Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Double alkyl–alkyl bond construction across alkenes enabled by nickel electron-shuttle catalysis

Abstract

Selective construction of two distinct alkyl–alkyl bonds across the C=C bond of simple unactivated olefins is a persistent challenge in organic synthesis. Transition metal-catalysed alkene-dicarbofunctionalization reactions proceeding via classic organometallic elementary reaction mechanism (oxidative addition/transmetalation/reductive elimination) suffered from non-bond forming side reactivities of alkyl–metal intermediates (facile β-hydride elimination) and thus strongly limited the substrate scope of olefins and coupling reagents. Here we demonstrate that the problem of alkyl–metal side reactivities can be overcome with an electron-shuttle catalysis approach, wherein the metal catalyst acts as an electron shuttle to induce and quench the radical intermediates and facilitate the alkyl–alkyl bond formation via radical-unsaturated bond addition. This strategy was applied to a modular alkylative aminomethylation of olefins with two distinct alkyl–alkyl bonds generated through nickel electron-shuttle catalysis. Mechanistic studies supported the formation of carbon-centred radical species and the involvement of radical addition processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metal-catalysed dicarbofunctionalization of alkenes.
Fig. 2: Olefin scope.
Fig. 3: Alkyl bromide scope.
Fig. 4: Four-component reaction.
Fig. 5: Synthetic applications.
Fig. 6: Mechanistic investigation.
Fig. 7: Mechanistic investigation.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information files, or from the corresponding author upon reasonable request. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2216659 (36), 2216660 (150), 2216661 (Ni-I) and 2269279 (trans-45-deriv). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Meijere, A. de, Bräse, S. & Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions and More (Wiley-VCH, 2014).

  2. Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl–aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1470 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Seechurn, C. C. C. J., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article  Google Scholar 

  4. Dhungana, R. K., KC, S., Basnet, P. & Giri, R. Transition metal-catalyzed dicarbofunctionalization of unactivated olefins. Chem. Rec. 18, 1314–1340 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, S., Zhao, X., Li, H. & Chu, L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem. Soc. Rev. 50, 10836–10856 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Diccianni, J., Lin, Q. & Diao, T. Mechanisms of nickel-catalyzed coupling reactions and applications in alkene functionalization. Acc. Chem. Res. 53, 906–919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lovering, F. Escape from flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  8. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995).

  9. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Geist, E., Kirschning, A. & Schmidt, T. Sp3-sp3 coupling reactions in the synthesis of natural products and biologically active molecules. Nat. Prod. Rep. 31, 441–448 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis (Univ. Science Books, 2010).

  12. Shu, W. et al. Ni-catalyzed reductive dicarbofunctionalization of nonactivated alkenes: scope and mechanistic insights. J. Am. Chem. Soc. 141, 13812–13821 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, H., Liu, C.-F., Martin, R. T., Gutierrez, O. & Koh, M. J. Directing-group-free catalytic dicarbofunctionalization of unactivated alkenes. Nat. Chem. 14, 188–195 (2022).

    Article  PubMed  Google Scholar 

  14. Qin, T. et al. A general alkyl–alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao, P., Chen, L.-A. & Brown, M. K. Nickel-catalyzed stereoselective diarylation of alkenylarenes. J. Am. Chem. Soc. 140, 10653–10657 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anthony, D., Lin, Q., Baudet, J. & Diao, T. Nickel-catalyzed asymmetric reductive diarylation of vinylarenes. Angew. Chem. Int. Ed. 58, 3198–3202 (2019).

    Article  CAS  Google Scholar 

  17. Tu, H.-Y. et al. Enantioselective three-component fluoroalkylarylation of unactivated olefins through nickel-catalyzed cross-electrophile coupling. J. Am. Chem. Soc. 142, 9604–9611 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Sun, S.-Z., Duan, Y., Mega, R. S., Somerville, R. J. & Martin, R. Site-selective 1,2-dicarbofunctionalization of vinyl boronates through dual catalysis. Angew. Chem. Int. Ed. 59, 4370–4374 (2020).

    Article  CAS  Google Scholar 

  19. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem. Sci. 2, 1867 (2011).

    Article  CAS  Google Scholar 

  21. Yang, T. et al. Chemoselective union of olefins, organohalides, and redox-active esters enables regioselective alkene dialkylation. J. Am. Chem. Soc. 142, 21410–21419 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, C., Yang, Z.-F., An, L. & Zhang, X. Nickel-catalyzed difluoroalkylation–alkylation of enamides. ACS Catal. 9, 8224–8229 (2019).

    Article  CAS  Google Scholar 

  23. Dhungana, R. K., Sapkota, R. R., Wickham, L. M., Niroula, D. & Giri, R. Ni-catalyzed regioselective 1,2-dialkylation of alkenes enabled by the formation of two C(sp3)–C(sp3) bonds. J. Am. Chem. Soc. 142, 20930–20936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Derosa, J., Tran, V. T., Boulous, M. N., Chen, J. S. & Engle, K. M. Nickel-catalyzed β,γ-dicarbofunctionalization of alkenyl carbonyl compounds via conjunctive cross-coupling. J. Am. Chem. Soc. 139, 10657–10660 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Derosa, J., Puyl, V. A., Tran, V. T., Liu, M. & Engle, K. M. Directed nickel-catalyzed 1,2-dialkylation of alkenyl carbonyl compounds. Chem. Sci. 9, 5278–5283 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, J.-X. & Shu, W. Ni-catalyzed reductive 1,2-cross-dialkylation of unactivated alkenes with two alkyl bromides. Org. Lett. 24, 3844–3849 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Ouyang, X.-H. et al. Intermolecular dialkylation of alkenes with two distinct C(sp3)–H bonds enabled by synergistic photoredox catalysis and iron catalysis. Sci. Adv. 5, eaav9839 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lorandi, F., Fantin, M. & Matyjaszewski, K. Atom transfer radical polymerization: a mechanistic perspective. J. Am. Chem. Soc. 144, 15413–15430 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Foo, K., Sella, E., Thomé, I., Eastgate, M. D. & Baran, P. S. A mild, ferrocene-catalyzed C–H imidation of (hetero)arenes. J. Am. Chem. Soc. 136, 5279–5282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, H., Jiang, T., Zhang, J. & Huang, H. Catalytic reactions directed by a structurally well-defined aminomethyl cyclopalladated complex. Acc. Chem. Res. 54, 4305–4318 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Giese, B. Formation of CC bonds by addition of free radicals to alkenes. Angew. Chem. Int. Ed. 22, 753–764 (1983).

    Article  Google Scholar 

  33. Fischer, H. & Radom, L. Factors controlling the addition of carbon-centered radicals to alkenes—an experimental and theoretical perspective. Angew. Chem. Int. Ed. 40, 1340–1371 (2001).

    Article  CAS  Google Scholar 

  34. Russell, G. A., Yao, C.-F., Rajaratnam, R. & Kim, B. H. Promotion of electron transfer by protonation of nitrogen-centered free radicals. the addition of radicals to iminium ions. J. Am. Chem. Soc. 113, 373–375 (1991).

    Article  CAS  Google Scholar 

  35. Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A general carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trabocchi, A., Guarna, F. & Guarna, A. γ- and δ-Amino acids: synthetic strategies and relevant applications. Curr. Org. Chem. 9, 1127–1153 (2005).

    Article  CAS  Google Scholar 

  37. Baldauf, C., Günther, R. & Hofmann, H.-J. δ-Peptides and δ-amino acids as tools for peptide structure design—a theoretical study. J. Org. Chem. 69, 6214–6220 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Salwiczek, M., Nyakatura, E. K., Gerling, U. I. M., Ye, S. & Koksch, B. Fluorinated amino acids: compatibility with native protein structures and effects on protein–protein interactions. Chem. Soc. Rev. 41, 2135–2171 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Weinberg, K., Stoit, A., Kruse, C. G., Haddow, M. F. & Gallagher, T. Synthesis and differential functionalisation of pyrrolidine and piperidine based spirodiamine scaffolds. Tetrahedron 69, 4694–4707 (2013).

    Article  CAS  Google Scholar 

  41. Bruckman, N., Kitchener, M., Saunders, J. C. & Kline, N. S. Mepazine (Pacatal)—further report. Am. J. Psychiatry 114, 262–263 (1957).

    Article  CAS  PubMed  Google Scholar 

  42. Kharasch, M. S., Skell, P. S. & Fisher, P. Reactions of atoms and free radicals in solution. XII. The addition of bromo esters to olefins. J. Am. Chem. Soc. 70, 1055–1059 (1948).

    Article  CAS  Google Scholar 

  43. Liu, L. et al. General method for iron-catalyzed multicomponent radical cascades–cross-couplings. Science 374, 432–439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sokolova, O. O. & Bower, J. F. Selective carbon–carbon bond cleavage of cyclopropylamine derivatives. Chem. Rev. 121, 80–109 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Lam, F. L. et al. Palladium–(S,pR)-FerroNPS-catalyzed asymmetric allylic etherification: electronic effect of nonconjugated substituents on benzylic alcohols on enantioselectivity. Angew. Chem. Int. Ed. 47, 1280–1283 (2008).

    Article  CAS  Google Scholar 

  46. Sepelak, D. J., Pierpont, C. G., Barefield, E. K., Budz, J. T. & Poffenberger, C. A. Organometallic chemistry of the carbon-nitrogen double bond. 1. nickel complexes prepared from iminium cations and the X-ray structure of {[(C6H5)3P]Ni[CH2N(CH3)2]Cl}. J. Am. Chem. Soc. 98, 6178–6185 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by National Natural Science Foundation of China (21925111), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0450301) and National Key R&D Program of China (2021YFA1501003) (H.H.). We thank F. G. Deng for proofreading.

Author information

Authors and Affiliations

Authors

Contributions

H.H. conceived the concept and directed the project. C.R., T.Z. and H.L. developed the reaction. T.Z. and H.H. wrote the manuscript. All authors contributed to the analysis and interpretation of the results.

Corresponding author

Correspondence to Hanmin Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Xin-Hua Duan and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Tables 1–11 and Figs. 1–21.

Supplementary Data 1

Crystallographic data for compound 36.

Supplementary Data 2

Crystallographic data for compound 150.

Supplementary Data 3

Crystallographic data for compound Ni-I.

Supplementary Data 4

Crystallographic data for compound trans-45-deriv.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, C., Zhang, T., Liu, H. et al. Double alkyl–alkyl bond construction across alkenes enabled by nickel electron-shuttle catalysis. Nat Catal 6, 847–857 (2023). https://doi.org/10.1038/s41929-023-01015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01015-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing