Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cascade electrosynthesis of LiTFSI and N-containing analogues via a looped Li–N2 battery

Abstract

The synthesis of N-containing chemicals directly from N2 is highly desirable in chemistry but has been challenged by inert N2 molecules and limited product scope. Herein we propose a cascade electrosynthesis strategy for the facile reduction of N2 and subsequent conversion to various N-containing chemicals via a looped Li–N2 battery. The electrosynthesis of lithium bis(trifluoromethanesulfonyl)imide is illustrated as a prototype using cascade reactions involving electrocatalytic N2 reduction to Li3N on discharge, a relay reaction of Li3N acylation to lithium bis(trifluoromethanesulfonyl)imide and finally the elimination of the LiCl by-product on charge to complete the synthesis loop. This strategy provides direct access to analogues with different N–X bonds (X = S, C and so on) and metal cations (Li+, Zn2+ and so on) by extending the substrate scope, and can be scaled up for improved energy efficiency and atom economy. This work provides a general electrosynthesis protocol for the practical production of N-containing chemicals and has potential implications for a wider field of sustainable chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic comparison.
Fig. 2: Electrochemical reduction of N2 to Li3N.
Fig. 3: S–N acylation reaction between Li3N and CF3SO2Cl.
Fig. 4: Looped Li–N2 battery for LiTFSI electrosynthesis.
Fig. 5: Scope of the expended substrate.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the article and its Supplementary Information. Data are also available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article  Google Scholar 

  2. Deng, J., Iñiguez, J. A. & Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2, 846–856 (2018).

    Article  CAS  Google Scholar 

  3. Chen, G. F. et al. Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C−N coupling reactions. Angew. Chem. Int. Ed. 134, e202203170 (2022).

    Article  Google Scholar 

  4. Yang, J.-H. et al. Fixation of N2 into value-added organic chemicals. ACS Catal. 12, 2898–2906 (2022).

    Article  CAS  Google Scholar 

  5. Chen, J. G. et al. Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  7. Lv, Z. J. et al. Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation. Natl Sci. Rev. 7, 1564–1583 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bezdek, M. J. & Chirik, P. J. Expanding boundaries: N2 cleavage and functionalization beyond early transition metals. Angew. Chem. Int. Ed. 55, 7892–7896 (2016).

    Article  CAS  Google Scholar 

  9. Li, L., Tang, C., Jin, H., Davey, K. & Qiao, S.-Z. Main-group elements boost electrochemical nitrogen fixation. Chem 7, 3232–3255 (2021).

    Article  CAS  Google Scholar 

  10. Kim, S., Loose, F. & Chirik, P. J. Beyond ammonia: nitrogen-element bond forming reactions with coordinated dinitrogen. Chem. Rev. 120, 5637–5681 (2020).

    Article  PubMed  CAS  Google Scholar 

  11. Iriawan, H. et al. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 1, 56 (2021).

    Article  CAS  Google Scholar 

  12. Qing, G. et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020).

    Article  PubMed  CAS  Google Scholar 

  13. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  PubMed  CAS  Google Scholar 

  14. Du, H. L. et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature 609, 722–727 (2022).

    Article  PubMed  CAS  Google Scholar 

  15. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, X. et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13, 5337 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Maurel, A. et al. Poly(ethylene oxide)–LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing. J. Electrochem. Soc. 167, 070536 (2020).

    Article  Google Scholar 

  18. Conte, L., Gambaretto, G., Caporiccio, G., Alessandrini, F. & Passerini, S. Perfluoroalkanesulfonylimides and their lithium salts: synthesis and characterisation of intermediates and target compounds. J. Fluor. Chem. 125, 243–252 (2004).

    Article  CAS  Google Scholar 

  19. Ma, J., Bao, D., Shi, M., Yan, J. & Zhang, X. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2, 525–532 (2017).

    Article  CAS  Google Scholar 

  20. Zhang, Z. et al. Li-N2 batteries: a reversible energy storage system? Angew. Chem. Int. Ed. 58, 17782–17787 (2019).

    Article  CAS  Google Scholar 

  21. Meng, F., Xiong, X., He, S., Liu, Y. & Hu, R. Post nitrogen electrocatalysis era from Li–N2 batteries to Zn–N2 batteries. Adv. Energy Mater. 13, 2300269 (2023).

    Article  CAS  Google Scholar 

  22. Feng, Y., Yan, S., Zhang, X. & Wang, Y. Development, essence, and application of a metal-catalysis battery. Acc. Chem. Res. 56, 1645–1655 (2023).

    Article  PubMed  CAS  Google Scholar 

  23. Li, J. et al. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 12, 3502 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Liu, Y. et al. Unveiling the protonation kinetics-dependent selectivity in nitrogen electroreduction: achieving 75.05% selectivity. Angew. Chem. Int. Ed. 61, e202209555 (2022).

    Article  CAS  Google Scholar 

  25. Heligman, B. T. & Manthiram, A. Elemental foil anodes for lithium-ion batteries. ACS Energy Lett. 6, 2666–2672 (2021).

    Article  CAS  Google Scholar 

  26. Westhead, O. et al. Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat. Rev. Chem. 7, 184–201 (2023).

    Article  PubMed  CAS  Google Scholar 

  27. Steinberg, K. et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat. Energy 8, 138–148 (2023).

    Article  CAS  Google Scholar 

  28. Tsuneto, A., Kudo, A. & Sakata, T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chem. Lett. 22, 851–854 (1993).

    Article  Google Scholar 

  29. Tsuneto, A., Kudo, A. & Sakata, T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3. J. Electroanal. Chem. 367, 183–188 (1994).

    Article  CAS  Google Scholar 

  30. Lazouski, N., Schiffer, Z. J., Williams, K. & Manthiram, K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule 3, 1127–1139 (2019).

    Article  CAS  Google Scholar 

  31. Andersen, S. Z. et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy Environ. Sci. 13, 4291–4300 (2020).

    Article  CAS  Google Scholar 

  32. Feng, Y. et al. Production of high-energy 6-Ah-level Li || LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy. Nat. Commun. 14, 3639 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li, S. et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase. Joule 6, 2083–2101 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Braun, A., Wang, H., Shim, J., Lee, S. S. & Cairns, E. J. Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials. J. Power Sources 170, 173–178 (2007).

    Article  CAS  Google Scholar 

  35. Cheng, D. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4, 2484–2500 (2020).

    Article  CAS  Google Scholar 

  36. Zhang, X. et al. Photoelectrochemical N2-to-NH3 fixation with high efficiency and rates via optimized Si-based system at positive potential versus Li0/+. Adv. Mater. 35, 2211894 (2023).

    Article  CAS  Google Scholar 

  37. Cui, C. et al. Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries. Sci. Adv. 8, eadd2000 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Du, H.-L. et al. The chemistry of proton carriers in high-performance lithium mediated ammonia electrosynthesis. Energy Environ. Sci. 16, 1082–1090 (2023).

    Article  CAS  Google Scholar 

  39. Yi, S., Liu, G., Liu, Z., Hu, W. & Deng, H. Theoretical insights into nitrogen fixation on Ti2C and Ti2CO2 in a lithium–nitrogen battery. J. Mater. Chem. A 7, 19950–19960 (2019).

    Article  CAS  Google Scholar 

  40. Cui, Y. et al. Improved performance using a plasticized polymer electrolyte for quasi-solid state dye-sensitized solar cells. Electrochim. Acta 74, 194–200 (2012).

    Article  CAS  Google Scholar 

  41. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  PubMed  CAS  Google Scholar 

  42. Lazouski, N., Chung, M., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).

    Article  CAS  Google Scholar 

  43. Li, K. et al. Increasing current density of Li-mediated ammonia synthesis with high surface area copper electrodes. ACS Energy Lett. 7, 36–41 (2021).

    Article  CAS  Google Scholar 

  44. Chen, Y. et al. An AB alternating diblock single ion conducting polymer electrolyte membrane for all-solid-state lithium metal secondary batteries. J. Membr. Sci. 566, 181–189 (2018).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996).

    Article  PubMed  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994).

    Article  PubMed  CAS  Google Scholar 

  48. Mao, C. et al. Hydrogen spillover to oxygen vacancy of TiO2–xHy/Fe: breaking the scaling relationship of ammonia synthesis. J. Am. Chem. Soc. 142, 17403–17412 (2020).

    Article  PubMed  CAS  Google Scholar 

  49. Hammer, B., Morikawa, Y. & Norskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996).

    Article  PubMed  CAS  Google Scholar 

  50. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (grant nos 22022110 (Y.W.), 22279141 (Y.W.), 22205238 (X.Z.) and 22209182 (Y.F.)), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (no. ZDBS-LY-SLH028 (Y.W.)) and the National Key Research & Development Program of China (no. 2021YFA1501500 (Y.W.)). We gratefully thank, for the financial support, the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (nos 2021ZZ106 (Y.W.) and 2021ZR123 (J.L.)), Fujian Provincial Science and Technology Service Network Initiative programme supporting project of the Chinese Academy of Sciences (no. 2022T3001 (M.W.)) and the Nature Science Foundation of Fujian Province (nos 2023I0033 (X.Z.) and 2022J05094 (J.L.)). This work was also supported by Fujian Shaowu Chuangxin New Materials Co., Ltd. (no. HX-JS-2023-007 (Y.W.)).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. conceived the idea and supervised the project. X.Z. designed the experiments. W.X., T.W., E.C. and X.Z. carried out the electrochemical measurements and characterization. L.H. assisted with the experiments. J.L. performed the computational calculation. X.Z. wrote the paper. Y.W., Y.F. and M.W. revised the paper, with comments from all authors.

Corresponding author

Correspondence to Yaobing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–36, Tables 1 and 2, Notes 1 and 2 and references.

Supplementary Data 1

Atomic coordinates of optimized models.

Source data

Source Data Fig. 2

Electrocatalytic N2 reduction to Li3N.

Source Data Fig. 3

S–N acylation reaction.

Source Data Fig. 4

Cascade electrosynthesis and performance metrics.

Source Data Fig. 5

Extensibility verification.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xiong, W., Wang, T. et al. Cascade electrosynthesis of LiTFSI and N-containing analogues via a looped Li–N2 battery. Nat Catal 7, 55–64 (2024). https://doi.org/10.1038/s41929-023-01067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01067-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing