Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum states and intertwining phases in kagome materials

Abstracts

In solid materials, non-trivial topological states, electron correlations and magnetism are central ingredients for realizing quantum properties, including unconventional superconductivity, charge and spin density waves and quantum spin liquids. The kagome lattice, made up of corner-sharing triangles, can host these three ingredients simultaneously and has proved to be a fertile platform for studying diverse quantum phenomena including those stemming from the interplay of these ingredients. This Review introduces the fundamental properties of the kagome lattice and discusses the complex phenomena observed in several materials systems, including the intertwining of charge order and superconductivity in some kagome metals, the modulation of magnetism and topology in some kagome magnets, and the combination of symmetry breaking and Mott physics in ‘breathing’ kagome insulators. The Review also highlights open questions in the field and future research directions in kagome systems.

Key points

  • The kagome lattice is formed by corner-sharing triangles, which can host Dirac points, van Hove singularities (vHSs) and flat bands.

  • The high Fermi surface instability around the vHSs and flat bands can give rise to various physical properties that can be entangled, including superconductivity, charge or spin orders, and complex magnetism.

  • Charge density wave (CDW) states induced by the vHSs mostly appear in kagome materials with non-magnetic or weak magnetism, but are rare in kagome magnets. The relationship between magnetism and CDWs is not yet fully understood.

  • Diverse magnetic properties appearing in kagome magnets are influenced by the interlayer and intralayer magnetic interaction of kagome lattices and other sublattices.

  • A Mott-insulating state was observed in the symmetry breaking, breathing kagome insulators with flat bands. Strong correlation physics related to flat bands can be studied in kagome system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lattice structure and electronic band property of kagome lattice.
Fig. 2: Lattice structure and electronic band structure of AV3Sb5.
Fig. 3: Representative physical properties of AV3Sb5.
Fig. 4: Crystal structures and physical properties in AM6X6 compounds.
Fig. 5: Crystal structure and physical properties of Nb3X8.

Similar content being viewed by others

References

  1. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    ADS  Google Scholar 

  2. Chen, C. W., Choe, J. & Morosan, E. Charge density waves in strongly correlated electron systems. Rep. Prog. Phys. 79, 084505 (2016).

    ADS  Google Scholar 

  3. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    Google Scholar 

  4. Fradkin, E. Electronic liquid crystal phases in strongly correlated systems. In Modern Theories of Many-Particle Systems in Condensed Matter Physics, Lecture Notes in Physics Vol. 843 (eds Cabra, D. C. et al.) (Springer, 2012).

  5. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    ADS  Google Scholar 

  6. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Google Scholar 

  7. Si, Q. & Steglich, F. Heavy fermions and quantum phase transitions. Science 329, 1161–1166 (2010).

    ADS  Google Scholar 

  8. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Google Scholar 

  9. Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S = 1/2 kagomé antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).

    Google Scholar 

  10. Norman, M. R. Colloquium: herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    ADS  MathSciNet  Google Scholar 

  11. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 4793 (1987).

    Google Scholar 

  12. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS  Google Scholar 

  13. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    ADS  Google Scholar 

  14. Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).

    ADS  Google Scholar 

  15. Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    ADS  Google Scholar 

  16. Liu, Z. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020).

    ADS  Google Scholar 

  17. Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).

    ADS  Google Scholar 

  18. Hou, Z. et al. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy. Adv. Mater. 29, 1701144 (2017).

    Google Scholar 

  19. Hou, Z. et al. Creation of single chain of nanoscale skyrmion bubbles with record-high temperature stability in a geometrically confined nanostripe. Nano Lett. 18, 1274–1279 (2018).

    ADS  Google Scholar 

  20. Cable, J. W., Wakabayashi, N. & Radhakrishna, P. Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge. Phys. Rev. B 48, 6159 (1993).

    ADS  Google Scholar 

  21. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New. J. Phys. 19, 015008 (2017).

    ADS  Google Scholar 

  22. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  Google Scholar 

  23. Zhang, H., Feng, H., Xu, X., Hao, W. & Du, Y. Recent progress on 2D kagome magnets: binary TmSnn (T = Fe, Co, Mn). Adv. Quantum Technol. 4, 2100073 (2021).

    Google Scholar 

  24. Kanagaraj, M., Ning, J. & He, L. Topological Co3Sn2S2 magnetic Weyl semimetal: from fundamental understanding to diverse fields of study. Rev. Phys. 8, 100072 (2022).

    Google Scholar 

  25. Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    ADS  Google Scholar 

  26. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5,RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Google Scholar 

  27. Neupert, T., Denner, M. M., Yin, J. X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

    Google Scholar 

  28. Chen, H., Hu, B., Ye, Y., Yang, H. & Gao, H.-J. Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5. Chin. Phys. B 31, 097405 (2022).

    ADS  Google Scholar 

  29. Jiang, K. et al. Kagome superconductors AV3Sb5 (A = K, Rb, Cs). Natl Sci. Rev. 10, nwac199 (2022).

    Google Scholar 

  30. Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    ADS  Google Scholar 

  31. Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    ADS  Google Scholar 

  32. Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    ADS  Google Scholar 

  33. Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).

    Google Scholar 

  34. Yang, S. Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 5, eabb6003 (2020).

    ADS  Google Scholar 

  35. Yu, F. H. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).

    ADS  Google Scholar 

  36. Wang, L. et al. Anomalous Hall effect and two-dimensional Fermi surfaces in the charge-density-wave state of kagome metal RbV3Sb5. J. Phys. Mater. 6, 02LT01 (2023).

    Google Scholar 

  37. Yin, J. X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    ADS  Google Scholar 

  38. Ma, W. et al. Rare earth engineering in RMn6Sn6 (R = Gd-Tm, Lu) topological kagome magnets. Phys. Rev. Lett. 126, 246602 (2021).

    ADS  Google Scholar 

  39. Pasco, C. M., El Baggari, I., Bianco, E., Kourkoutis, L. F. & McQueen, T. M. Tunable magnetic transition to a singlet ground state in a 2D van der Waals layered trimerized kagomé magnet. ACS Nano 13, 9457–9463 (2019).

    Google Scholar 

  40. Magonov, S. N. et al. Scanning tunneling and atomic force microscopy study of layered transition metal halides Nb3X8 (X = Cl, Br, I). J. Am. Chem. Soc. 115, 2495–2503 (1993).

    Google Scholar 

  41. Zhang, Y., Gu, Y., Weng, H., Jiang, K. & Hu, J. Mottness in two-dimensional van der waals Nb3X8 monolayer (X = Cl, Br, and I). Phys. Rev. B 107, 035126 (2023).

    ADS  Google Scholar 

  42. Gao, S. et al. Mott insulator state in a van der Waals flat-band compound. Preprint at https://doi.org/10.48550/arXiv.2205.11462 (2022).

  43. Wang, W. S., Li, Z. Z., Xiang, Y. Y. & Wang, Q. H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).

    ADS  Google Scholar 

  44. Kiesel, M. L. & Thomale, R. Sublattice interference in the kagome Hubbard model. Phys. Rev. B 86, 121105 (2012).

    ADS  Google Scholar 

  45. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    ADS  Google Scholar 

  46. Guo, H. M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    ADS  Google Scholar 

  47. Bolens, A. & Nagaosa, N. Topological states on the breathing kagome lattice. Phys. Rev. B 99, 165141 (2019).

    ADS  Google Scholar 

  48. Green, D., Santos, L. & Chamon, C. Isolated flat bands and spin-1 conical bands in two-dimensional lattices. Phys. Rev. B 82, 075104 (2010).

    ADS  Google Scholar 

  49. Xu, G., Lian, B. & Zhang, S. C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    ADS  Google Scholar 

  50. Tang, E., Mei, J. W. & Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    ADS  Google Scholar 

  51. Sun, K., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009).

    ADS  Google Scholar 

  52. Liu, Q., Yao, H. & Ma, T. Spontaneous symmetry breaking in a two-dimensional kagome lattice. Phys. Rev. B 82, 045102 (2010).

    ADS  Google Scholar 

  53. Wen, J., Rüegg, A., Wang, C. C. J. & Fiete, G. A. Interaction-driven topological insulators on the kagome and the decorated honeycomb lattices. Phys. Rev. B 82, 075125 (2010).

    ADS  Google Scholar 

  54. Zhu, W., Gong, S. S., Zeng, T. S., Fu, L. & Sheng, D. N. Interaction-driven spontaneous quantum Hall effect on a kagome lattice. Phys. Rev. Lett. 117, 096402 (2016).

    ADS  Google Scholar 

  55. Ren, Y., Zeng, T. S., Zhu, W. & Sheng, D. N. Quantum anomalous Hall phase stabilized via realistic interactions on a kagome lattice. Phys. Rev. B 98, 205146 (2018).

    ADS  Google Scholar 

  56. Tanaka, A. & Ueda, H. Stability of ferromagnetism in the Hubbard model on the kagome lattice. Phys. Rev. Lett. 90, 067204 (2003).

    ADS  Google Scholar 

  57. Katsura, H., Maruyama, I., Tanaka, A. & Tasaki, H. Ferromagnetism in the Hubbard model with topological/non-topological flat bands. Europhys. Lett. 91, 57007 (2010).

    ADS  Google Scholar 

  58. Pollmann, F., Fulde, P. & Shtengel, K. Kinetic ferromagnetism on a kagome lattice. Phys. Rev. Lett. 100, 136404 (2008).

    ADS  Google Scholar 

  59. Johnston, R. L. & Hoffmann, R. The kagomé net: band theoretical and topological aspects. Polyhedron 9, 1901–1911 (1990).

    Google Scholar 

  60. Sil, A. & Ghosh, A. K. First and second order topological phases on ferromagnetic breathing kagome lattice. J. Phys. Condens. Matter 32, 205601 (2020).

    ADS  Google Scholar 

  61. Zhou, H. et al. Orbital degree of freedom induced multiple sets of second-order topological states in two-dimensional breathing kagome crystals. NPJ Quantum Mater. 8, 16 (2023).

    ADS  Google Scholar 

  62. Lu, X., Chen, Y. & Chen, H. Orbital corner states on breathing kagome lattices. Phys. Rev. B 101, 195143 (2020).

    ADS  Google Scholar 

  63. Ezawa, M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).

    ADS  Google Scholar 

  64. Herrera, M. A. J. et al. Corner modes of the breathing kagome lattice: origin and robustness. Phys. Rev. B 105, 085411 (2022).

    ADS  Google Scholar 

  65. Li, M. et al. Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photon. 14, 89–94 (2020).

    ADS  Google Scholar 

  66. El Hassan, A. et al. Corner states of light in photonic waveguides. Nat. Photon. 13, 697–700 (2019).

    ADS  Google Scholar 

  67. Xue, H., Yang, Y., Gao, F., Chong, Y. & Zhang, B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 18, 108–112 (2019).

    Google Scholar 

  68. Schaffer, R., Huh, Y., Hwang, K. & Kim, Y. B. Quantum spin liquid in a breathing kagome lattice. Phys. Rev. B 95, 054410 (2017).

    ADS  Google Scholar 

  69. Akbari-Sharbaf, A. et al. Tunable quantum spin liquidity in the 1/6th-filled breathing kagome lattice. Phys. Rev. Lett. 120, 227201 (2018).

    ADS  Google Scholar 

  70. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    ADS  Google Scholar 

  71. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Google Scholar 

  72. Liu, G., Zhang, P., Wang, Z. & Li, S. S. Spin Hall effect on the kagome lattice with Rashba spin–orbit interaction. Phys. Rev. B 79, 035323 (2009).

    ADS  Google Scholar 

  73. Jones, D. C. et al. Origin of spin reorientation and intrinsic anomalous Hall effect in the kagome ferrimagnet TbMn6Sn6. Preprint at https://doi.org/10.48550/arXiv.2203.17246 (2022).

  74. Asaba, T. et al. Anomalous Hall effect in the kagome ferrimagnet GdMn6Sn6. Phys. Rev. B 101, 174415 (2020).

    ADS  Google Scholar 

  75. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Google Scholar 

  76. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    ADS  Google Scholar 

  77. Chen, D. et al. Large anomalous Hall effect in the kagome ferromagnet LiMn6Sn6. Phys. Rev. B 103, 144410 (2021).

    ADS  Google Scholar 

  78. Bruno, P., Dugaev, V. K. & Taillefumier, M. Topological Hall effect and Berry phase in magnetic napostructures. Phys. Rev. Lett. 93, 096806 (2004).

    ADS  Google Scholar 

  79. He, Y. et al. Topological Hall effect arising from the mesoscopic and microscopic non-coplanar magnetic structure in MnBi. Acta Mater. 226, 117619 (2022).

    Google Scholar 

  80. Rout, P. K., Madduri, P. V. P., Manna, S. K. & Nayak, A. K. Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn. Phys. Rev. B 99, 094430 (2019).

    ADS  Google Scholar 

  81. Taylor, J. M. et al. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn. Phys. Rev. B 101, 094404 (2020).

    ADS  Google Scholar 

  82. Du, Q. et al. Topological Hall effect anisotropy in kagome bilayer metal Fe3Sn2. Phys. Rev. Lett. 129, 236601 (2022).

    ADS  Google Scholar 

  83. Chakrabartty, D., Jamaluddin, S., Manna, S. K. & Nayak, A. K. Tunable room temperature magnetic skyrmions in centrosymmetric kagome magnet Mn4Ga2Sn. Commun. Phys. 5, 189 (2022).

    Google Scholar 

  84. Wang, Q. et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B 103, 014416 (2021).

    ADS  Google Scholar 

  85. Wang, B. et al. Magnetotransport properties of the kagome magnet TmMn6Sn6. Phys. Rev. B 106, 125107 (2022).

    ADS  Google Scholar 

  86. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    ADS  Google Scholar 

  87. Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065(R) (2000).

    ADS  Google Scholar 

  88. Yang, S., Gu, Z. C., Sun, K. & Das Sarma, S. Topological flat band models with arbitrary Chern numbers. Phys. Rev. B 86, 241112(R) (2012).

    ADS  Google Scholar 

  89. Li, Z. et al. Realization of flat band with possible nontrivial topology in electronic kagome lattice. Sci. Adv. 4, eaau4511 (2018).

    ADS  Google Scholar 

  90. Chen, Y. et al. Ferromagnetism and Wigner crystallization in kagome graphene and related structures. Phys. Rev. B 98, 035135 (2018).

    ADS  Google Scholar 

  91. Wu, C., Bergman, D., Balents, L. & Das Sarma, S. Flat bands and Wigner crystallization in the honeycomb optical lattice. Phys. Rev. Lett. 99, 070401 (2007).

    ADS  Google Scholar 

  92. Jaworowski, B. et al. Wigner crystallization in topological flat bands. N. J. Phys. 20, 063023 (2018).

    Google Scholar 

  93. Hu, J. et al. Correlated flat bands and quantum spin liquid state in a cluster Mott insulator. Commun. Phys. 6, 172 (2023).

    Google Scholar 

  94. Iglovikov, V. I., Hébert, F., Grémaud, B., Batrouni, G. G. & Scalettar, R. T. Superconducting transitions in flat-band systems. Phys. Rev. B 90, 094506 (2014).

    ADS  Google Scholar 

  95. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS  Google Scholar 

  96. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018).

    Google Scholar 

  97. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Google Scholar 

  98. Xu, Y. et al. Electronic correlations and flattened band in magnetic Weyl semimetal candidate Co3Sn2S2. Nat. Commun. 11, 3985 (2020).

    ADS  Google Scholar 

  99. Li, M. et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nat. Commun. 12, 3129 (2021).

    ADS  Google Scholar 

  100. Yang, T. Y. et al. Fermi-level flat band in a kagome magnet. Quantum Frontiers 1, 14 (2022).

    Google Scholar 

  101. Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).

    Google Scholar 

  102. Lee, S. et al. Nature of charge density wave in kagome metal ScV6Sn6. Preprint at https://doi.org/10.48550/arXiv.2304.11820 (2023).

  103. Yu, S. L. & Li, J. X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).

    ADS  Google Scholar 

  104. Yuan, N. F. Q., Isobe, H. & Fu, L. Magic of high-order van Hove singularity. Nat. Commun. 10, 5769 (2019).

    ADS  Google Scholar 

  105. Guerci, D., Simon, P. & Mora, C. Higher-order van Hove singularity in magic-angle twisted trilayer graphene. Phys. Rev. Res. 4, L012013 (2022).

    Google Scholar 

  106. Classen, L., Chubukov, A. V., Honerkamp, C. & Scherer, M. M. Competing orders at higher-order van Hove points. Phys. Rev. B 102, 125141 (2020).

    ADS  Google Scholar 

  107. Hu, Y. et al. Rich nature of van Hove singularities in kagome superconductor CsV3Sb5. Nat. Commun. 13, 2220 (2022).

    ADS  Google Scholar 

  108. Jovanovic, M. & Schoop, L. M. Simple chemical rules for predicting band structures of kagome materials. J. Am. Chem. Soc. 144, 10978–10991 (2022).

    Google Scholar 

  109. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding ìn Solids and Surfaces (VCH, 1988).

  110. Hu, Y. et al. Topological surface states and flat bands in the kagome superconductor CsV3Sb5. Sci. Bull. 67, 495–500 (2022).

    Google Scholar 

  111. Nakayama, K. et al. Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5. Phys. Rev. B 104, L161112 (2021).

    ADS  Google Scholar 

  112. Wang, N. N. et al. Competition between charge-density-wave and superconductivity in the kagome metal RbV3Sb5. Phys. Rev. Res. 3, 043018 (2021).

    Google Scholar 

  113. Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).

    ADS  Google Scholar 

  114. Luo, J. et al. Possible Star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. NPJ Quantum Mater. 7, 30 (2022).

    ADS  MathSciNet  Google Scholar 

  115. Song, D. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China 65, 247462 (2022).

    MathSciNet  Google Scholar 

  116. Jiang, Y. X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    ADS  Google Scholar 

  117. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).

    Google Scholar 

  118. Shumiya, N. et al. Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5. Phys. Rev. B 104, 035131 (2021).

    ADS  Google Scholar 

  119. Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).

    ADS  Google Scholar 

  120. Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    ADS  Google Scholar 

  121. Li, H. et al. Unidirectional coherent quasiparticles in the high-temperature rotational symmetry broken phase of AV3Sb5 kagome superconductors. Nat. Phys. 19, 637–643 (2023).

    Google Scholar 

  122. Wang, Q. et al. Charge density wave orders and enhanced superconductivity under pressure in the kagome metal CsV3Sb5. Adv. Mater. 33, 2102813 (2021).

    Google Scholar 

  123. Yu, J. et al. Evolution of electronic structure in pristine and Rb-reconstructed surfaces of kagome metal RbV3Sb5. Nano Lett. 22, 918–925 (2022).

    ADS  Google Scholar 

  124. Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).

    Google Scholar 

  125. Kato, T. et al. Surface-termination-dependent electronic states in kagome superconductors AV3Sb5 (A = K, Rb, Cs) studied by micro-ARPES. Phys. Rev. B 107, 245143 (2023).

    ADS  Google Scholar 

  126. Kato, T. et al. Polarity-dependent charge density wave in the kagome superconductor CsV3Sb5. Phys. Rev. B 106, L121112 (2022).

    ADS  Google Scholar 

  127. Li, H. et al. Small Fermi pockets intertwined with charge stripes and pair density wave order in a kagome superconductor. Preprint at https://doi.org/10.48550/arXiv.2303.07254 (2023).

  128. Ye, Z., Luo, A., Yin, J. X., Hasan, M. Z. & Xu, G. Structural instability and charge modulations in the kagome superconductor AV3Sb5. Phys. Rev. B 105, 245121 (2022).

    ADS  Google Scholar 

  129. Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    ADS  Google Scholar 

  130. Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. 18, 1470–1475 (2022).

    Google Scholar 

  131. Wu, Q. et al. Simultaneous formation of two-fold rotation symmetry with charge order in the kagome superconductor CsV3Sb5 by optical polarization rotation measurement. Phys. Rev. B 106, 205109 (2022).

    ADS  Google Scholar 

  132. Jiang, Z. et al. Observation of electronic nematicity driven by three-dimensional charge density wave in kagome lattice KV3Sb5. Nano Lett.23, 5625–5633 (2023).

    ADS  Google Scholar 

  133. Wulferding, D. et al. Emergent nematicity and intrinsic versus extrinsic electronic scattering processes in the kagome metal CsV3Sb5. Phys. Rev. Res. 4, 023215 (2022).

    Google Scholar 

  134. Miao, H. et al. Geometry of the charge density wave in the kagome metal AV3Sb5. Phys. Rev. B 104, 195132 (2021).

    ADS  Google Scholar 

  135. Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B 104, 035142 (2021).

    ADS  Google Scholar 

  136. Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).

    Google Scholar 

  137. Ratcliff, N., Hallett, L., Ortiz, B. R., Wilson, S. D. & Harter, J. W. Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV3Sb5. Phys. Rev. Mater. 5, L111801 (2021).

    ADS  Google Scholar 

  138. Stahl, Q. et al. Temperature-driven reorganization of electronic order in CsV3Sb5. Phys. Rev. B 105, 195136 (2022).

    ADS  Google Scholar 

  139. Ortiz, B. R. et al. Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV3Sb5. Phys. Rev. X 11, 041030 (2021).

    Google Scholar 

  140. Kautzsch, L. et al. Structural evolution of the kagome superconductors AV3Sb5 (A = K, Rb, and Cs) through charge density wave order. Phys. Rev. Mater. 7, 024806 (2023).

    Google Scholar 

  141. Li, H. et al. Discovery of conjoined charge density waves in the kagome superconductor CsV3Sb5. Nat. Commun. 13, 6348 (2022).

    ADS  Google Scholar 

  142. Xiao, Q. et al. Coexistence of multiple stacking charge density waves in kagome superconductor CsV3Sb5. Phys. Rev. Res. 5, L012032 (2023).

    Google Scholar 

  143. Wu, S. et al. Charge density wave order in the kagome metal AV3Sb5 (A = Cs,Rb, K). Phys. Rev. B 105, 155106 (2022).

    ADS  Google Scholar 

  144. Wang, Z. X. et al. Unconventional charge density wave and photoinduced lattice symmetry change in the kagome metal CsV3Sb5 probed by time-resolved spectroscopy. Phys. Rev. B 104, 165110 (2021).

    ADS  Google Scholar 

  145. Johannes, M. D. & Mazin, I. I. Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 77, 165135 (2008).

    ADS  Google Scholar 

  146. Varma, C. M. & Simons, A. L. Strong-coupling theory of charge-density-wave transitions. Phys. Rev. Lett. 51, 138–141 (1983).

    ADS  Google Scholar 

  147. Kang, M. et al. Charge order landscape and competition with superconductivity in kagome metals. Nat. Mater. 22, 186–193 (2023).

    ADS  Google Scholar 

  148. Luo, Y. et al. Electronic states dressed by an out-of-plane supermodulation in the quasi-two-dimensional kagome superconductor CsV3Sb5. Phys. Rev. B 105, L241111 (2022).

    ADS  Google Scholar 

  149. Lou, R. et al. Charge-density-wave-induced peak–dip–hump structure and the multiband superconductivity in a kagome superconductor CsV3Sb5. Phys. Rev. Lett. 128, 036402 (2022).

    ADS  Google Scholar 

  150. Wang, Z. et al. Distinctive momentum dependent charge-density-wave gap observed in CsV3Sb5 superconductor with topological kagome lattice. Preprint at https://doi.org/10.48550/arXiv.2104.05556 (2021).

  151. Liu, Z. et al. Charge-density-wave-induced bands renormalization and energy gaps in a kagome superconductor RbV3Sb5. Phys. Rev. X 11, 041010 (2021).

    Google Scholar 

  152. Kato, T. et al. Three-dimensional energy gap and origin of charge-density wave in kagome superconductor KV3Sb5. Commun. Mater. 3, 30 (2022).

    Google Scholar 

  153. Uykur, E. et al. Low-energy optical properties of the nonmagnetic kagome metal. Phys. Rev. B 104, 045130 (2021).

    ADS  Google Scholar 

  154. Zhou, X. et al. Origin of charge density wave in the kagome metal CsV3Sb5 as revealed by optical spectroscopy. Phys. Rev. B 104, L041101 (2021).

    ADS  Google Scholar 

  155. Liu, G. et al. Observation of anomalous amplitude modes in the kagome metal CsV3Sb5. Nat. Commun. 13, 3461 (2022).

    ADS  Google Scholar 

  156. Luo, H. et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).

    ADS  Google Scholar 

  157. Uykur, E., Ortiz, B. R., Wilson, S. D., Dressel, M. & Tsirlin, A. A. Optical detection of the density-wave instability in the kagome metal KV3Sb5. NPJ Quantum Mater. 7, 16 (2022).

    ADS  Google Scholar 

  158. Xie, Y. et al. Electron-phonon coupling in the charge density wave state of CsV3Sb5. Phys. Rev. B 105, L140501 (2022).

    ADS  MathSciNet  Google Scholar 

  159. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).

    ADS  Google Scholar 

  160. Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    ADS  Google Scholar 

  161. Grandi, F., Consiglio, A., Sentef, M. A., Thomale, R. & Kennes, D. M. Theory of nematic charge orders in kagome metals. Phys. Rev. B 107, 155131 (2023).

    ADS  Google Scholar 

  162. Feng, X., Zhang, Y., Jiang, K. & Hu, J. Low-energy effective theory and symmetry classification of flux phases on the kagome lattice. Phys. Rev. B 104, 165136 (2021).

    ADS  Google Scholar 

  163. Lin, Y. P. & Nandkishore, R. M. Complex charge density waves at van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 ( = K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).

    ADS  Google Scholar 

  164. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Loop currents in AV3Sb5 kagome metals: multipolar and toroidal magnetic orders. Phys. Rev. B 106, 144504 (2022).

    ADS  Google Scholar 

  165. Mu, C. et al. Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance. Chin. Phys. B 31, 017105 (2022).

    ADS  Google Scholar 

  166. Frassineti, J. et al. Microscopic nature of the charge-density wave in kagome superconductor RbV3Sb5. Phys. Rev. Res. 5, L012017 (2023).

    Google Scholar 

  167. Wang, Y., Wu, T., Li, Z., Jiang, K. & Hu, J. Structure of kagome superconductor CsV3Sb5 in the charge density wave states. Phys. Rev. B 107, 184106 (2023).

    ADS  Google Scholar 

  168. Hu, Y. et al. Coexistence of trihexagonal and star-of-David pattern in the charge density wave of the kagome superconductor AV3Sb5. Phys. Rev. B 106, L241106 (2022).

    ADS  Google Scholar 

  169. Broyles, C., Graf, D., Yang, H., Gao, H. & Ran, S. Effect of the interlayer ordering on the Fermi surface of kagome superconductor CsV3Sb5 revealed by quantum oscillations. Phys. Rev. Lett. 129, 157001 (2022).

    ADS  Google Scholar 

  170. Kautzsch, L. et al. Incommensurate charge-stripe correlations in the kagome superconductor CsV3Sb5-xSnx. NPJ Quantum Mater. 8, 37 (2023).

    ADS  Google Scholar 

  171. Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. J. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).

    ADS  Google Scholar 

  172. Li, H. et al. No observation of chiral flux current in the topological kagome metal CsV3Sb5. Phys. Rev. B 105, 045102 (2022).

    ADS  Google Scholar 

  173. Saykin, D. R. et al. High resolution polar Kerr effect studies of CsV3Sb5: tests for time-reversal symmetry breaking below the charge-order transition. Phys. Rev. Lett. 131, 016901 (2023).

    ADS  Google Scholar 

  174. Yu, L. et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5. Preprint at https://doi.org/10.48550/arXiv.2107.10714 (2021).

  175. Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    ADS  Google Scholar 

  176. Khasanov, R. et al. Time-reversal symmetry broken by charge order in CsV3Sb5. Phys. Rev. Res. 4, 023244 (2022).

    Google Scholar 

  177. Chen, D. et al. Anomalous thermoelectric effects and quantum oscillations in the kagome metal CsV3Sb5. Phys. Rev. B 105, L201109 (2022).

    ADS  Google Scholar 

  178. Mi, X. et al. Multiband effects in thermoelectric and electrical transport properties of kagome superconductors AV3Sb5 (A = K, Rb, Cs). New J. Phys. 24, 093021 (2022).

    ADS  Google Scholar 

  179. Zhou, X. et al. Anomalous thermal Hall effect and anomalous nernst effect of CsV3Sb5. Phys. Rev. B 105, 205104 (2022).

    ADS  MathSciNet  Google Scholar 

  180. Hu, Y. et al. Time-reversal symmetry breaking in charge density wave of CsV3Sb5 detected by polar Kerr effect. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-1794207/v1 (2022).

  181. Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    Google Scholar 

  182. Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5(A = K; Rb; Cs). Phys. Rev. Lett. 127, 217601 (2021).

    ADS  Google Scholar 

  183. Dong, J. W., Wang, Z. & Zhou, S. Loop-current charge density wave driven by long-range Coulomb repulsion on the kagomé lattice. Phys. Rev. B 107, 045127 (2023).

    ADS  Google Scholar 

  184. Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).

    ADS  Google Scholar 

  185. Scammell, H. D., Ingham, J., Li, T. & Sushkov, O. P. Chiral excitonic order from twofold van Hove singularities in kagome metals. Nat. Commun. 14, 605 (2023).

    ADS  Google Scholar 

  186. Xu, H. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 187004 (2021).

    ADS  Google Scholar 

  187. Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. NPJ Quantum Mater. 7, 49 (2022).

    ADS  Google Scholar 

  188. Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).

    ADS  Google Scholar 

  189. Roppongi, M. et al. Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor CsV3Sb5. Nat. Commun. 14, 667 (2023).

    ADS  Google Scholar 

  190. Deng, J., Zhang, R., Xie, Y., Wu, X. & Wang, Z. Fermi surface nesting and surface topological superconductivity in AV3Sb5. Preprint at https://doi.org/10.48550/arXiv.2302.06211 (2023).

  191. Jiang, H. M., Liu, M. X. & Yu, S. L. Impact of the orbital current order on the superconducting properties of the kagome superconductors. Phys. Rev. B 107, 064506 (2023).

    ADS  Google Scholar 

  192. Gu, Y., Zhang, Y., Feng, X., Jiang, K. & Hu, J. Gapless excitations inside the fully gapped kagome superconductors AV3Sb5. Phys. Rev. B 105, L100502 (2022).

    ADS  Google Scholar 

  193. Zhao, C. C. et al. Nodal superconductivity and superconducting domes in the topological. Preprint at https://doi.org/10.48550/arXiv.2102.08356 (2021).

  194. Guguchia, Z. et al. Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5. Nat. Commun. 14, 153 (2023).

    ADS  Google Scholar 

  195. Shan, Z. et al. Muon spin relaxation study of the layered kagome superconductor CsV3Sb5. Phys. Rev. Res. 4, 033145 (2022).

    Google Scholar 

  196. Gupta, R. et al. Two types of charge order with distinct interplay with superconductivity in the kagome material CsV3Sb5. Commun. Phys. 5, 232 (2022).

    Google Scholar 

  197. Zheng, L. et al. Emergent charge order in pressurized kagome superconductor CsV3Sb5. Nature 611, 682–687 (2022).

    ADS  Google Scholar 

  198. Wang, Y. et al. Anisotropic proximity-induced superconductivity and edge supercurrent in kagome metal, K1−xV3Sb5. Sci. Adv. 9, eadg7269 (2023).

    Google Scholar 

  199. Zhao, J., Wu, W., Wang, Y. & Yang, S. A. Electronic correlations in the normal state of the kagome superconductor KV3Sb5. Phys. Rev. B 103, L241117 (2021).

    ADS  Google Scholar 

  200. Wu, X. et al. Nature of unconventional pairing in the kagome superconductors. Phys. Rev. Lett. 127, 177001 (2021).

    ADS  Google Scholar 

  201. Rømer, A. T., Bhattacharyya, S., Valentí, R., Christensen, M. H. & Andersen, B. M. Superconductivity from repulsive interactions on the kagome lattice. Phys. Rev. B 106, 174514 (2022).

    ADS  Google Scholar 

  202. Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, eabl4108 (2022).

    ADS  Google Scholar 

  203. Herland, E. V., Babaev, E. & Sudbø, A. Phase transitions in a three dimensional U(1) × u(1) lattice London superconductor: metallic superfluid and charge-4e superconducting states. Phys. Rev. B 82, 134511 (2010).

    ADS  Google Scholar 

  204. Zhou, S. & Wang, Z. Chern Fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagomé superconductors. Nat. Commun. 13, 7288 (2022).

    ADS  Google Scholar 

  205. Agterberg, D. F., Geracie, M. & Tsunetsugu, H. Conventional and charge-six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions. Phys. Rev. B 84, 014513 (2011).

    ADS  Google Scholar 

  206. Berg, E., Fradkin, E. & Kivelson, S. A. Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nat. Phys. 5, 830–833 (2009).

    Google Scholar 

  207. Jian, S., Huang, Y. & Yao, H. Charge-4e superconductivity from nematic superconductors in two and three dimensions. Phys. Rev. Lett. 127, 227001 (2021).

    ADS  Google Scholar 

  208. Ge, J. et al. Discovery of charge-4e and charge-6e superconductivity in kagome superconductor CsV3Sb5. Preprint at https://doi.org/10.48550/arXiv.2201.10352 (2022).

  209. Han, J. H. & Lee, P. A. Understanding resistance oscillation in the CsV3Sb5 superconductor. Phys. Rev. B 106, 184515 (2022).

    ADS  Google Scholar 

  210. Yu, Y. Non-uniform vestigial charge-4e phase in the kagome superconductor CsV3Sb5. Preprint at https://doi.org/10.48550/arXiv.2210.00023 (2022).

  211. Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021).

    ADS  Google Scholar 

  212. Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5. Phys. Rev. Lett. 126, 247001 (2021).

    ADS  Google Scholar 

  213. Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).

    ADS  Google Scholar 

  214. Li, Y. et al. Tuning the competition between superconductivity and charge order in the kagome superconductor Cs(V1xNbx)3Sb5. Phys. Rev. B 105, L180507 (2022).

    ADS  Google Scholar 

  215. Nakayama, K. et al. Carrier injection and manipulation of charge-density wave in kagome superconductor. Phys. Rev. X 12, 011001 (2022).

    Google Scholar 

  216. Yin, L. et al. Strain-sensitive superconductivity in the kagome metals KV3Sb5 and CsV3Sb5 probed by point-contact spectroscopy. Phys. Rev. B 104, 174507 (2021).

    ADS  Google Scholar 

  217. Consiglio, A. et al. Van Hove tuning of AV3Sb5 kagome metals under pressure and strain. Phys. Rev. B 105, 165146 (2022).

    ADS  Google Scholar 

  218. Zhu, C. C. et al. Double-dome superconductivity under pressure in the V-based kagome metals AV3Sb5 (A = Rb and K). Phys. Rev. B 105, 094507 (2022).

    ADS  MathSciNet  Google Scholar 

  219. Zhang, Z. et al. Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5. Phys. Rev. B 103, 224513 (2021).

    ADS  Google Scholar 

  220. Chen, X. et al. Highly robust reentrant superconductivity in CsV3Sb5 under pressure. Chin. Phys. Lett. 38, 057402 (2021).

    ADS  Google Scholar 

  221. Tsirlin, A. A. et al. Role of Sb in the superconducting kagome metal CsV3Sb5 revealed by its anisotropic compression. SciPost Phys. 12, 049 (2022).

    ADS  Google Scholar 

  222. Labollita, H. & Botana, A. S. Tuning the van Hove singularities in AV3Sb5 (A = K, Rb, Cs) via pressure and doping. Phys. Rev. B 104, 205129 (2021).

    ADS  Google Scholar 

  223. Kato, T. et al. Fermiology and origin of Tc enhancement in a kagome superconductor Cs(V1−xNbx)3Sb5. Phys. Rev. Lett. 129, 206402 (2022).

    ADS  Google Scholar 

  224. Liu, Y. et al. Doping evolution of superconductivity, charge order and band topology in hole-doped topological kagome superconductors Cs(V1xTix)3Sb5. Phys. Rev. Mater. 7, 064801 (2023).

    Google Scholar 

  225. Oey, Y. M., Kaboudvand, F., Ortiz, B. R., Seshadri, R. & Wilson, S. D. Tuning charge density wave order and superconductivity in the kagome metals KV3Sb5xSnx and RbV3Sb5xSnx. Phys. Rev. Mater. 6, 074802 (2022).

    Google Scholar 

  226. Oey, Y. M. et al. Fermi level tuning and double-dome superconductivity in the kagome metal CsV3Sb5xSnx. Phys. Rev. Mater. 6, L041801 (2022).

    ADS  Google Scholar 

  227. Song, Y. et al. Competition of superconductivity and charge density wave in selective oxidized CsV3Sb5 thin flakes. Phys. Rev. Lett. 127, 237001 (2021).

    ADS  Google Scholar 

  228. Zhang, W. et al. Emergence of large quantum oscillation frequencies in thin flakes of a kagome superconductor CsV3Sb5. Phys. Rev. B 106, 195103 (2022).

    ADS  Google Scholar 

  229. Song, B. et al. Anomalous enhancement of charge density wave in kagome superconductor CsV3Sb5 approaching the 2D limit. Nat. Commun. 14, 2492 (2023).

    ADS  Google Scholar 

  230. Zheng, G. et al. Electrically controlled superconductor-to-failed insulator transition and giant anomalous Hall effect in kagome metal CsV3Sb5 nanoflakes. Nat. Commun. 14, 678 (2023).

    ADS  Google Scholar 

  231. Kim, S.-W., Oh, H., Moon, E.-G. & Kim, Y. Monolayer kagome metals AV3Sb5. Nat. Commun. 14, 591 (2023).

    ADS  Google Scholar 

  232. Casola, F., Van Der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    ADS  Google Scholar 

  233. Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).

    ADS  Google Scholar 

  234. Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

    ADS  Google Scholar 

  235. Olenych, R. R., Akselrud, L. G. & Yarmolyuk, Y. P. Crystal structure of ternary germanides RFe6Ge6 (R = Sc, Ti, Zr, Hf, Nb) and RCo6Ge6 (R = Ti, Zr, Hf). Dopov. Akad. Nauk. Ukr. RSR Ser. A 2, 84–88 (1981).

    Google Scholar 

  236. Buchholz, W. & Schuster, H.-U. lntermetallische Phasen mit b35-uberstruktur und verwandtschaftsbeziehung zu LiFe6Ge6. Z. Anorg. Allg. Chem. 48, 40–48 (1981).

    Google Scholar 

  237. Rao, X.-L.& Coey, J. M. D. Mössbauer study of the magnetic properties of RFe6Sncompounds (R = Y, Gd, Tb, Dy, Ho, Er, Tm). J. Appl. Phys. 81, 5181–5183 (1997).

    ADS  Google Scholar 

  238. Venturini, G., Welter, R. & Malaman, B. Crystallographic data and magnetic properties of RT6Ge6 compounds (R Sc, Y, Nd, Sm, GdLu; TMn, Fe). J. Alloy. Compd. 185, 99–107 (1992).

    Google Scholar 

  239. El Idrissi, B. C., Venturini, G. & Malaman, B. Crystal structures of RFe6Sn6 (R = Sc, Y, Gd Tm, Lu) rare-earth iron stannides. Mater. Res. Bull. 26, 1331–1338 (1991).

    Google Scholar 

  240. Idrissi, B. C. E., Venturini, G., Malaman, B. & Ressouche, E. Magnetic properties of NdMn6Ge6 and SmMn6Ge6 compounds from susceptibility. J. Alloys Compd. 215, 187–193 (1994).

    Google Scholar 

  241. Gao, L. et al. Anomalous Hall effect in ferrimagnetic metal RMn6Sn6(R = Tb, Dy, Ho) with clean Mn kagome lattice. Appl. Phys. Lett. 119, 092405 (2021).

    ADS  Google Scholar 

  242. Avila, M. A., Takabatake, T., Takahashi, Y., Bud’ko, S. L. & Canfield, P. C. Direct observation of Fe spin reorientation in single-crystalline YbFe6Ge6. J. Phys. Condens. Matter 17, 6969–6979 (2005).

    ADS  Google Scholar 

  243. Duijn, H. G. M., Brück, E., Buschow, K. H. J. & De Beer, F. R. Electrical resistivity of RMn6Ge6 (R = rare earth) compounds. J. Magn. Magn. Mater. 196, 691–693 (1999).

    ADS  Google Scholar 

  244. Malaman, B. et al. Magnetic properties of RMn6Sn6 (R = Gd-Er) compounds from neutron diffraction and Mossbauer measurements. J. Magn. Magn. Mater. 202, 519–534 (1999).

    ADS  Google Scholar 

  245. Clatterbuck, D. M. & Gschneidner Jr, K. A. Magnetic properties of RMn6Sn6 (R = Tb, Ho, Er, Tm, Lu) single crystals. J. Magn. Magn. Mater. 207, 78–94 (1999). 

    ADS  Google Scholar 

  246. Venturini, G., Idrissi, B. C., El & Malaman, B. Magnetic properties of RMn6Sn6 (R = Sc, Y, Gd-Tm, Lu) compounds with HfFe6Ge6 type structure. J. Magn. Magn. Mater. 94, 35–42 (1991).

    ADS  Google Scholar 

  247. Lee, Y. et al. Interplay between magnetism and band topology in Kagome magnets RMn6Sn6. Phys. Rev. B 108, 045132 (2023).

    ADS  Google Scholar 

  248. Mielke, C. et al. Low-temperature magnetic crossover in the topological kagome magnet TbMn6Sn6. Commun. Phys. 5, 107 (2022).

    Google Scholar 

  249. Venturini, G., Fruchart, D. & Malaman, B. Incommensurate magnetic structures of RMn6Sn6(R = Sc, Y, Lu) compounds from neutron diffraction study. J. Alloy. Compd. 236, 102–110 (1996).

    Google Scholar 

  250. Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020).

    ADS  Google Scholar 

  251. Venturini, G., Welter, R., Malaman, B. & Ressouche, E. Magnetic structure of YMn6Ge6 and room temperature magnetic structure of LuMn6Sn6 obtained from neutron diffraction study. J. Alloy. Compd. 200, 51–57 (1993).

    Google Scholar 

  252. Rosenfeld, E. V. & Mushnikov, N. V. Double-flat-spiral magnetic structures: theory and application to the RMn6X6 compounds. Phys. B Condens. Matter 403, 1898–1906 (2008).

    ADS  Google Scholar 

  253. Mulder, F. M., Thiel, R. C., Brabers, J. H. V. J., de Boer, F. R. & Buschow, K. H. J. 155Gd Mössbauer effect and magnetic properties of GdMn6Ge6. J. Alloy. Compd. 190, L29–L31 (1993).

    Google Scholar 

  254. Siegfried, P. E. et al. Magnetization-driven Lifshitz transition and charge–spin coupling in the kagome metal YMn6Sn6. Commun. Phys. 5, 58 (2022).

    Google Scholar 

  255. Dally, R. L. et al. Chiral properties of the zero-field spiral state and field-induced magnetic phases of the itinerant kagome metal YMn6Sn6. Phys. Rev. B 103, 094413 (2021).

    ADS  Google Scholar 

  256. Mazet, T., Ihou-Mouko, H., Marêché, J. F. & Malaman, B. Magnetic properties and 119Sn hyperfine interaction parameters of LiMn6Sn6. Eur. Phys. J. B 51, 173–180 (2006).

    ADS  Google Scholar 

  257. Pokharel, G. et al. Electronic properties of the topological kagome metals YV6Sn6 and GdV6Sn6. Phys. Rev. B 104, 235139 (2021).

    ADS  MathSciNet  Google Scholar 

  258. Arachchige, H. W. S. et al. Charge density wave in kagome lattice intermetallic ScV6Sn6. Phys. Rev. Lett. 129, 216402 (2022).

    ADS  Google Scholar 

  259. Sinha, M. et al. Twisting of 2D kagomé sheets in layered intermetallics. ACS Cent. Sci. 7, 1381–1390 (2021).

    Google Scholar 

  260. Weiland, A. et al. Refine intervention: characterizing disordered Yb0.5Co3Ge3. Cryst. Growth Des. 20, 6715–6721 (2020).

    Google Scholar 

  261. Wang, Y. et al. Electronic properties and phase transition in the kagome metal Yb0.5Co3Ge3. Chem. Mater. 34, 7337–7343 (2022).

    Google Scholar 

  262. Hu, Y. et al. Tunable topological Dirac surface states and van Hove singularities in kagome metal GdV6Sn6. Sci. Adv. 8, eadd2024 (2022).

    Google Scholar 

  263. Peng, S. et al. Realizing kagome band structure in two-dimensional kagome surface states of RV6Sn6 (R = Gd, Ho). Phys. Rev. Lett. 127, 266401 (2021).

    ADS  Google Scholar 

  264. Shi, M. et al. A new class of bilayer kagome lattice compounds with Dirac nodal lines and pressure-induced superconductivity. Nat. Commun. 13, 2773 (2022).

    ADS  Google Scholar 

  265. Yang, Y. et al. Type-II nodal line fermions in the Z2 topological semimetals AV6Sb6 (A = K, Rb, and Cs) with a kagome bilayer. Phys. Rev. B 104, 245128 (2021).

    ADS  Google Scholar 

  266. Zou, J., He, Z. & Xu, G. The study of magnetic topological semimetals by first principles calculations. NPJ Comput. Mater. 5, 96 (2019).

    ADS  Google Scholar 

  267. Xu, X. et al. Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6. Nat. Commun. 13, 1197 (2022).

    ADS  Google Scholar 

  268. Min, L. et al. A topological kagome magnet in high entropy form. Commun. Phys. 5, 63 (2022).

    Google Scholar 

  269. Kang, S. et al. Emergence of a new band and the Lifshitz transition in kagome metal ScV6Sn6 with charge density wave. Preprint at https://doi.org/10.48550/arXiv.2302.14041 (2023).

  270. Strempfer, J., Shekhar, C. & Vescovo, E. Softening of a flat phonon mode in the kagome ScV6Sn6. Preprint at https://doi.org/10.48550/arXiv.2304.09173 (2023).

  271. Cao, S. et al. Competing charge-density wave instabilities in the kagome metal ScV6Sn6. Preprint at https://doi.org/10.48550/arXiv.2304.08197 (2023).

  272. Hu, Y. et al. Phonon promoted charge density wave in topological kagome metal ScV6Sn6. Preprint at https://doi.org/10.48550/arXiv.2304.06431 (2023).

  273. Gu, Y. et al. Origin and stability of the charge density wave in ScV6Sn6. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2880554/v1 (2023).

  274. Cheng, S. et al. Nanoscale visualization and spectral fingerprints of the charge order in ScV6Sn6 distinct from other kagome metals. Preprint at https://doi.org/10.48550/arXiv.2302.12227 (2023).

  275. Tuniz, M. et al. Dynamics and resilience of the charge density wave in a bilayer kagome metal. Preprint at https://doi.org/10.48550/arXiv.2302.10699 (2023).

  276. Hu, T. et al. Optical spectroscopy and band structure calculations of the structural phase transition in the vanadium-based kagome metal ScV6Sn6. Phys. Rev. B 107, 165119 (2023).

    ADS  Google Scholar 

  277. Tan, H. & Yan, B. Abundant lattice instability in kagome metal ScV6Sn6. Phys. Rev. Lett. 130, 266402 (2023).

    ADS  Google Scholar 

  278. Zhang, X. et al. Destabilization of the charge density wave and the absence of superconductivity in ScV6Sn6 under high pressures up to 11 GPa. Materials (Basel) 15, 7372 (2022).

    ADS  Google Scholar 

  279. Guguchia, Z. et al. Hidden magnetism uncovered in charge ordered bilayer kagome material ScV6Sn6. Preprint at https://arxiv.org/abs/2304.06436 (2023).

  280. Gieck, C., Schreyer, M., Fässler, T. F., Cavet, S. & Claus, P. Synthesis, crystal structure, and catalytic properties of MgCo6Ge6. Chem. - A Eur. J. 12, 1924–1930 (2006).

    Google Scholar 

  281. Kolincio, K. K., Roman, M., Winiarski, M. J., Strychalska-Nowak, J. & Klimczuk, T. Magnetism and charge density waves in RNiC2 (R = Ce, Pr, Nd). Phys. Rev. B 95, 235156 (2017).

    ADS  Google Scholar 

  282. Lei, H., Wang, K. & Petrovic, C. Magnetic-field-tuned charge density wave in SmNiC2 and NdNiC2. J. Phys. Condens. Matter 29, 075602 (2017).

    ADS  Google Scholar 

  283. Li, B., Li, S. & Wen, H. H. Chemical doping effect in the LaRu3Si2 superconductor with a kagome lattice. Phys. Rev. B 94, 094523 (2016).

    ADS  Google Scholar 

  284. Gui, X. & Cava, R. J. LaIr3Ga2: a superconductor based on a kagome lattice of Ir. Chem. Mater. 34, 2824–2832 (2022).

    Google Scholar 

  285. Gong, C. et al. Superconductivity in kagome metal YRu3Si2 with strong electron correlations. Chin. Phys. Lett. 39, 087401 (2022).

    ADS  Google Scholar 

  286. Mielke, C. et al. Nodeless kagome superconductivity in LaRu3Si2. Phys. Rev. Mater. 5, 034803 (2021).

    Google Scholar 

  287. Kennedy, J. R., Adler, P., Dronskowski, R. & Simon, A. Experimental and theoretical electronic structure investigations on α-Nb3Cl8 and the intercalated phase β′-NaNb3Cl8. Inorg. Chem. 35, 2276–2282 (1996).

    Google Scholar 

  288. Kim, B. J. et al. Structural and electrical properties of Nb3I8 layered crystal. Phys. Status Solidi Rapid Res. Lett. 13, 1800448 (2019).

    ADS  Google Scholar 

  289. Haraguchi, Y. et al. Magnetic-nonmagnetic phase transition with interlayer charge disproportionation of Nb3 trimers in the cluster compound Nb3Cl8. Inorg. Chem. 56, 3483–3488 (2017).

    Google Scholar 

  290. Sheckelton, J. P., Plumb, K. W., Trump, B. A., Broholm, C. L. & McQueen, T. M. Rearrangement of van der Waals stacking and formation of a singlet state at: T = 90 K in a cluster magnet. Inorg. Chem. Front. 4, 481–490 (2017).

    Google Scholar 

  291. Conte, F., Ninno, D. & Cantele, G. Layer-dependent electronic and magnetic properties of Nb3I8. Phys. Rev. Res. 2, 033001 (2020).

    Google Scholar 

  292. Jiang, J. et al. Exploration of new ferromagnetic, semiconducting and biocompatible Nb3X8 (X = Cl, Br or I) monolayers with considerable visible and infrared light absorption. Nanoscale 9, 2992–3001 (2017).

    Google Scholar 

  293. Grytsiuk, S., Katsnelson, M. I., van Loon, E. G. C. P. & Rösner, M. Nb3Cl8: a prototypical layered Mott-Hubbard insulator. Preprint at https://doi.org/10.48550/arXiv.2305.04854 (2023).

  294. Sun, Z. et al. Observation of topological flat bands in the kagome semiconductor Nb3Cl8. Nano Lett. 22, 4596–4602 (2022).

    ADS  MathSciNet  Google Scholar 

  295. Yoon, J. et al. Anomalous thickness-dependent electrical conductivity in van der Waals layered transition metal halide, Nb3Cl8. J. Phys. Condens. Matter 32, 304004 (2020).

    Google Scholar 

  296. Xu, Y. et al. Three-dimensional real space invariants, obstructed atomic insulators and a new principle for active catalytic sites. Preprint at https://doi.org/10.48550/arXiv.2111.02433 (2021).

  297. Xu, Y. et al. Filling-enforced obstructed atomic insulators. Preprint at https://doi.org/10.48550/arXiv.2106.10276 (2021).

  298. Zhang, Y., Gu, Y., Li, P., Hu, J. & Jiang, K. General theory of Josephson diodes. Phys. Rev. X 12, 041013 (2022).

    Google Scholar 

  299. Peng, R. et al. Intrinsic anomalous valley Hall effect in single-layer Nb3I8. Phys. Rev. B 102, 035412 (2020).

    ADS  Google Scholar 

  300. Regmi, S. et al. Spectroscopic evidence of flat bands in breathing kagome semiconductor Nb3I8. Commun. Mater. 3, 100 (2022).

    Google Scholar 

  301. Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

    ADS  Google Scholar 

  302. Teng, X. et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature 609, 490–495 (2022).

    ADS  Google Scholar 

  303. Zhang, H. et al. Exchange-biased topological transverse thermoelectric effects in a kagome ferrimagnet. Nat. Commun. 13, 1091 (2022).

    ADS  Google Scholar 

  304. An, Y. et al. Topological and nodal superconductor kagome magnesium triboride. Phys. Rev. Mater. 7, 014205 (2023).

    Google Scholar 

  305. Huang, J. et al. Three-dimensional flat bands and Dirac cones in a pyrochlore superconductor. Preprint at https://doi.org/10.48550/arXiv.2304.09066 (2022).

  306. Deng, L. Z. et al. Magnetic kagome superconductor CeRu2. Preprint at https://doi.org/10.48550/arXiv.2204.00553 (2022).

  307. Ku, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. Superconducting and magnetic properties of new ternary borides with the CeCo3B2-type structure. Solid. State Commun. 35, 91–96 (1980).

    ADS  Google Scholar 

  308. Escorne, M., Mauger, A., Gupta, L. C. & Godart, C. Type-II superconductivity in a dilute magnetic system: La1−xTmxRu3Si2. Phys. Rev. B 49, 12051–12057 (1994).

    ADS  Google Scholar 

  309. Chaudhary, S. et al. Role of electronic correlations in the kagome-lattice superconductor LaRh3B2. Phys. Rev. B 107, 085103 (2023).

    ADS  Google Scholar 

  310. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    ADS  Google Scholar 

  311. Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).

    ADS  Google Scholar 

  312. Barz, H. New ternary superconductors with silicon. Mat. Res. Bull. 15, 1489–1491 (1980).

    Google Scholar 

  313. Malik, S. K., Umarji, A. M., Shenoy, G. K., Aldred, A. T. & Niarchos, D. G. Magnetism and superconductivity in the system Ce1xLaxRh3B2. Phys. Rev. B 32, 4742–4745 (1985).

    ADS  Google Scholar 

  314. Li, S. et al. Anomalous properties in the normal and superconducting states of LaRu3Si2. Phys. Rev. B 84, 214527 (2011).

    ADS  Google Scholar 

  315. Gruner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129 (1988).

    ADS  Google Scholar 

  316. Gruner, G. The dynamics of spin-density. Rev. Mod. Phys. 66, 1 (1994).

    ADS  Google Scholar 

  317. Fradkin, E. in Modern Theories of Many-Particle Systems in Condensed Matter Physics 53–116 (Springer, 2012).

  318. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    ADS  Google Scholar 

  319. Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

Y.W. acknowledges support from NWO Talent Programme Veni financed by the Dutch Research Council (NWO), project no. VI.Veni.212.146. H.W. acknowledges support from the Kavli Institute of Nanoscience Delft Synergy grant 2022. Y.W., H.W. and M.N.A. acknowledge support from the Technical University of Delft Quantum Nanoscience Department as well as the Kavli Institute of Nanoscience Delft. J.Y.C. acknowledges NSF-DMR 2209804 and Welch AA-2056-20220101 for partial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and H.W. wrote the majority of the manuscript. M.N.A. and J.Y.C. are the principal investigators. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Yaojia Wang or Mazhar N. Ali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Hu Miao, Fazhi Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, H., McCandless, G.T. et al. Quantum states and intertwining phases in kagome materials. Nat Rev Phys 5, 635–658 (2023). https://doi.org/10.1038/s42254-023-00635-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00635-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing