv. Mater. 28, 5865–5870 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Bauer, J. et al. Nanolattices: an emerging class of mechanical metamaterials. Adv. Mater. 29, 1701850 (2017).

    Article  Google Scholar 

  179. Elliott, L. V., Salzman, E. E. & Greer, J. R. Stimuli responsive shape memory microarchitectures. Adv. Funct. Mater. 31, 2008380 (2021).

    Article  CAS  Google Scholar 

  180. Maruo, S. & Inoue, H. Optically driven viscous micropump using a rotating microdisk. Appl. Phys. Lett. 91, 084101 (2007).

    Article  ADS  Google Scholar 

  181. Zeng, H. et al. Light-fueled microscopic walkers. Adv. Mater. 27, 3883–3887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Huang, T.-Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv. Mater. 27, 6644–6650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, X. et al. 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28, 1804107 (2018).

    Article  Google Scholar 

  184. Ma, Z.-C. et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat. Commun. 11, 4536 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nuñez Bernal, P. et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019).

    Article  Google Scholar 

  186. Hippler, M. et al. 3D scaffolds to study basic cell biology. Adv. Mater. 31, e1808110 (2019).

    Article  PubMed  Google Scholar 

  187. Kozaki, S. et al. Additive manufacturing of micromanipulator mounted on a glass capillary for biological applications. Micromachines 11, 174 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).

    Article  CAS  Google Scholar 

  189. Jiao, B. J. et al. Acousto-optic scanning spatial-switching multiphoton lithography. Int. J. Extrem. Manuf. 5, 035008 (2023).

    Google Scholar 

  190. Bock, S., Rades, T., Rantanen, J. & Scherließ, R. Additive manufacturing in respiratory sciences — current applications and future prospects. Adv. Drug Deliv. Rev. 186, 114341 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Kato, J., Takeyasu, N., Adachi, Y., Sun, H.-B. & Kawata, S. Multiple-spot parallel processing for laser micronanofabrication. Appl. Phys. Lett. 86, 044102 (2005).

    Article  ADS  Google Scholar 

  192. Dong, X. Z., Zhao, Z. S. & Duan, X. M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Appl. Phys. Lett. 91, 124103 (2007).

    Article  ADS  Google Scholar 

  193. Gittard, S. D. et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express 2, 3167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zheng, X. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012).

    Article  ADS  PubMed  Google Scholar 

  195. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  196. Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  197. ProJet 7000 HD. 3D Systems. https://www.3dsystems.com/3d-printers/projet-7000-hd (2012).

  198. Nanoscribe Photonic Professional GT datasheet. https://www.nanoscribe.com (2014).

  199. Bückmann, T., Thiel, M., Kadic, M., Schittny, R. & Wegener, M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).

    Article  ADS  PubMed  Google Scholar 

  200. Yan, W., Cumming, B. P. & Gu, M. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing. J. Opt. 17, 075803 (2015).

    Article  ADS  Google Scholar 

  201. EOS P 770 with PA 2200 Top Speed 1.0 datasheet and vendor information. https://www.eos.info (2016).

  202. EOS P 110 with PA 2200 Top Quality 1.0 datasheet and vendor information. https://www.eos.info (2016).

  203. Pearre, B. W., Michas, C., Tsang, J.-M., Gardner, T. J. & Otchy, T. M. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Addit. Manuf. 30, 100887 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Sci. Rep. https://doi.org/10.1038/s41598-020-64955-9 (2020).

  205. Stüwe, L. et al. Continuous volumetric 3D printing: xolography in flow. Adv. Mater. 11, e2036716 (2023).

    Google Scholar 

Download references

Acknowledgements

The authors thank V. Hahn for the valuable discussions. The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via the Excellence Cluster “3D Matter Made to Order”, EXC-2082/1-390761711, by the Carl Zeiss Foundation through the “Carl-Zeiss-Foundation-Focus@HEiKA”, by the Helmholtz Association via the program “Materials Systems Engineering”, by the Karlsruhe School of Optics & Photonics (KSOP) at KIT and by the Max Planck School of Photonics (MPSP). X.X. acknowledges the support by the US National Science Foundation (CMMI-2135585). S.M. acknowledges the support by JST CREST JPMJCR1905.

Author information

Authors and Affiliations

Authors

Contributions

M.W. and P.S. wrote the first draft. P.S. and A.M. arranged the figures. All authors contributed to the writing of all parts of the review.

Corresponding author

Correspondence to Martin Wegener.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Saulius Juodkazis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somers, P., Münchinger, A., Maruo, S. et al. The physics of 3D printing with light. Nat Rev Phys 6, 99–113 (2024). https://doi.org/10.1038/s42254-023-00671-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00671-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing