Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction

Abstract

The platinum-catalysed hydrogen evolution reaction (HER) generally shows poorer kinetics in alkaline electrolyte and represents a key challenge for alkaline water electrolysis. In the presence of alkali metal cations and hydroxyl anions, the electrode–electrolyte (platinum–water) interface in an alkaline electrolyte is far more complex than that in an acidic electrolyte. Here we combine electrochemical impedance spectroscopy and an electrical transport spectroscopy approach to probe and understand the fundamental role of different cations (Li+, Na+ and K+) in HER kinetics. Our integrated studies suggest that the alkali metal cations play an indirect role in modifying the HER kinetics, with the smaller cations being less destabilizing to the hydroxyl adsorbate (OHad) species in the HER potential window, which favours a higher coverage of OHad on the platinum surface. The surface OHad species are highly polar and act as both electronically favoured proton acceptors and geometrically favoured proton donors to promote water dissociation in alkaline media, thus boosting the Volmer-step kinetics and the HER activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Voltammetric studies in alkaline electrolytes with different AM+.
Fig. 2: Schematic illustration and working principle of the ETS measurements.
Fig. 3: Effect of cations on the adsorption of OH at the Pt(111)–water interface.
Fig. 4: EIS and DFT investigation of the role of OHad.
Fig. 5: AIMD and micro-solvation simulations of cation and OHad.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. The DFT-optimized geometries and AIMD trajectories are available in the Zenodo data repository at https://doi.org/10.5281/zenodo.7026971.

References

  1. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Article  CAS  Google Scholar 

  2. Li, L., Wang, P., Shao, Q. & Huang, X. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 33, 2004243–2004266 (2021).

    Article  CAS  Google Scholar 

  3. Gasteiger, H. A., Panels, J. E. & Yan, S. G. Dependence of PEM fuel cell performance on catalyst loading. J. Power Sources 127, 162–171 (2004).

    Article  CAS  Google Scholar 

  4. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  Google Scholar 

  5. Zhang, W. et al. WOx-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. Adv. Energy Mater. 11, 2003192–2003198 (2021).

    Article  CAS  Google Scholar 

  6. Sheng, W., Myint, M., Chen, J. G. & Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509–1512 (2013).

    Article  CAS  Google Scholar 

  7. Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).

    Article  CAS  Google Scholar 

  8. McCrum, I. T., Chen, X., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Effect of step density and orientation on the apparent pH dependence of hydrogen and hydroxide adsorption on stepped platinum surfaces. J. Phys. Chem. C. 122, 16756–16764 (2018).

    Article  CAS  Google Scholar 

  9. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  10. Seto, K., Iannelli, A., Love, B. & Lipkowski, J. The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes. J. Electroanal. Chem. Interfacial Electrochem. 226, 351–360 (1987).

    Article  CAS  Google Scholar 

  11. Markovića, N. M., Sarraf, S. T., Gasteiger, H. A. & Ross, P. N. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc. Faraday Trans. 92, 3719–3725 (1996).

    Article  Google Scholar 

  12. Marković, N., Grgur, B. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B. 101, 5405–5413 (1997).

    Article  Google Scholar 

  13. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Li, J. et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56, 15594–15598 (2017).

    Article  CAS  Google Scholar 

  16. Liu, E. et al. Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl–water–cation adducts. J. Am. Chem. Soc. 141, 3232–3239 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Cong, Y. et al. Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction. J. Mater. Chem. A 7, 3161–3169 (2019).

    Article  CAS  Google Scholar 

  18. Qiu, Y. et al. BCC-phased PdCu alloy as a highly active electrocatalyst for hydrogen oxidation in alkaline electrolytes. J. Am. Chem. Soc. 140, 16580–16588 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  20. Xue, S. et al. Influence of alkali metal cations on the hydrogen evolution reaction activity of Pt, Ir, Au, and Ag electrodes in alkaline electrolytes. ChemElectroChem 5, 2326–2329 (2018).

    Article  CAS  Google Scholar 

  21. Monteiro, M. C. O., Goyal, A., Moerland, P. & Koper, M. T. M. Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media. ACS Catal. 11, 14328–14335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber, D., Janssen, M. & Oezaslan, M. Effect of monovalent cations on the HOR/HER activity for Pt in alkaline environment. J. Electrochem. Soc. 166, F66–F73 (2019).

    Article  CAS  Google Scholar 

  23. van der Niet, M. J. T. C., Garcia-Araez, N., Hernández, J., Feliu, J. M. & Koper, M. T. M. Water dissociation on well-defined platinum surfaces: the electrochemical perspective. Catal. Today 202, 105–113 (2013).

    Article  Google Scholar 

  24. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding, M. et al. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 6, 7867 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding, M. et al. On-chip in situ monitoring of competitive interfacial anionic chemisorption as a descriptor for oxygen reduction kinetics. ACS Cent. Sci. 4, 590–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoo, H.-W., Cho, S.-Y., Jeon, H.-J. & Jung, H.-T. Well-defined and high resolution Pt nanowire arrays for a high performance hydrogen sensor by a surface scattering phenomenon. Anal. Chem. 87, 1480–1484 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Kiyohara, K. & Minami, R. Hydration and dehydration of monovalent cations near an electrode surface. J. Chem. Phys. 149, 014705–014714 (2018).

    Article  PubMed  Google Scholar 

  29. Rebollar, L. et al. ‘Beyond adsorption’ descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).

    Article  CAS  Google Scholar 

  30. Mills, J. N., McCrum, I. T. & Janik, M. J. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys. Chem. Chem. Phys. 16, 13699–13707 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  32. Mähler, J. & Persson, I. A study of the hydration of the alkali metal Ions in aqueous solution. Inorg. Chem. 51, 425–438 (2012).

    Article  PubMed  Google Scholar 

  33. McCrum, I. T. & Janik, M. J. First principles simulations of cyclic voltammograms on stepped Pt(553) and Pt(533) electrode surfaces. ChemElectroChem 3, 1609–1617 (2016).

    Article  CAS  Google Scholar 

  34. McCrum, I. T. & Janik, M. J. pH and alkali cation effects on the Pt cyclic voltammogram explained using density functional theory. J. Phys. Chem. C. 120, 457–471 (2016).

    Article  CAS  Google Scholar 

  35. Lust, E. in Encyclopedia of Electrochemistry (ed. Bard, A. J.) (Wiley, 2007); https://doi.org/10.1002/9783527610426.bard010204

  36. Garlyyev, B., Xue, S., Watzele, S., Scieszka, D. & Bandarenka, A. S. Influence of the nature of the alkali metal cations on the electrical double-layer capacitance of model Pt(111) and Au(111) electrodes. J. Phys. Chem. Lett. 9, 1927–1930 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Goyal, A. & Koper, M. T. Understanding the role of mass transport in tuning the hydrogen evolution kinetics on gold in alkaline media. J. Chem. Phys. 155, 134705–134715 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  45. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104–1541023 (2010).

    Article  PubMed  Google Scholar 

  46. Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111–064119 (2011).

    Article  PubMed  Google Scholar 

  47. Steinmann, S. N., Michel, C., Schwiedernoch, R. & Sautet, P. Impacts of electrode potentials and solvents on the electroreduction of CO2: a comparison of theoretical approaches. Phys. Chem. Chem. Phys. 17, 13949–13963 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Chalk, S. J. The IUPAC Gold Book website (2019); https://doi.org/10.1351/goldbook.S05917

  49. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, T. Molclus program, version 1.9.9.2 (Beijing Kein Research Center for Natural Science, 2016).

  51. Becke, A. D. Becke’s three parameter hybrid method using the LYP correlation functional. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  52. Tirado-Rives, J. & Jorgensen, W. L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 4, 297–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Schäfer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Article  Google Scholar 

  54. Frisch, M. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  55. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

X.D. acknowledges support from the National Science Foundation award 1800580. Y.H. acknowledges the gracious support by NewHydrogen, Inc. Theoretical research was supported by the DOE-BES DE-SC0019152 grant to A.N.A. An award of computer time was provided by NERSC and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

X.D. conceived the research. The experiments were carried out by A.H.S. with assistance from Z.H., S.W., G.Z. and C.W. under the supervision of Y.H. and X.D. The calculations were carried out by Z.Z. under the supervision of A.N.A. The manuscript was written by A.H.S., Z.Z., A.N.A., Y.H. and X.D.

Corresponding authors

Correspondence to Anastassia N. Alexandrova, Yu Huang or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Marcella Iannuzzi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Notes 1–7 and refs. 1–8.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.H., Zhang, Z., Huang, Z. et al. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat Catal 5, 923–933 (2022). https://doi.org/10.1038/s41929-022-00851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00851-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing