Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Morphogenesis beyond in vivo

Abstract

Morphogenetic events during development shape the body plan and establish structural foundations for tissue forms and functions. Acquiring spatiotemporal information of development, especially for humans, is limited by technical and ethical constraints. Thus, both stem cell-based, in vitro development models and theoretical models have been constructed to recapitulate morphogenetic events during development. These in vitro experimental and theoretical models offer accessibility, efficiency and modulability. However, their physiological relevance often remains obscure, owing to their simplistic nature, which obstructs their applicability as faithful and predictive models of natural development. We examine existing in vitro experimental and theoretical models of various developmental events and compare them with the current knowledge of natural development, with particular considerations of biomechanical driving forces and stereotypic morphogenetic features. We highlight state-of-the-art methods used to construct these in vitro models and emphasize the biomechanical and biophysical principles these models have helped unveil. We also discuss challenges faced by the current in vitro experimental and theoretical models and propose how theoretical modelling and in vitro experimental models should be combined with in vivo studies to advance fundamental understanding of development.

Key points

  • Pluripotent stem cell-based in vitro models and theoretical models can effectively recapitulate mammalian development, including those of topological and conformational morphogenesis.

  • Pluripotent stem cell-based in vitro models can reconstitute essential aspects governing tissue morphogenesis, such as endogenous scales, exogenous stimuli and boundary conditions, and thereby provide mechanistic insights.

  • Driven by state-of-art engineering tools, the geometry, stimuli and extracellular microenvironment of in vitro morphogenesis models can be modulated with heightened precision and specificity.

  • Through combining in vitro and theoretical approaches, high-order complexity underlying morphogenetic dynamics can be decoupled and quantitatively studied.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo knowledge and in vitro modelling of three topological morphogenetic events.
Fig. 2: In vivo knowledge and in vitro modelling of three conformational morphogenetic events.
Fig. 3: Essential aspects of morphogenetic dynamics with selected in vivo and in vitro examples.
Fig. 4: Bioengineering tools and methods to model and study morphogenesis in vitro.

Similar content being viewed by others

References

  1. Fu, J., Warmflash, A. & Lutolf, M. P. Stem-cell-based embryo models for fundamental research and translation. Nat. Mater. 20, 132–144 (2021).

    ADS  Google Scholar 

  2. Shao, Y. & Fu, J. Engineering multiscale structural orders for high-fidelity embryoids and organoids. Cell Stem Cell 29, 722–743 (2022).

    Google Scholar 

  3. Yin, X. et al. Engineering stem cell organoids. Cell Stem Cell 18, 25–38 (2016).

    Google Scholar 

  4. Brassard, J. A. & Lutolf, M. P. Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24, 860–876 (2019).

    Google Scholar 

  5. Torres-Sanchez, A., Kerr Winter, M. & Salbreux, G. Tissue hydraulics: physics of lumen formation and interaction. Cell Dev. 168, 203724 (2021).

    Google Scholar 

  6. Dumortier, J. G. et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365, 465–468 (2019).

    ADS  Google Scholar 

  7. Harrington, M. J., Hong, E. & Brewster, R. Comparative analysis of neurulation: first impressions do not count. Mol. Reprod. Dev. 76, 954–965 (2009).

    Google Scholar 

  8. Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032–1044 (2014).

    Google Scholar 

  9. Kim, Y. S. et al. Deciphering epiblast lumenogenesis reveals proamniotic cavity control of embryo growth and patterning. Sci. Adv. 7, eabe1640 (2021).

    ADS  Google Scholar 

  10. Molè, M. A. et al. Integrin β1 coordinates survival and morphogenesis of the embryonic lineage upon implantation and pluripotency transition. Cell Rep. 34, 108834 (2021).

    Google Scholar 

  11. Orietti, L. C. et al. Embryo size regulates the timing and mechanism of pluripotent tissue morphogenesis. Stem Cell Rep. 16, 1182–1196 (2021).

    Google Scholar 

  12. Taniguchi, K. et al. Lumen formation is an intrinsic property of isolated human pluripotent stem cells. Stem Cell Rep. 5, 954–962 (2015).

    Google Scholar 

  13. Taniguchi, K. et al. An apicosome initiates self-organizing morphogenesis of human pluripotent stem cells. J. Cell Biol. 216, 3981–3990 (2017).

    Google Scholar 

  14. Wang, S. et al. Spatially resolved cell polarity proteomics of a human epiblast model. Sci. Adv. 7, eabd8407 (2021).

    ADS  Google Scholar 

  15. Shao, Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat. Commun. 8, 208 (2017).

    ADS  Google Scholar 

  16. Shao, Y. et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater. 16, 419–425 (2017).

    ADS  Google Scholar 

  17. Indana, D., Agarwal, P., Bhutani, N. & Chaudhuri, O. Viscoelasticity and adhesion signaling in biomaterials control human pluripotent stem cell morphogenesis in 3D culture. Adv. Mater. 33, e2101966 (2021).

    Google Scholar 

  18. Dasgupta, S., Gupta, K., Zhang, Y., Viasnoff, V. & Prost, J. Physics of lumen growth. Proc. Natl Acad. Sci. USA 115, E4751–E4757 (2018).

    ADS  Google Scholar 

  19. Dokmegang, J., Yap, M. H., Han, L., Cavaliere, M. & Doursat, R. Computational modelling unveils how epiblast remodelling and positioning rely on trophectoderm morphogenesis during mouse implantation. PLoS ONE 16, e0254763 (2021).

    Google Scholar 

  20. Burgess, R., Rawls, A., Brown, D., Bradley, A. & Olson, E. N. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384, 570–573 (1996).

    ADS  Google Scholar 

  21. Rowton, M. et al. Regulation of mesenchymal-to-epithelial transition by PARAXIS during somitogenesis. Dev. Dyn. 242, 1332–1344 (2013).

    Google Scholar 

  22. Wiggan, O., Fadel, M. P. & Hamel, P. A. Pax3 induces cell aggregation and regulates phenotypic mesenchymal-epithelial interconversion. J. Cell Sci. 115, 517–529 (2002).

    Google Scholar 

  23. Nakaya, Y., Kuroda, S., Katagiri, Y. T., Kaibuchi, K. & Takahashi, Y. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev. Cell 7, 425–438 (2004).

    Google Scholar 

  24. Takahashi, Y., Sato, Y., Suetsugu, R. & Nakaya, Y. Mesenchymal-to-epithelial transition during somitic segmentation: a novel approach to studying the roles of Rho family GTPases in morphogenesis. Cell Tissues Organs 179, 36–42 (2005).

    Google Scholar 

  25. Kulesa, P. M. & Fraser, S. E. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298, 991–995 (2002).

    ADS  Google Scholar 

  26. Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976).

    ADS  Google Scholar 

  27. Dubrulle, J., McGrew, M. J. & Pourquié, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001).

    Google Scholar 

  28. Dubrulle, J. & Pourquie, O. From head to tail: links between the segmentation clock and antero-posterior patterning of the embryo. Curr. Opin. Genet. Dev. 12, 519–523 (2002).

    Google Scholar 

  29. Simsek, M. F. et al. Periodic inhibition of Erk activity drives sequential somite segmentation. Nature 613, 153–159 (2023).

    ADS  Google Scholar 

  30. Nelemans, B. K. A., Schmitz, M., Tahir, H., Merks, R. M. H. & Smit, T. H. Somite division and new boundary formation by mechanical strain. iScience 23, 100976 (2020).

    ADS  Google Scholar 

  31. Naganathan, S. R., Popovic, M. & Oates, A. C. Left-right symmetry of zebrafish embryos requires somite surface tension. Nature 605, 516–521 (2022).

    ADS  Google Scholar 

  32. Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A. & Hanken, J. Somite number and vertebrate evolution. Development 125, 151–160 (1998).

    Google Scholar 

  33. Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

    ADS  Google Scholar 

  34. Eckalbar, W. L., Fisher, R. E., Rawls, A. & Kusumi, K. Scoliosis and segmentation defects of the vertebrae. Wiley Interdiscip. Rev. Dev. Biol. 1, 401–423 (2012).

    Google Scholar 

  35. Budjan, C. et al. Paraxial mesoderm organoids model development of human somites. eLife 11, e68925 (2022).

    Google Scholar 

  36. Sanaki-Matsumiya, M. et al. Periodic formation of epithelial somites from human pluripotent stem cells. Nat. Commun. 13, 2325 (2022).

    ADS  Google Scholar 

  37. Miao, Y. et al. Reconstruction and deconstruction of human somitogenesis in vitro. Nature 614, 500–508 (2022).

    ADS  Google Scholar 

  38. Yamanaka, Y. et al. Reconstituting human somitogenesis in vitro. Nature 614, 509–520 (2022).

    ADS  Google Scholar 

  39. Yaman, Y. I. & Ramanathan, S.Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves. Cell 186, 513–527.e19 (2023).

    Google Scholar 

  40. Morelli, L. G. et al. Delayed coupling theory of vertebrate segmentation. HFSP J. 3, 55–66 (2009).

    Google Scholar 

  41. Hubaud, A., Regev, I., Mahadevan, L. & Pourquie, O. Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock. Cell 171, 668–682.e11 (2017).

    Google Scholar 

  42. Baker, R. E., Schnell, S. & Maini, P. K. A clock and wavefront mechanism for somite formation. Dev. Biol. 293, 116–126 (2006).

    Google Scholar 

  43. Hester, S. D., Belmonte, J. M., Gens, J. S., Clendenon, S. G. & Glazier, J. A. A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS Comput. Biol. 7, e1002155 (2011).

    ADS  Google Scholar 

  44. Adhyapok, P. et al. A mechanical model of early somite segmentation. iScience 24, 102317 (2021).

    ADS  Google Scholar 

  45. Nikolopoulou, E., Galea, G. L., Rolo, A., Greene, N. D. & Copp, A. J. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144, 552–566 (2017).

    Google Scholar 

  46. Morriss-Kay, G. M. Growth and development of pattern in the cranial neural epithelium of rat embryos during neurulation. J. Embryol. Exp. Morphol. 65, 225–241 (1981).

    Google Scholar 

  47. Sawyer, J. M. et al. Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341, 5–19 (2010).

    Google Scholar 

  48. Botto, L. D., Moore, C. A., Khoury, M. J. & Erickson, J. D. Neural-tube defects. N. Engl. J. Med. 341, 1509–1519 (1999).

    Google Scholar 

  49. Karzbrun, E. et al. Human neural tube morphogenesis in vitro by geometric constraints. Nature 599, 268–272 (2021).

    ADS  Google Scholar 

  50. Sahni, G. et al. A micropatterned human-specific neuroepithelial tissue for modeling gene and drug-induced neurodevelopmental defects. Adv. Sci. 8, e2101786 (2021).

    Google Scholar 

  51. Jacobson, A. G. & Gordon, R. Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J. Exp. Zool. 197, 191–246 (1976).

    Google Scholar 

  52. Odell, G. M., Oster, G., Alberch, P. & Burnside, B. The mechanical basis of morphogenesis: I. Epithelial folding and invagination. Dev. Biol. 85, 446–462 (1981).

    Google Scholar 

  53. Inoue, Y. et al. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus. Biomech. Model. Mechanobiol. 15, 1733–1746 (2016).

    Google Scholar 

  54. Fletcher, A. G., Osterfield, M., Baker, R. E. & Shvartsman, S. Y. Vertex models of epithelial morphogenesis. Biophys. J. 106, 2291–2304 (2014).

    ADS  Google Scholar 

  55. de Goederen, V., Vetter, R., McDole, K. & Iber, D. Hinge point emergence in mammalian spinal neurulation. Proc. Natl Acad. Sci. USA 119, e2117075119 (2022).

    Google Scholar 

  56. Chen, X. & Brodland, G. W. Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Phys. Biol. 5, 015003 (2008).

    ADS  Google Scholar 

  57. Taber, L. A. Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48, 487–545 (1995).

    ADS  Google Scholar 

  58. Brodland, G. W., Chen, X., Lee, P. & Marsden, M. From genes to neural tube defects (NTDs): insights from multiscale computational modeling. HFSP J. 4, 142–152 (2010).

    Google Scholar 

  59. Helander, H. F. & Fandriks, L. Surface area of the digestive tract — revisited. Scand. J. Gastroenterol. 49, 681–689 (2014).

    Google Scholar 

  60. Shyer, A. E. et al. Villification: how the gut gets its villi. Science 342, 212–218 (2013).

    ADS  Google Scholar 

  61. Shyer, A. E., Huycke, T. R., Lee, C., Mahadevan, L. & Tabin, C. J. Bending gradients: how the intestinal stem cell gets its home. Cell 161, 569–580 (2015).

    Google Scholar 

  62. Walton, K. D. et al. Villification in the mouse: Bmp signals control intestinal villus patterning. Development 143, 427–436 (2016).

    Google Scholar 

  63. Mao, J., Kim, B. M., Rajurkar, M., Shivdasani, R. A. & McMahon, A. P. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 137, 1721–1729 (2010).

    Google Scholar 

  64. Rao-Bhatia, A. et al. Hedgehog-activated Fat4 and PCP pathways mediate mesenchymal cell clustering and villus formation in gut development. Dev. Cell 52, 647–658.e6 (2020).

    Google Scholar 

  65. Karlsson, L., Lindahl, P., Heath, J. K. & Betsholtz, C. Abnormal gastrointestinal development in PDGF-A and PDGFR-α deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 127, 3457–3466 (2000).

    Google Scholar 

  66. Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66, 81–93 (2017).

    Google Scholar 

  67. Walton, K. D., Freddo, A. M., Wang, S. & Gumucio, D. L. Generation of intestinal surface: an absorbing tale. Development 143, 2261–2272 (2016).

    Google Scholar 

  68. Sumigray, K. D., Terwilliger, M. & Lechler, T. Morphogenesis and compartmentalization of the intestinal crypt. Dev. Cell 45, 183–197.e5 (2018).

    Google Scholar 

  69. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    ADS  Google Scholar 

  70. Mithal, A. et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat. Commun. 11, 215 (2020).

    ADS  Google Scholar 

  71. Workman, M. J. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23, 49–59 (2017).

    Google Scholar 

  72. Yang, Q. et al. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat. Cell Biol. 23, 733–744 (2021).

    Google Scholar 

  73. Perez-Gonzalez, C. et al. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 23, 745–757 (2021).

    Google Scholar 

  74. Hartl, L., Huelsz-Prince, G., van Zon, J. & Tans, S. J. Apical constriction is necessary for crypt formation in small intestinal organoids. Dev. Biol. 450, 76–81 (2019).

    Google Scholar 

  75. Serra, D. et al. Self-organization and symmetry breaking in intestinal organoid development. Nature 569, 66–72 (2019).

    ADS  Google Scholar 

  76. Krndija, D. et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365, 705–710 (2019).

    ADS  Google Scholar 

  77. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    ADS  Google Scholar 

  78. Balbi, V. & Ciarletta, P. Morpho-elasticity of intestinal villi. J. R. Soc. Interface 10, 20130109 (2013).

    Google Scholar 

  79. Hannezo, E., Prost, J. & Joanny, J.-F. Instabilities of monolayered epithelia: shape and structure of villi and crypts. Phys. Rev. Lett. 107, 078104 (2011).

    ADS  Google Scholar 

  80. Ben Amar, M. & Jia, F. Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl Acad. Sci. USA 110, 10525–10530 (2013).

    Google Scholar 

  81. Freddo, A. M. et al. Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding. Integr. Biol. 8, 918–928 (2016).

    Google Scholar 

  82. Thalheim, T. et al. Stem cell competition in the gut: insights from multi-scale computational modelling. J. R. Soc. Interface 13, 20160218 (2016).

    Google Scholar 

  83. Buske, P. et al. On the biomechanics of stem cell niche formation in the gut — modelling growing organoids. FEBS J. 279, 3475–3487 (2012).

    Google Scholar 

  84. Itzkovitz, S., Blat, I. C., Jacks, T., Clevers, H. & van Oudenaarden, A. Optimality in the development of intestinal crypts. Cell 148, 608–619 (2012).

    Google Scholar 

  85. Almet, A. A., Maini, P. K., Moulton, D. E. & Byrne, H. M. Modeling perspectives on the intestinal crypt, a canonical system for growth, mechanics, and remodeling. Curr. Opin. Biomed. Eng. 15, 32–39 (2020).

    Google Scholar 

  86. Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R. & Francis-West, P. H. Larsen’s Human Embryology (Elsevier Health Sciences, 2014).

  87. Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature 453, 745–750 (2008).

    ADS  Google Scholar 

  88. Swarr, D. T. & Morrisey, E. E. Lung endoderm morphogenesis: gasping for form and function. Annu. Rev. Cell Dev. Biol. 31, 553–573 (2015).

    Google Scholar 

  89. Whitsett, J. A., Kalin, T. V., Xu, Y. & Kalinichenko, V. V. Building and regenerating the lung cell by cell. Physiol. Rev. 99, 513–554 (2019).

    Google Scholar 

  90. Goodwin, K. & Nelson, C. M. Branching morphogenesis. Development 147, dev184499 (2020).

  91. Lang, C., Conrad, L. & Iber, D. Organ-specific branching morphogenesis. Front. Cell Dev. Biol. 9, 671402 (2021).

    Google Scholar 

  92. Varner, V. D. & Nelson, C. M. Cellular and physical mechanisms of branching morphogenesis. Development 141, 2750–2759 (2014).

    Google Scholar 

  93. Goodwin, K. et al. Smooth muscle differentiation shapes domain branches during mouse lung development. Development 146, dev181172 (2019).

    Google Scholar 

  94. Kim, H. Y. et al. Localized smooth muscle differentiation is essential for epithelial bifurcation during branching morphogenesis of the mammalian lung. Dev. Cell 34, 719–726 (2015).

    Google Scholar 

  95. Bellusci, S., Grindley, J., Emoto, H., Itoh, N. & Hogan, B. L. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124, 4867–4878 (1997).

    Google Scholar 

  96. Volckaert, T. et al. Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 140, 3731–3742 (2013).

    Google Scholar 

  97. Chen, Y. W. et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19, 542–549 (2017).

    Google Scholar 

  98. Miller, A. J. et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Rep. 10, 101–119 (2018).

    Google Scholar 

  99. Strikoudis, A. et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep. 27, 3709–3723.e5 (2019).

    Google Scholar 

  100. Tian, L. et al. Human pluripotent stem cell-derived lung organoids: potential applications in development and disease modeling. Wiley Interdiscip. Rev. Dev. Biol. 10, e399 (2021).

    Google Scholar 

  101. Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4, e05098s (2015).

  102. McCauley, K. B. et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20, 844–857.e6 (2017).

    Google Scholar 

  103. Konishi, S. et al. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep. 6, 18–25 (2016).

    Google Scholar 

  104. Menshykau, D., Blanc, P., Unal, E., Sapin, V. & Iber, D. An interplay of geometry and signaling enables robust lung branching morphogenesis. Development 141, 4526–4536 (2014).

    Google Scholar 

  105. Menshykau, D., Kraemer, C. & Iber, D. Branch mode selection during early lung development. PLoS Comput. Biol. 8, e1002377 (2012).

    ADS  MathSciNet  Google Scholar 

  106. Varner, V. D., Gleghorn, J. P., Miller, E., Radisky, D. C. & Nelson, C. M. Mechanically patterning the embryonic airway epithelium. Proc. Natl Acad. Sci. USA 112, 9230–9235 (2015).

    ADS  Google Scholar 

  107. Hannezo, E. et al. A unifying theory of branching morphogenesis. Cell 171, 242–255.e27 (2017).

    Google Scholar 

  108. Benazeraf, B. & Pourquie, O. Formation and segmentation of the vertebrate body axis. Annu. Rev. Cell Dev. Biol. 29, 1–26 (2013).

    Google Scholar 

  109. Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994).

    Google Scholar 

  110. Bertrand, N., Medevielle, F. & Pituello, F. FGF signalling controls the timing of Pax6 activation in the neural tube. Development 127, 4837–4843 (2000).

    Google Scholar 

  111. Gouti, M. et al. A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev. Cell 41, 243–261.e7 (2017).

    Google Scholar 

  112. Koch, F. et al. Antagonistic activities of Sox2 and Brachyury control the fate choice of neuro-mesodermal progenitors. Dev. Cell 42, 514–526.e7 (2017).

    Google Scholar 

  113. Olivera-Martinez, I., Harada, H., Halley, P. A. & Storey, K. G. Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol. 10, e1001415 (2012).

    Google Scholar 

  114. Boulet, A. M. & Capecchi, M. R. Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo. Dev. Biol. 371, 235–245 (2012).

    Google Scholar 

  115. Benazeraf, B. et al. A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature 466, 248–252 (2010).

    ADS  Google Scholar 

  116. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    ADS  Google Scholar 

  117. Xiong, F., Ma, W., Benazeraf, B., Mahadevan, L. & Pourquie, O. Mechanical coupling coordinates the co-elongation of axial and paraxial tissues in avian embryos. Dev. Cell 55, 354–366.e5 (2020).

    Google Scholar 

  118. Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).

    ADS  Google Scholar 

  119. van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582, 405–409 (2020).

    ADS  Google Scholar 

  120. Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature 582, 410–415 (2020).

    ADS  Google Scholar 

  121. Veenvliet, J. V. et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 370, eaba4937 (2020).

    Google Scholar 

  122. Anand, G. M. et al. Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation. Cell 186, 497–512.e23 (2023).

    Google Scholar 

  123. Libby, A. R. G. et al. Axial elongation of caudalized human organoids mimics aspects of neural tube development. Development 148, dev198275 (2021).

    Google Scholar 

  124. Pennimpede, T. et al. In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev. Biol. 372, 55–67 (2012).

    Google Scholar 

  125. Amin, S. et al. Cdx and T Brachyury co-activate growth signaling in the embryonic axial progenitor niche. Cell Rep. 17, 3165–3177 (2016).

    Google Scholar 

  126. Regev, I., Guevorkian, K., Gupta, A., Pourquié, O. & Mahadevan, L. Rectified random cell motility as a mechanism for embryo elongation. Development 149, dev199423 (2022).

    Google Scholar 

  127. Lawton, A. K. et al. Regulated tissue fluidity steers zebrafish body elongation. Development 140, 573–582 (2013).

    Google Scholar 

  128. Valet, M., Siggia, E. D. & Brivanlou, A. H. Mechanical regulation of early vertebrate embryogenesis. Nat. Rev. Mol. Cell Biol. 23, 169–184 (2022).

    Google Scholar 

  129. Turing, A. M. The chemical basis of morphogenesis. 1953. Bull. Math. Biol. 52, 153–197 (1990).

    Google Scholar 

  130. Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    ADS  MathSciNet  Google Scholar 

  131. Howard, J., Grill, S. W. & Bois, J. S. Turing’s next steps: the mechanochemical basis of morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 392–398 (2011).

    Google Scholar 

  132. Almuedo-Castillo, M. et al. Scale-invariant patterning by size-dependent inhibition of Nodal signalling. Nat. Cell Biol. 20, 1032–1042 (2018).

    Google Scholar 

  133. Werner, S. et al. Scaling and regeneration of self-organized patterns. Phys. Rev. Lett. 114, 138101 (2015).

    ADS  Google Scholar 

  134. Recho, P., Hallou, A. & Hannezo, E. Theory of mechanochemical patterning in biphasic biological tissues. Proc. Natl Acad. Sci. USA 116, 5344–5349 (2019).

    ADS  Google Scholar 

  135. Meinhardt, H. The Algorithmic Beauty of Sea Shells (Springer Science & Business Media, 2009).

  136. Watanabe, M. & Kondo, S. Is pigment patterning in fish skin determined by the Turing mechanism? Trends Genet. 31, 88–96 (2015).

    Google Scholar 

  137. Glover, J. D. et al. The developmental basis of fingerprint pattern formation and variation. Cell 186, 940–956 (2023).

  138. Iber, D. & Menshykau, D. The control of branching morphogenesis. Open. Biol. 3, 130088 (2013).

    Google Scholar 

  139. Zhang, Z., Zwick, S., Loew, E., Grimley, J. S. & Ramanathan, S. Mouse embryo geometry drives formation of robust signaling gradients through receptor localization. Nat. Commun. 10, 4516 (2019).

    ADS  Google Scholar 

  140. Gao, H., Ji, B., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    ADS  Google Scholar 

  141. Savin, T. et al. On the growth and form of the gut. Nature 476, 57–62 (2011).

    ADS  Google Scholar 

  142. Bauwens, C. L. et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cell 26, 2300–2310 (2008).

    Google Scholar 

  143. Tewary, M. et al. A stepwise model of reaction-diffusion and positional information governs self-organized human peri-gastrulation-like patterning. Development 144, 4298–4312 (2017).

    Google Scholar 

  144. Etoc, F. et al. A balance between secreted inhibitors and edge sensing controls gastruloid self-organization. Dev. Cell 39, 302–315 (2016).

    Google Scholar 

  145. Xue, X. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 17, 633–641 (2018).

    ADS  Google Scholar 

  146. Diaz-Cuadros, M. et al. Metabolic regulation of species-specific developmental rates. Nature 613, 550–557 (2023).

    ADS  Google Scholar 

  147. Lázaro, J. et al. A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals. Cell Stem Cell, https://doi.org/10.1016/j.stem.2023.05.014 (2023).

  148. Matsuda, M. et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369, 1450–1455 (2020).

    ADS  Google Scholar 

  149. Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129 (2020).

    ADS  Google Scholar 

  150. Diaz-Cuadros, M. et al. In vitro characterization of the human segmentation clock. Nature 580, 113–118 (2020).

    ADS  Google Scholar 

  151. Rogers, K. W. & Schier, A. F. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011).

    Google Scholar 

  152. Stapornwongkul, K. S. & Vincent, J. P. Generation of extracellular morphogen gradients: the case for diffusion. Nat. Rev. Genet. 22, 393–411 (2021).

    Google Scholar 

  153. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    ADS  Google Scholar 

  154. Nordstrom, U., Jessell, T. M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signaling. Nat. Neurosci. 5, 525–532 (2002).

    Google Scholar 

  155. Swindell, E. C. et al. Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev. Biol. 216, 282–296 (1999).

    Google Scholar 

  156. Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell 134, 921–931 (2008).

    Google Scholar 

  157. Towers, M. & Tickle, C. Growing models of vertebrate limb development. Development 136, 179–190 (2009).

    Google Scholar 

  158. Tickle, C., Summerbell, D. & Wolpert, L. Positional signalling and specification of digits in chick limb morphogenesis. Nature 254, 199–202 (1975).

    ADS  Google Scholar 

  159. Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018).

    ADS  Google Scholar 

  160. Zhu, M. et al. Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc. Natl Acad. Sci. USA 117, 4781–4791 (2020).

    ADS  Google Scholar 

  161. Shellard, A. & Mayor, R. Collective durotaxis along a self-generated stiffness gradient in vivo. Nature 600, 690–694 (2021).

    ADS  Google Scholar 

  162. Zheng, Y. et al. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573, 421–425 (2019).

    ADS  Google Scholar 

  163. Manfrin, A. et al. Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. Nat. Methods 16, 640–648 (2019).

    Google Scholar 

  164. Rifes, P. et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat. Biotechnol. 38, 1265–1273 (2020).

    Google Scholar 

  165. Muncie, J. M. et al. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells. Dev. Cell 55, 679–694.e11 (2020).

    Google Scholar 

  166. Saadaoui, M., Rocancourt, D., Roussel, J., Corson, F. & Gros, J. A tensile ring drives tissue flows to shape the gastrulating amniote embryo. Science 367, 453–458 (2020).

    ADS  Google Scholar 

  167. Liu, X. et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 591, 627–632 (2021).

    ADS  Google Scholar 

  168. Yu, L. et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 591, 620–626 (2021).

    ADS  Google Scholar 

  169. Kagawa, H. et al. Human blastoids model blastocyst development and implantation. Nature 601, 600–605 (2022).

    ADS  Google Scholar 

  170. Zheng, Y. et al. Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Sci. Adv. 5, eaax5933 (2019).

    ADS  Google Scholar 

  171. Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C. & Zernicka-Goetz, M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810 (2017).

    Google Scholar 

  172. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Google Scholar 

  173. Xia, Y. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    ADS  Google Scholar 

  174. Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    Google Scholar 

  175. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    ADS  Google Scholar 

  176. Alom Ruiz, S. & Chen, C. S. Microcontact printing: a tool to pattern. Soft Matter 3, 168–177 (2007).

    ADS  Google Scholar 

  177. Bernard, A., Renault, J. P., Michel, B., Bosshard, H. R. & Delamarche, E. Microcontact printing of proteins. Adv. Mater. 12, 1067–1070 (2000).

    Google Scholar 

  178. Karp, J. M. et al. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7, 786–794 (2007).

    Google Scholar 

  179. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    ADS  Google Scholar 

  180. Dahlmann, J. et al. The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 34, 2463–2471 (2013).

    Google Scholar 

  181. Chen, K. et al. Branching development of early post-implantation human embryonic-like tissues in 3D stem cell culture. Biomaterials 275, 120898 (2021).

    Google Scholar 

  182. Ma, Z. et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun. 6, 7413 (2015).

    ADS  Google Scholar 

  183. Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022).

    Google Scholar 

  184. Nelson, C. M., Inman, J. L. & Bissell, M. J. Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat. Protoc. 3, 674–678 (2008).

    Google Scholar 

  185. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    ADS  Google Scholar 

  186. Brassard, J. A., Nikolaev, M., Hübscher, T., Hofer, M. & Lutolf, M. P. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat. Mater. 20, 22–29 (2021).

    ADS  Google Scholar 

  187. Bratt-Leal, A. M., Nguyen, A. H., Hammersmith, K. A., Singh, A. & McDevitt, T. C. A microparticle approach to morphogen delivery within pluripotent stem cell aggregates. Biomaterials 34, 7227–7235 (2013).

    Google Scholar 

  188. Suri, S. et al. Microfluidic-based patterning of embryonic stem cells for in vitro development studies. Lab Chip 13, 4617–4624 (2013).

    Google Scholar 

  189. O’Grady, B. et al. Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater. Sci. 7, 1358–1371 (2019).

    Google Scholar 

  190. Demers, C. J. et al. Development-on-chip: in vitro neural tube patterning with a microfluidic device. Development 143, 1884–1892 (2016).

    Google Scholar 

  191. Samal, P., van Blitterswijk, C., Truckenmüller, R. & Giselbrecht, S. Grow with the flow: when morphogenesis meets microfluidics. Adv. Mater. 31, 1805764 (2019).

    Google Scholar 

  192. Martinez-Ara, G. et al. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. Nat. Commun. 13, 5400 (2022).

    ADS  Google Scholar 

  193. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Google Scholar 

  194. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Google Scholar 

  195. Abdel Fattah, A. R. et al. Actuation enhances patterning in human neural tube organoids. Nat. Commun. 12, 3192 (2021).

    ADS  Google Scholar 

  196. Li, Y. et al. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-catenin signaling. Cell Stem Cell 28, 63–78.e7 (2021).

    Google Scholar 

  197. Pelham, R. J. Jr. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    ADS  Google Scholar 

  198. Sun, Y. et al. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat. Mater. 13, 599–604 (2014).

    ADS  Google Scholar 

  199. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733–736 (2010).

    Google Scholar 

  200. Riehl, B. D., Park, J. H., Kwon, I. K. & Lim, J. Y. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng. Part B Rev. 18, 288–300 (2012).

    Google Scholar 

  201. Moraes, C., Wang, G., Sun, Y. & Simmons, C. A. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 31, 577–584 (2010).

    Google Scholar 

  202. Sakthivel, K. et al. High throughput screening of cell mechanical response using a stretchable 3D cellular microarray platform. Small 16, e2000941 (2020).

    Google Scholar 

  203. Hsieh, H. Y. et al. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip 14, 482–493 (2014).

    Google Scholar 

  204. Liu, H., Usprech, J. F., Parameshwar, P. K., Sun, Y. & Simmons, C. A. Combinatorial screen of dynamic mechanical stimuli for predictive control of MSC mechano-responsiveness. Sci. Adv. 7, eabe7204 (2021).

    ADS  Google Scholar 

  205. Shemesh, J. et al. Flow-induced stress on adherent cells in microfluidic devices. Lab Chip 15, 4114–4127 (2015).

    Google Scholar 

  206. Yu, W. et al. A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts. PLoS ONE 9, e89966 (2014).

    ADS  Google Scholar 

  207. Mandrycky, C., Hadland, B. & Zheng, Y. 3D curvature-instructed endothelial flow response and tissue vascularization. Sci. Adv. 6, eabb3629 (2020).

    ADS  Google Scholar 

  208. Topal, T. et al. Acoustic tweezing cytometry induces rapid initiation of human embryonic stem cell differentiation. Sci. Rep. 8, 12977 (2018).

    ADS  Google Scholar 

  209. Chen, D. et al. Two-bubble acoustic tweezing cytometry for biomechanical probing and stimulation of cells. Biophys. J. 108, 32–42 (2015).

    ADS  Google Scholar 

  210. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    ADS  Google Scholar 

  211. Mitchell, A. C., Briquez, P. S., Hubbell, J. A. & Cochran, J. R. Engineering growth factors for regenerative medicine applications. Acta Biomater. 30, 1–12 (2016).

    Google Scholar 

  212. Gelmi, A. & Schutt, C. E. Stimuli-responsive biomaterials: scaffolds for stem cell control. Adv. Healthc. Mater. 10, e2001125 (2021).

    Google Scholar 

  213. Yavitt, F. M. et al. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. Sci. Adv. 9, eadd5668 (2023).

    Google Scholar 

  214. Drakhlis, L. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol. 39, 737–746 (2021).

    Google Scholar 

  215. Aisenbrey, E. A. & Murphy, W. L. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 5, 539–551 (2020).

    ADS  Google Scholar 

  216. Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods 2, 119–125 (2005).

    Google Scholar 

  217. Zustiak, S. P. & Leach, J. B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11, 1348–1357 (2010).

    Google Scholar 

  218. Kozlowski, M. T., Crook, C. J. & Ku, H. T. Towards organoid culture without Matrigel. Commun. Biol. 4, 1387 (2021).

    Google Scholar 

Download references

Acknowledgements

Studies in the Fu Research Group are supported by the Michigan-Cambridge Collaboration Initiative, University of Michigan Mcubed Fund, University of Michigan Mid-career Biosciences Faculty Achievement Recognition Award, National Science Foundation (PFI-TT 2213845, I-Corps 2112458, CMMI 1917304, CBET 1901718 and CMMI 2325361) and National Institutes of Health (R21 NS113518, R21 HD100931, R21 HD105126, R21 NS127983, R21 HD109635, R21 HD105192, R33 CA261696, R01 GM134535 and R01 NS129850). The authors apologize to colleagues whose work they could not cite owing to space restrictions.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and J.F. wrote the article text. Y.L. generated the figures. All authors contributed to the conceptualization of the article.

Corresponding authors

Correspondence to Yue Liu or Jianping Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Carl-Philipp Heisenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alveoli

Hollow, distensible cavities in lungs in which the exchange of oxygen and carbon dioxide occurs.

Anencephaly

A congenital defect in the formation of neural tube, in which a baby is born without parts of the brain and skull.

Blastocoel

A fluid-filled cavity inside pre-implantation embryos called blastocysts.

Caudal

Towards the tail.

Cleavage furrow

The indentation of the surface of a cell that begins the progression of membrane separation during cell division.

Dorsal

Towards the back.

Epiblast

Composed of pluripotent cells derived from inner cell mass in a blastocyst. It is located between hypoblast and trophoblast and gives rise to three definitive germ layers.

Gastrulation

A morphogenetic process through which epiblast cells reorganize, differentiate and ultimately form three spatially organized germ layers, namely (dorsal to ventral) ectoderm, mesoderm and endoderm.

Lateral

Away from the body midline.

Lumen

A cavity or inner space enclosed by cells or tissues.

Medial

Towards the body midline.

Mesenchymal-to-epithelial transition

A biological process during which loosely connected mesenchymal cells reorganize, establish apical-basal polarity and transition into an assembly of closely packed epithelial cells. Its reverse process is called epithelial-to-mesenchymal transition.

Neural plate

A region of ectoderm which contains a flat layer of columnar neuroepithelial cells.

Neural tube

A tubular neural tissue and the precursor of the central nervous system.

Neuromesodermal progenitor

A population of bipotent progenitor cells in the caudal region of the embryo. It contributes to both spinal cord and presomitic mesoderm development.

Neurulation

Formation of neural tube, which involves two different morphogenetic processes. In primary neurulation, the neural plate folds inward until opposing edges come into contact, fuse and give rise to the neural tube. In secondary neurulation, cavities form in caudal neural precursors and later merge with the neural tube formed by primary neurulation.

Respiratory diverticulum

A ventral outpouching structure that develops from the endodermal foregut and bifurcates into left and right lung buds. Lung buds are rudiments of two lungs and the left and right primary bronchi, and the diverticulum stem forms the trachea and larynx.

Rostral

Towards the head.

Somite

Segmented, block-like structures flanking the neural tube. They are the precursors to vertebrae, part of occipital bones of the skull, skeletal muscles, dermis, cartilage and tendons.

Ventral

Towards the front.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xue, X., Sun, S. et al. Morphogenesis beyond in vivo. Nat Rev Phys 6, 28–44 (2024). https://doi.org/10.1038/s42254-023-00669-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00669-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing