Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Nonlinear Hall effects

Abstract

The Hall effects comprise one of the oldest but most vital fields in condensed matter physics, and they persistently inspire new findings, such as quantum Hall effects and topological phases of matter. The recently discovered nonlinear Hall effect is a new member of the family of Hall effects. It is characterized as a transverse Hall voltage in response to two longitudinal currents in the Hall measurement, but it does not require time-reversal symmetry to be broken. It has deep connections to symmetry and topology and, thus, opens new avenues by which to probe the spectral, symmetry and topological properties of emergent quantum materials and phases of matter. In this Perspective, we present an overview of the recent progress regarding the nonlinear Hall effect. We discuss the open problems, the prospects of the use of the nonlinear Hall effect in spectroscopic and device applications, and generalizations to other nonlinear transport effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The nonlinear Hall effect and its generalizations.
Fig. 2: Experimental studies of the nonlinear Hall effect in WTe2.
Fig. 3: Known mechanisms of the nonlinear Hall effect.
Fig. 4: Device applications of the nonlinear Hall effect.

Similar content being viewed by others

References

  1. Hall, E. H. et al. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

    Article  MathSciNet  MATH  Google Scholar 

  2. Hall, E. H. XVIII. On the “Rotational Coefficient” in nickel and cobalt. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 12, 157–172 (1881).

    Article  Google Scholar 

  3. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  4. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  5. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  ADS  Google Scholar 

  6. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  7. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  8. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  9. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  10. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  11. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  12. Niu, Q., Thouless, D. J. & Wu, Y.-S. Quantized Hall conductance as a topological invariant. Phys. Rev. B 31, 3372–3377 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  13. Kohmoto, M. Topological invariant and the quantization of the Hall conductance. Ann. Phys. 160, 343–354 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  14. Wen, X. G. & Niu, Q. Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B 41, 9377–9396 (1990).

    Article  ADS  Google Scholar 

  15. Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995).

    Article  ADS  Google Scholar 

  16. Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  17. Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1984).

    Article  ADS  Google Scholar 

  18. Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article  ADS  Google Scholar 

  19. Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).

    Article  ADS  Google Scholar 

  20. von Klitzing, K. Essay: Quantum Hall effect and the new international system of units. Phys. Rev. Lett. 122, 200001 (2019).

    Article  Google Scholar 

  21. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Cage, M. E. et al. The Quantum Hall Effect (Springer, 2012).

  23. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  24. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  ADS  Google Scholar 

  25. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    Article  ADS  Google Scholar 

  26. Yasuda, K. et al. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016).

    Article  Google Scholar 

  27. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).

    Article  ADS  MATH  Google Scholar 

  28. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  29. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  ADS  Google Scholar 

  30. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  31. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  32. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  33. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  Google Scholar 

  34. Low, T., Jiang, Y. & Guinea, F. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B 92, 235447 (2015).

    Article  ADS  Google Scholar 

  35. Facio, J. I. et al. Strongly enhanced Berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 121, 246403 (2018).

    Article  ADS  Google Scholar 

  36. You, J.-S., Fang, S., Xu, S.-Y., Kaxiras, E. & Low, T. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B 98, 121109 (2018).

    Article  ADS  Google Scholar 

  37. Zhang, Y., van den Brink, J., Felser, C. & Yan, B. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and MoTe2. 2D Mater. 5, 044001 (2018).

    Article  Google Scholar 

  38. Zhang, Y., Sun, Y. & Yan, B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018).

    Article  ADS  Google Scholar 

  39. Du, Z. Z., Wang, C. M., Lu, H.-Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).

    Article  ADS  Google Scholar 

  40. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  ADS  Google Scholar 

  41. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Observation of the nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article  ADS  Google Scholar 

  42. Hamamoto, K., Ezawa, M., Kim, K. W., MorimotoMorimoto, T. & Nagaosa, N. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems. Phys. Rev. B 95, 224430 (2017).

    Article  ADS  Google Scholar 

  43. Araki, Y. Strain-induced nonlinear spin Hall effect in topological Dirac semimetal. Sci. Rep. 8, 15236 (2018).

    Article  ADS  Google Scholar 

  44. König, E. J., Dzero, M., Levchenko, A. & Pesin, D. A. Gyrotropic Hall effect in Berry-curved materials. Phys. Rev. B 99, 155404 (2019).

    Article  ADS  Google Scholar 

  45. Papaj, M. & Fu, L. Magnus Hall effect. Phys. Rev. Lett. 123, 216802 (2019).

    Article  ADS  Google Scholar 

  46. Yu, X.-Q., Zhu, Z.-G., You, J.-S., Low, T. & Su, G. Topological nonlinear anomalous Nernst effect in strained transition metal dichalcogenides. Phys. Rev. B 99, 201410 (2019).

    Article  ADS  Google Scholar 

  47. Zeng, C., Nandy, S., Taraphder, A. & Tewari, S. Nonlinear Nernst effect in bilayer WTe2. Phys. Rev. B 100, 245102 (2019).

    Article  ADS  Google Scholar 

  48. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article  ADS  Google Scholar 

  49. Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).

    Article  Google Scholar 

  50. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Shvetsov, O. O., Esin, V. D., Timonina, A. V., Kolesnikov, N. N. & Deviatov, E. V. Nonlinear Hall effect in three-dimensional Weyl and Dirac semimetals. JETP Lett. 109, 715–721 (2019).

    Article  ADS  Google Scholar 

  52. Dzsaber, S. et al. Giant spontaneous Hall effect in a nonmagnetic Weyl–Kondo semimetal. Proc. Natl Acad. Sci. USA 118, e2013386118 (2021).

    Article  Google Scholar 

  53. Qin, M.-S. et al. Strain tunable Berry curvature dipole, orbital magnetization and nonlinear Hall effect in WSe2 monolayer. Chin. Phys. Lett. 38, 017301 (2021).

    Article  ADS  Google Scholar 

  54. Ho, S.-C. et al. Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry. Nat. Electron. 4, 116–125 (2021).

    Article  Google Scholar 

  55. Huang, M. et al. Giant nonlinear Hall effect in twisted WSe2. Preprint at arXiv https://arxiv.org/abs/2006.05615 (2020).

  56. Tiwari, A. et al. Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2. Nat. Commun. 12, 2049 (2021).

    Article  ADS  Google Scholar 

  57. Kiswandhi, A. & Osada, T. Observation of possible nonlinear anomalous Hall effect in organic two-dimensional Dirac fermion system. Preprint at arXiv https://arxiv.org/abs/2103.00300 (2021).

  58. He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).

    Article  ADS  Google Scholar 

  59. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Article  ADS  Google Scholar 

  60. Shen, S.-Q. Topological Insulators 2nd edn (Springer, 2017).

    Book  MATH  Google Scholar 

  61. Landau, L. D., Pitaevskii, L. P. & Lifshitz, E. M. Electrodynamics of Continuous Media 2nd edn vol. 8 (Elsevier, 2008).

  62. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  63. Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993).

    Article  ADS  MATH  Google Scholar 

  64. Evans, D. J. & P Morriss, G. Statistical Mechanics of Nonequilbrium Liquids (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

  65. Esposito, M., Harbola, U. & Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Campisi, M., Hänggi, P. & Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 83, 771–791 (2011).

    Article  ADS  MATH  Google Scholar 

  67. Morimoto, T. & Nagaosa, N. Nonreciprocal current from electron interactions in noncentrosymmetric crystals: roles of time reversal symmetry and dissipation. Sci. Rep. 8, 2973 (2018).

    Article  ADS  Google Scholar 

  68. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A Math. Phys. Eng. Sci. 392, 45–57 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  69. Bohm, A., Mostafazadeh, A., Koizumi, H., Niu, Q. & Zwanziger, J. The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Springer, 2003).

    Book  MATH  Google Scholar 

  70. Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).

    Article  ADS  MATH  Google Scholar 

  71. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).

    Article  Google Scholar 

  72. Son, J., Kim, K.-H., Ahn, Y. H., Lee, H.-W. & Lee, J. Strain engineering of the Berry curvature dipole and valley magnetization in monolayer MoS2. Phys. Rev. Lett. 123, 036806 (2019).

    Article  ADS  Google Scholar 

  73. Battilomo, R., Scopigno, N. & Ortix, C. Berry curvature dipole in strained graphene: a Fermi surface warping effect. Phys. Rev. Lett. 123, 196403 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  74. Chen, C., Wang, H., Wang, D. & Zhang, H. Strain-engineered nonlinear Hall effect in HgTe. Spin 9, 1940017 (2019).

    Article  ADS  Google Scholar 

  75. Zhou, B. T., Zhang, C.-P. & Law, K. T. Highly tunable nonlinear Hall effects induced by spin-orbit couplings in strained polar transition-metal dichalcogenides. Phys. Rev. Appl. 13, 024053 (2020).

    Article  ADS  Google Scholar 

  76. Singh, S., Kim, J., Rabe, K. M. & Vanderbilt, D. Engineering Weyl phases and nonlinear Hall effects in Td-MoTe2. Phys. Rev. Lett. 125, 046402 (2020).

    Article  ADS  Google Scholar 

  77. Xiao, R.-C., Shao, D.-F., Zhang, Z.-Q. & Jiang, H. Two-dimensional metals for piezoelectriclike devices based on Berry-curvature dipole. Phys. Rev. Appl. 13, 044014 (2020).

    Article  ADS  Google Scholar 

  78. Samal, S. S., Nandy, S. & Saha, K. Nonlinear transport without spin-orbit coupling or warping in two-dimensional Dirac semimetals. Phys. Rev. B 103, L201202 (2021).

    Article  Google Scholar 

  79. Hu, J.-X., Zhang, C.-P., Xie, Y.-M. & Law, K. T. Nonlinear Hall effects in strained twisted bilayer WSe2. Preprint at arXiv https://arxiv.org/abs/2004.14140 (2020).

  80. Zhang, C.-P. et al. Giant nonlinear Hall effect in strained twisted bilayer graphene. Preprint at arXiv https://arxiv.org/abs/2010.08333 (2020).

  81. Pantaleón, P. A., Low, T. & Guinea, F. Tunable large Berry dipole in strained twisted bilayer graphene. Phys. Rev. B 103, 205403 (2021).

    Article  ADS  Google Scholar 

  82. He, Z. & Weng, H. Giant nonlinear Hall effect in twisted bilayer WTe2. Preprint at arXiv https://arxiv.org/abs/2104.14288 (2021).

  83. Smit, J. The spontaneous Hall effect in ferromagnetics I. Physica 21, 877–887 (1955).

    Article  ADS  Google Scholar 

  84. Smit, J. The spontaneous Hall effect in ferromagnetics II. Physica 24, 39–51 (1958).

    Article  ADS  Google Scholar 

  85. Berger, L. Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2, 4559–4566 (1970).

    Article  ADS  Google Scholar 

  86. Crépieux, A. & Bruno, P. Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation. Phys. Rev. B 64, 014416 (2001).

    Article  ADS  Google Scholar 

  87. Sinitsyn, N. Semiclassical theories of the anomalous Hall effect. J. Phys. Condens. Matter 20, 023201 (2008).

    Article  ADS  Google Scholar 

  88. Sinitsyn, N., MacDonald, A., Jungwirth, T., Dugaev, V. & Sinova, J. Anomalous Hall effect in a two-dimensional Dirac band: The link between the Kubo-Streda formula and the semiclassical Boltzmann equation approach. Phys. Rev. B 75, 045315 (2007).

    Article  ADS  Google Scholar 

  89. Tian, Y., Ye, L. & Jin, X. Proper scaling of the anomalous Hall effect. Phys. Rev. Lett. 103, 087206 (2009).

    Article  ADS  Google Scholar 

  90. Hou, D. et al. Multivariable scaling for the anomalous Hall effect. Phys. Rev. Lett. 114, 217203 (2015).

    Article  ADS  Google Scholar 

  91. Yue, D. & Jin, X. Towards a better understanding of the anomalous Hall effect. J. Phys. Soc. Jpn. 86, 011006 (2016).

    Article  ADS  Google Scholar 

  92. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders, 1976).

    MATH  Google Scholar 

  93. Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    Article  ADS  Google Scholar 

  94. Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sect A 44, 398–417 (1956).

    Article  MathSciNet  Google Scholar 

  95. Sinitsyn, N. A., Niu, Q. & MacDonald, A. H. Coordinate shift in the semiclassical Boltzmann equation and the anomalous Hall effect. Phys. Rev. B 73, 075318 (2006).

    Article  ADS  Google Scholar 

  96. Resta, R. Linear and nonlinear Hall conductivity in presence of interaction and disorder. Preprint at arXiv https://arxiv.org/abs/2101.10949 (2021).

  97. Nandy, S. & Sodemann, I. Symmetry and quantum kinetics of the nonlinear Hall effect. Phys. Rev. B 100, 195117 (2019).

    Article  ADS  Google Scholar 

  98. Xiao, C., Du, Z. Z. & Niu, Q. Theory of nonlinear Hall effects: modified semiclassics from quantum kinetics. Phys. Rev. B 100, 165422 (2019).

    Article  ADS  Google Scholar 

  99. Du, Z. Z., Wang, C. M., Sun, H.-P., Lu, H.-Z. & Xie, X. C. Quantum theory of the nonlinear Hall effect. Preprint at arXiv https://arxiv.org/abs/2004.09742 (2020).

  100. Gao, Y., Zhang, F. & Zhang, W. Second-order nonlinear Hall effect in Weyl semimetals. Phys. Rev. B 102, 245116 (2020).

    Article  ADS  Google Scholar 

  101. König, E. J. & Levchenko, A. Quantum kinetics of anomalous and nonlinear Hall effects in topological semimetals. Preprint at arXiv https://arxiv.org/abs/2102.05675 (2021).

  102. Culcer, D., Sekine, A. & MacDonald, A. H. Interband coherence response to electric fields in crystals: Berry-phase contributions and disorder effects. Phys. Rev. B 96, 035106 (2017).

    Article  ADS  Google Scholar 

  103. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).

    Article  Google Scholar 

  104. Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2017).

    Article  Google Scholar 

  105. Xiao, R.-C., Shao, D.-F., Huang, W. & Jiang, H. Electrical detection of ferroelectriclike metals through the nonlinear Hall effect. Phys. Rev. B 102, 024109 (2020).

    Article  ADS  Google Scholar 

  106. Rostami, H. & Juričić, V. Probing quantum criticality using nonlinear Hall effect in a metallic Dirac system. Phys. Rev. Res. 2, 013069 (2020).

    Article  Google Scholar 

  107. Shao, D.-F., Zhang, S.-H., Gurung, G., Yang, W. & Tsymbal, E. Y. Nonlinear anomalous Hall effect for Néel vector detection. Phys. Rev. Lett. 124, 067203 (2020).

    Article  ADS  Google Scholar 

  108. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).

    Article  Google Scholar 

  109. Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article  ADS  Google Scholar 

  110. Kim, K. W., Morimoto, T. & Nagaosa, N. Shift charge and spin photocurrents in Dirac surface states of topological insulator. Phys. Rev. B 95, 035134 (2017).

    Article  ADS  Google Scholar 

  111. Bhalla, P., MacDonald, A. H. & Culcer, D. Resonant photovoltaic effect in doped magnetic semiconductors. Phys. Rev. Lett. 124, 087402 (2020).

    Article  ADS  Google Scholar 

  112. Zhang, Y. & Fu, L. Terahertz detection based on nonlinear Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 118, e2100736118 (2021).

    Article  MathSciNet  Google Scholar 

  113. Nakai, R. & Nagaosa, N. Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals. Phys. Rev. B 99, 115201 (2019).

    Article  ADS  Google Scholar 

  114. Zeng, C., Nandy, S. & Tewari, S. Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime. Phys. Rev. Res. 2, 032066 (2020).

    Article  Google Scholar 

  115. Mandal, D., Das, K. & Agarwal, A. Magnus Nernst and thermal Hall effect. Phys. Rev. B 102, 205414 (2020).

    Article  ADS  Google Scholar 

  116. Das, S. K., Nag, T. & Nandy, S. Topological Magnus responses in two and three dimensional systems. Preprint at arXiv https://arxiv.org/abs/2104.04978 (2021).

  117. Toshio, R., Takasan, K. & Kawakami, N. Anomalous hydrodynamic transport in interacting noncentrosymmetric metals. Phys. Rev. Res. 2, 032021 (2020).

    Article  Google Scholar 

  118. Zhang, C.-P., Gao, X.-J., Xie, Y.-M., Po, H. C. & Law, K. T. Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles. Preprint at arXiv https://arxiv.org/abs/2012.15628 (2020).

  119. He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    Article  Google Scholar 

  120. He, P. et al. Observation of out-of-plane spin texture in a SrTiO3(111) two-dimensional electron gas. Phys. Rev. Lett. 120, 266802 (2018).

    Article  ADS  Google Scholar 

  121. He, P. et al. Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nat. Commun. 10, 1290 (2019).

    Article  ADS  Google Scholar 

  122. He, P. et al. Nonlinear planar Hall effect. Phys. Rev. Lett. 123, 016801 (2019).

    Article  ADS  Google Scholar 

  123. Zhang, S. S.-L. & Vignale, G. Theory of bilinear magneto-electric resistance from topological-insulator surface states. Spintronics XI 10732, 1073215 (2018).

    Google Scholar 

  124. Dyrdał, A., Barnaś, J. & Fert, A. Spin-momentum-locking inhomogeneities as a source of bilinear magnetoresistance in topological insulators. Phys. Rev. Lett. 124, 046802 (2020).

    Article  ADS  Google Scholar 

  125. Zyuzin, A. A., Silaev, M. & Zyuzin, V. A. Nonlinear chiral transport in Dirac semimetals. Phys. Rev. B 98, 205149 (2018).

    Article  ADS  Google Scholar 

  126. Zeng, C., Nandy, S. & Tewari, S. Chiral anomaly induced nonlinear Nernst and thermal Hall effects in Weyl semimetals. Preprint at arXiv https://arxiv.org/abs/2012.11590 (2020).

  127. Li, R.-H., Heinonen, O. G., Burkov, A. A. & Zhang, S. S.-L. Nonlinear Hall effect in Weyl semimetals induced by chiral anomaly. Phys. Rev. B 103, 045105 (2021).

    Article  ADS  Google Scholar 

  128. Esin, V. D., Timonina, A. V., Kolesnikov, N. N. & Deviatov, E. V. Second-harmonic voltage response for the magnetic Weyl semimetal Co3Sn2S2. JETP Lett. 111, 685–689 (2020).

    Article  ADS  Google Scholar 

  129. Watanabe, H. & Yanase, Y. Nonlinear electric transport in odd-parity magnetic multipole systems: application to Mn-based compounds. Phys. Rev. Res. 2, 043081 (2020).

    Article  Google Scholar 

  130. Boyd, R. W. Nonlinear Optics (Academic, 1992).

    Google Scholar 

  131. Flensberg, K., Hu, B. Y.-K., Jauho, A.-P. & Kinaret, J. M. Linear-response theory of Coulomb drag in coupled electron systems. Phys. Rev. B 52, 14761–14774 (1995).

    Article  ADS  Google Scholar 

  132. Kamenev, A. & Oreg, Y. Coulomb drag in normal metals and superconductors: diagrammatic approach. Phys. Rev. B 52, 7516–7527 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for the helpful discussions with Huimei Liu, Suyang Xu, Hyunsoo Yang, Zhi-Min Liao, Kin Fai Mak, Ning Wang, Zefei Wu, Meizhen Huang, Tse-Ming Chen, Silke Paschen, Sami Dzsaber, A. Kiswandhi, Archana Tiwari and A. W. Tsen. This work was supported by the National Natural Science Foundation of China (12004157 and 11925402), the National Basic Research Program of China (2015CB921102), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB28000000), Guangdong Province (2020KCXTD001 and 2016ZT06D348), Shenzhen High-level Special Fund (G02206304 and G02206404) and the Science, Technology and Innovation Commission of Shenzhen Municipality (ZDSYS20170303165926217, JCYJ20170412152620376 and KYTDPT20181011104202253).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Hai-Zhou Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Kam Tuen Law, Dimitrie Culcer and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z.Z., Lu, HZ. & Xie, X.C. Nonlinear Hall effects. Nat Rev Phys 3, 744–752 (2021). https://doi.org/10.1038/s42254-021-00359-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00359-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing