Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct conversion of methane with O2 at room temperature over edge-rich MoS2

Abstract

Conversion of methane to value-added chemicals at low temperature by directly using inexpensive O2 as oxidant offers an ideal route for methane utilization but remains a great challenge due to the chemical inertness of methane and the low activity of O2. Methane monooxygenase is the only known natural catalyst that can convert methane with O2 at room temperature. Here we report the realization of an artificial process for the direct methane conversion to C1 oxygenates with O2 on an edge-rich MoS2 catalyst at 25 °C, which delivers a remarkable methane conversion of 4.2% with >99% selectivity for C1 oxygenates. In situ spectroscopic and microscopic characterizations and theoretical calculations reveal that the binuclear molybdenum sites of sulfur vacancies at the MoS2 edge can directly dissociate O2 to form O=Mo=O* active species, which can activate the C–H bond and enable methane conversion at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Room-temperature CH4 conversion by O2 over the MoS2 and MMO catalysts.
Fig. 2: Investigation of the catalytic performance of the MoS2 catalysts in CH4 conversion with O2.
Fig. 3: Quantitative analysis of active sites of the MoS2 catalysts for CH4 conversion with O2.
Fig. 4: Investigation of the active sites and reaction mechanism for CH4 conversion.
Fig. 5: DFT studies of the reaction mechanisms of CH4 conversion with O2 at the MoS2 edge.

Similar content being viewed by others

Data availability

All data supporting this work are available in the article and its Supplementary Information or are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Guo, X. et al. Direct, non-oxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, P., Zhao, G., Wang, Y. & Lu, Y. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3–Na2WO4/SiO2 catalyst. Sci. Adv. 3, e1603180 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Choudhary, V. R., Kinage, A. K. & Choudhary, T. V. Low-temperature non-oxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science 275, 1286–1288 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917–920 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Gao, J. et al. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 348, 686–690 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Song, Y. et al. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Jones, C. et al. Selective oxidation of methane to methanol catalyzed, with C–H activation, by homogeneous, cationic gold. Angew. Chem. Int. Ed. 43, 4626–4629 (2004).

    Article  CAS  Google Scholar 

  10. Periana, R. A., Mironov, O., Taube, D., Bhalla, G. & Jones, C. J. Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation. Science 301, 814–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Lin, M. & Sen, A. Direct catalytic conversion of methane to acetic acid in an aqueous medium. Nature 368, 613–615 (1994).

    Article  CAS  Google Scholar 

  12. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Periana, R. A. et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Sen, A. Catalytic functionalization of carbon–hydrogen and carbon–carbon bonds in protic media. Acc. Chem. Res. 31, 550–557 (1998).

    Article  CAS  Google Scholar 

  16. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. An, Z., Pan, X., Liu, X., Han, X. & Bao, X. Combined redox couples for catalytic oxidation of methane by dioxygen at low temperatures. J. Am. Chem. Soc. 128, 16028–16029 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Paunovic, V., Zichittella, G., Moser, M., Amrute, A. P. & Perez-Ramirez, J. Catalyst design for natural-gas upgrading through oxybromination chemistry. Nat. Chem. 8, 803–809 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

    Article  CAS  Google Scholar 

  20. Cui, X. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 4, 1902–1910 (2018).

    Article  CAS  Google Scholar 

  21. Agarwal, N. et al. Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Shen, Q. et al. Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions. Angew. Chem. Int. Ed. 59, 1216–1219 (2020).

    Article  CAS  Google Scholar 

  23. Kwon, Y., Kim, T. Y., Kwon, G., Yi, J. & Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 139, 17694–17699 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Balint, I., Miyazaki, A. & Aika, K. Methane reaction with NO over alumina-supported Ru nanoparticles. J. Catal. 207, 66–75 (2002).

    Article  CAS  Google Scholar 

  25. Snyder, B. E. R. et al. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536, 317–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Qi, G. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 5, 45–54 (2022).

    Article  CAS  Google Scholar 

  27. Liang, Z., Li, T., Kim, M., Asthagiri, A. & Weaver, J. F. Low-temperature activation of methane on the IrO2(110) surface. Science 356, 298–301 (2017).

    Article  Google Scholar 

  28. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–606 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Hutchings, G. J., Scurrell, M. S. & Woodhouse, J. R. Oxidative coupling of methane using oxide catalysts. Chem. Soc. Rev. 18, 251–283 (1989).

    Article  CAS  Google Scholar 

  30. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Article  PubMed  Google Scholar 

  31. Senanayake, S. D., Rodriguez, J. A. & Weaver, J. F. Low-temperature activation of methane on metal oxides and complex interfaces: insights from surface science. Acc. Chem. Res. 53, 1488–1497 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Latimer, A. A. et al. Understanding trends in C–H bond activation in heterogeneous catalysis. Nat. Mater. 16, 225–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Z. et al. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2–Cu2O catalyst. Science 368, 513–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Ravi, M. et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nat. Catal. 2, 485–494 (2019).

    Article  CAS  Google Scholar 

  35. Tomkins, P., Ranocchiari, M. & van Bokhoven, J. A. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc. Chem. Res. 50, 418–425 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Narsimhan, K., Iyoki, K., Dinh, K. & Román-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, L. et al. Metal–organic framework-derived IrO2/CuO catalyst for selective oxidation of methane to methanol. ACS Energy Lett. 4, 2945–2951 (2019).

    Article  CAS  Google Scholar 

  38. Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(μ-oxo) dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Woertink, J. S. et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. USA 106, 18908–18913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alayon, E. M., Nachtegaal, M., Ranocchiari, M. & van Bokhoven, J. A. Catalytic conversion of methane to methanol over Cu-mordenite. Chem. Commun. 48, 404–406 (2012).

    Article  CAS  Google Scholar 

  42. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Tomkins, P. et al. Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55, 5467–5471 (2016).

    Article  CAS  Google Scholar 

  44. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, H. J. et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat. Catal. 2, 342–353 (2019).

    Article  CAS  Google Scholar 

  46. Banerjee, R. & Lipscomb, J. D. Small-molecule tunnels in metalloenzymes viewed as extensions of the active site. Acc. Chem. Res. 54, 2185–2195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vrubel, H., Merki, D. & Hu, X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 5, 6136–6144 (2012).

    Article  CAS  Google Scholar 

  48. Gao, M.-R. et al. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 5982 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Hu, J. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 4, 242–250 (2021).

    Article  CAS  Google Scholar 

  50. Deng, J. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 8, 14430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weber, T., Muijsers, J. C., van Wolput, H., Verhagen, C. P. J. & Niemantsverdriet, J. W. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2 as studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem 100, 14144–14150 (1996).

    Article  CAS  Google Scholar 

  52. Polyakov, M. et al. Hydrocarbon reactions on MoS2 revisited, I: activation of MoS2 and interaction with hydrogen studied by transient kinetic experiments. J. Catal. 256, 126–136 (2008).

    Article  CAS  Google Scholar 

  53. Hong, Z. & Regalbuto, J. R. Nature of adsorption sites on sulfided Mo catalysts and their selectivity in chemisorption of probe molecules. J. Phys. Chem. 99, 9452–9457 (1995).

    Article  CAS  Google Scholar 

  54. Chiu, N. S., Bauer, S. H. & Johnson, M. F. L. Co/Mo/Al2O3 catalyst structure determination by EXAFS. I. Mo K edge in the oxidized state. J. Catal. 89, 226–243 (1984).

    Article  CAS  Google Scholar 

  55. Gaur, A. et al. Probing the active sites of MoS2-based hydrotreating catalysts using modulation excitation spectroscopy. ACS Catal. 9, 2568–2579 (2019).

    Article  CAS  Google Scholar 

  56. Santos, V. P. et al. Mechanistic insight into the synthesis of higher alcohols from syngas: the role of K promotion on MoS2 catalysts. ACS Catal. 3, 1634–1637 (2013).

    Article  CAS  Google Scholar 

  57. Koizumi, N., Bian, G., Murai, K., Ozaki, T. & Yamada, M. In situ DRIFT studies of sulfided K–Mo/γ-Al2O3 catalysts. J. Mol. Catal. 207, 173–182 (2004).

    Article  CAS  Google Scholar 

  58. Grabow, L. C. & Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 1, 365–384 (2011).

    Article  CAS  Google Scholar 

  59. Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).

    Article  CAS  Google Scholar 

  60. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  61. Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  62. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  63. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  64. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  66. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  67. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion-corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Wilson, J. A. & Yoffe, A. D. Transition metal dichalcogenides: discussion and interpretation of observed optical, electrical and structual properties. Adv. Phys. 18, 193–335 (1969).

    Article  CAS  Google Scholar 

  69. Raybaud, P. et al. Ab initio study of the H2–H2S/MoS2 gas–solid interface: the nature of the catalytically active sites. J. Catal. 189, 129–146 (2000).

    Article  CAS  Google Scholar 

  70. Tsai, C., Abild-Pedersen, F. & Norskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  72. Hjorth Larsen, A. et al. The Atomic Simulation Environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work received financial support from the National Key R&D Program of China (2022YFA1504500 to D.D. and 2022YFA1503100 to X.C.), the National Natural Science Foundation of China (21988101, 21890753, 22225204 to D.D., 92145301 to L.Y. and 22272174 to X.C.), the Strategic Priority Research Program of the Chinese Academy of Science (XDB36030200 to D.D.), the Fundamental Research Funds for the Central Universities (20720220008 to D.D.) and the CAS Project for Young Scientists in Basic Research (YSBR-028 to X.C.). We thank the staff at XAFS beamline (BL14W1) and D-Line (BL05U) of the Shanghai Synchrotron Radiation Facilities for assistance with the EXAFS, XANES and ED-XAS measurements.

Author information

Authors and Affiliations

Authors

Contributions

D.D. conceived and designed the experiments. J.M. undertook the materials synthesis, characterization and performance testing. H.L., X.M. and L.Y. contributed to the DFT calculations. Y. Zhang performed the HAADF-STEM. Y. Zheng and M.C. assisted with the XPS. Y.P. assisted with the in situ synchrotron-based vacuum ultraviolet photoionization mass spectrometry test. X.C., Z.Z. and G.H. assisted with the NMR. J.H., Y.L., G.X. and R.H. assisted with data analysis and paper revision. J.M., H.L., X.C., L.Y. and D.D. co-wrote the paper. All the authors discussed and revised the paper.

Corresponding authors

Correspondence to Liang Yu or Dehui Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Salvador Ordóñez, David Willock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–27, Tables 1–4 and References.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Supplementary Data 2

Statistical source data for supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source sata.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Liu, H., Cui, X. et al. Direct conversion of methane with O2 at room temperature over edge-rich MoS2. Nat Catal 6, 1052–1061 (2023). https://doi.org/10.1038/s41929-023-01030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01030-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing