Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires

Abstract

Generation of C2+ compounds from sunlight, carbon dioxide and water provides a promising path for carbon neutrality. Central to the construction of a rational artificial photosynthesis integrated device is the requirement for a catalyst to break the bottleneck of C–C coupling. Here, based on operando spectroscopy measurements, theoretical calculations and feedstock experiments, it is discovered that gold, in conjunction with iridium, can catalyse the reduction of CO2, achieving C–C coupling by insertion of CO2 into –CH3. Due to a combination of optoelectronic and catalytic properties, the assembly of AuIr with InGaN nanowires on silicon enables the achievement of a C2H6 activity of 58.8 mmol g−1 h−1 with a turnover number of 54,595 over 60 h. A light-to-fuel efficiency of ~0.59% for solar fuel production from CO2 and H2O is achieved without any other energy inputs. This work provides a carbon-negative path for producing higher-order carbon compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of AuIr-decorated InGaN NWs.
Fig. 2: Photocatalytic activity of AuIr-decorated InGaN NWs.
Fig. 3: Stability testing of various photocatalytic CO2 reduction products.
Fig. 4: Mechanism investigation.

Similar content being viewed by others

Data availability

Supporting data are available at the University of Michigan (https://doi.org/10.7302/w8ep-0g79). Further details regarding the data are available from the authors upon reasonable request.

References

  1. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  2. Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  CAS  Google Scholar 

  4. Lee, B.-H. et al. Electronic interaction between transition metal single-atoms and anatase TiO2 boosts CO2 photoreduction with H2O. Energy Environ. Sci. 15, 601–609 (2022).

    Article  CAS  Google Scholar 

  5. Ali, S., Razzaq, A., Kim, H. & In, S.-I. Activity, selectivity, and stability of Earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction. Chem. Eng. J. 429, 131579 (2022).

    Article  CAS  Google Scholar 

  6. Wang, L. et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48, 5310–5349 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013).

    Article  CAS  Google Scholar 

  8. Liu, W. et al. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 141, 17431–17440 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S. L. et al. Porous hypercrosslinked polymer–TiO2–graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 10, 10 (2019).

    CAS  Google Scholar 

  10. Reisner, E. et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. energy 5, 703–710 (2020).

    Article  Google Scholar 

  11. Wang, Y. et al. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J. Am. Chem. Soc. 140, 14595–14598 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Iwase, A. et al. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator. J. Am. Chem. Soc. 138, 10260–10264 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Andrei, V., Reuillard, B. & Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems. Nat. Mater. 19, 189–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, B. et al. Mo–Bi–Cd ternary metal chalcogenides: highly efficient photocatalyst for CO2 reduction to formic acid under visible light. ACS Sustain. Chem. Eng. 6, 5754–5759 (2018).

    Article  CAS  Google Scholar 

  15. Kibria, M. G. et al. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv. Mater. 28, 8388–8397 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019).

    Article  CAS  Google Scholar 

  17. Hao, L. et al. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 31, 1900546 (2019).

    Article  Google Scholar 

  18. Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y.-X. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 3, 245–255 (2020).

    Article  CAS  Google Scholar 

  19. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Chu, S. et al. Tunable syngas production from CO2 and H2O in an aqueous photoelectrochemical cell. Angew. Chem. Int. Ed. 55, 14260–14264 (2016).

    Article  Google Scholar 

  21. Chu, S. et al. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 140, 7869–7877 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

    Article  CAS  Google Scholar 

  23. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    Article  CAS  Google Scholar 

  24. Jeon, H. S., Kunze, S., Scholten, F. & Roldan Cuenya, B. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 8, 531–535 (2018).

    Article  CAS  Google Scholar 

  25. Jung, H. et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 141, 4624–4633 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Kibria, M. et al. Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 1–8 (2015).

    Article  Google Scholar 

  27. Li, Y. X., Sadaf, S. M. & Zhou, B. W. Ga(X)N/Si nanoarchitecture: an emerging semiconductor platform for sunlight-powered water splitting toward hydrogen. Front. Energy https://doi.org/10.1007/s11708-023-0881-9 (2023).

  28. AlOtaibi, B., Fan, S. Z., Wang, D. F., Ye, J. H. & Mi, Z. T. Wafer-level artificial photosynthesis for CO2 reduction into CH4 and CO using GaN nanowires. ACS Catal. 5, 5342–5348 (2015).

    Article  CAS  Google Scholar 

  29. Kauffman, D. R., Alfonso, D., Matranga, C., Qian, H. & Jin, R. Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 134, 10237–10243 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Back, S., Yeom, M. S. & Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).

    Article  CAS  Google Scholar 

  31. Guan, X. et al. Making of an industry-friendly artificial photosynthesis device. ACS Energy Lett. 3, 2230–2231 (2018).

    Article  CAS  Google Scholar 

  32. Tran, P. D., Wong, L. H., Barber, J. & Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5, 5902–5918 (2012).

    Article  CAS  Google Scholar 

  33. Sreedhar, A. et al. Charge carrier generation and control on plasmonic Au clusters functionalized TiO2 thin films for enhanced visible light water splitting activity. Ceram. Int. 44, 18978–18986 (2018).

    Article  CAS  Google Scholar 

  34. Wang, Y. X. et al. Deep ultraviolet light source from ultrathin GaN/AlN MQW structures with output power over 2 watt. Adv. Opt. Mater. 7, 7 (2019).

    Article  CAS  Google Scholar 

  35. Hafiz, S. et al. Determination of carrier diffusion length in GaN. J. Appl. Phys. 117, 013106 (2015).

    Article  Google Scholar 

  36. Zhou, B. et al. Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting. Nat. Commun. 9, 3856 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou, B. et al. Highly efficient binary copper–iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc. Natl Acad. Sci. USA 117, 1330–1338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, P., Wang, S., Guan, B. Y. & Lou, X. W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ. Sci. 12, 164–168 (2019).

    Article  CAS  Google Scholar 

  42. Vanka, S. et al. Long-term stability studies of a semiconductor photoelectrode in three-electrode configuration. J. Mater. Chem. A 7, 27612–27619 (2019).

    Article  CAS  Google Scholar 

  43. Kibria, M. G. et al. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall water splitting. Adv. Mater. 2016, 8388–8397 (2016).

    Article  Google Scholar 

  44. Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Y. S. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, Y. et al. Direct C–C coupling of CO2 and the methyl group from CH4 activation through facile insertion of CO2 into Zn–CH3 σ-bond. J. Am. Chem. Soc. 138, 10191–10198 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Kresse, G. & Hafner, J. Abinitio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  50. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  51. Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  52. Garcia, S. et al. Microwave synthesis of classically immiscible rhodium–silver and rhodium–gold alloy nanoparticles: highly active hydrogenation catalysts. ACS Nano 8, 11512–11521 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Luo, L. et al. Tunability of the adsorbate binding on bimetallic alloy nanoparticles for the optimization of catalytic hydrogenation. J. Am. Chem. Soc. 139, 5538–5546 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work performed at the University of Michigan has been supported by the College of Engineering Blue Sky Research Initiative at the University of Michigan and United States Army Research Office Award W911NF2110337. B.Z. is grateful for financial support by the College of Engineering Blue Sky Research Initiative during his postdoctoral studies at the University of Michigan. J.S. and P.O. acknowledge financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (grant number NSERC RGPIN-2017-05187) and thank Compute Canada for providing computing resources. J.K.C. acknowledges support by the Liquid Sunlight Alliance (transient reflection spectroscopy), which is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under award number DE-SC0021266.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. and Z.M. conceived this project. B.Z., Z.Y., Y.M., P.W. and P.Z. conducted the co-catalyst deposition, APID characterizations, photocatalytic CO2 reduction experiments and data analysis. P.O. conducted the DFT calculations with the assistance of X.-Y.L. and J.S. B.Z and Z.M. participated in discussion of the theoretical calculations. S.V. conducted the epitaxial growth of InGaN NWs with the assistance of Y.X. and I.A.N. T.M. performed the STEM characterization. H.S. collected the DRIFT spectra. J.K.C. carried out the transient reflection spectroscopy measurements and analysed these data. J.P. participated in analysis and discussion. B.Z., Z.Y., Y.M., P.O., J.S. and Z.M. wrote the paper with contributions from all the authors.

Corresponding authors

Correspondence to Baowen Zhou, Jun Song or Zetian Mi.

Ethics declarations

Competing interests

A US provisional patent has been filed based on this work by the inventors of Z.M., Z.Y., Y.M. and B.Z. Some intellectual property related to this work is licensed to NS Nanotech, Inc. and NX Fuels, Inc., which were co-founded by Z.M. The University of Michigan and Z.M. have a financial interest in these companies.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Ma, Y., Ou, P. et al. Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nat Catal 6, 987–995 (2023). https://doi.org/10.1038/s41929-023-01023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01023-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing