Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The development of integrated circuits based on two-dimensional materials

Abstract

Two-dimensional (2D) materials could potentially be used to develop advanced monolithic integrated circuits. However, despite impressive demonstrations of single devices and simple circuits—in some cases with performance superior to those of silicon-based circuits—reports on the fabrication of integrated circuits using 2D materials are limited and the creation of large-scale circuits remains in its infancy. Here we examine the development of integrated circuits based on 2D layered materials. We assess the most advanced circuits fabricated so far and explore the key challenges that need to be addressed to deliver highly scaled circuits. We also propose a roadmap for the future development of integrated circuits based on 2D layered materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-integration-density ICs using 2D-LMs.
Fig. 2: 2D-LM-based ICs for applications requiring high integration density.
Fig. 3: Roadmap for 2D-LM-based ICs.

Similar content being viewed by others

References

  1. The International Roadmap for Devices and Systems 2020 Edition (IRDS, IEEE, accessed 24 December 2020); https://irds.ieee.org/editions/2020

  2. Kilby, J. S. Miniaturized electronic circuits. US patent 3,138,743 (1964).

  3. Noyce, R. N. Semiconductor device-and-lead structure. US patent 2,981,877 (1961).

  4. Kahng, D. Electric field controlled semiconductor device. US patent 3,102,230 (1963).

  5. Teal, G. K. Single crystals of germanium and silicon—basic to the transistor and integrated circuit. IEEE Trans. Electron. Dev. 23, 621–639 (1976).

    Article  Google Scholar 

  6. Liu, R., Pai, C. & Martinez, E. Interconnect technology trend for microelectronics. Solid-State Electron. 43, 1003–1009 (1999).

    Article  Google Scholar 

  7. Gusev, E. P. et al. Ultrathin high-k gate stacks for advanced CMOS devices. In International Electron Devices Meeting Technical Digest 20.1.1–20.1.4 (IEEE, 2001).

  8. Kim, K. T. et al. Tungsten silicide/titanium nitride compound gate for submicron CMOSFET. In 1990 Symposium on VLSI Technology Digest of Technical Papers 115–116 (IEEE, 1990).

  9. Balaram, V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling and environmental impact. Geosci. Front. 10, 1285–1303 (2019).

    Article  Google Scholar 

  10. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  11. Wang, N. C. et al. Replacing copper interconnects with graphene at a 7-nm node. In Proc. IEEE International Interconnect Technology Conference (IITC) 1–3 (IEEE, 2017).

  12. Butler, S. Z. et al. Progress, challenges and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Article  Google Scholar 

  13. Ji, Y. et al. Boron nitride as two dimensional dielectric: reliability and dielectric breakdown. Appl. Phys. Lett. 108, 012906 (2016).

    Article  Google Scholar 

  14. Grande, M. et al. Optically transparent wideband CVD graphene-based microwave antennas. Appl. Phys. Lett. 112, 251103 (2018).

    Article  Google Scholar 

  15. Lembke, D. & Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6, 10070–10075 (2012).

    Article  Google Scholar 

  16. Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    Article  Google Scholar 

  17. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  Google Scholar 

  18. Akinwande, D. et al. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  Google Scholar 

  19. Backes, C. et al. Production and processing of graphene and related materials. 2D Mater. 7, 022001 (2020).

    Article  Google Scholar 

  20. Han, S., Garcia, A. V., Oida, S., Jenkins, K. A. & Haensch Graphene radio frequency receiver integrated circuit. Nat. Commun. 5, 3086 (2014).

    Article  Google Scholar 

  21. Lee, J. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  Google Scholar 

  22. Chen, T. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    Article  Google Scholar 

  23. Lin, D. et al. Dual gate synthetic WS2 MOSFETs with 120 µS/µm Gm 2.7 µF/cm2 capacitance and ambipolar channel. In Proc. 2020 IEEE International Electron Devices Meeting (IEDM) 3.6.1–3.6.4 (IEEE, 2020).

  24. Zhang, Y. et al. Thickness considerations of two-dimensional layered semiconductors for transistor applications. Sci. Rep. 6, 29615 (2016).

    Article  Google Scholar 

  25. Smithe, K., Suryavanshi, S. V., Rojo, M. M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2020).

    Article  Google Scholar 

  26. Huang, X. et al. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Appl. Phys. Lett. 106, 203105 (2015).

    Article  Google Scholar 

  27. Pan, K. et al. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 9, 5197 (2018).

    Article  Google Scholar 

  28. Sarycheva, A. et al. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, 0920 (2018).

    Article  Google Scholar 

  29. Han, M. et al. Solution-processed Ti3C2Tx MXene antennas for radio frequency communication. Adv. Funct. Mater. 33, 2003225 (2021).

    Article  Google Scholar 

  30. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  Google Scholar 

  31. Kim, M. et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 9, 2524 (2018).

    Article  Google Scholar 

  32. Kim, M. et al. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems. Nat. Electron. 3, 479–485 (2020).

    Article  Google Scholar 

  33. Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    Article  Google Scholar 

  34. Lin, Y. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    Article  Google Scholar 

  35. Li, T. et al. MXene-graphene field-effect transistor sensing of influenza virus and SARS-CoV-2. ACS Omega 6, 6643–6653 (2021).

    Article  Google Scholar 

  36. Marin, J. F. G. et al. MoS2 photodetectors integrated with photonic circuits. npj 2D Mater. Appl. 3, 14 (2019).

    Article  Google Scholar 

  37. Peyskens, F. et al. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

    Article  Google Scholar 

  38. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

    Article  Google Scholar 

  39. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  Google Scholar 

  40. Xue, F. et al. Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater. 30, 2004206 (2020).

    Article  Google Scholar 

  41. Kamarauskas, M. et al. Photovoltaic effect-driven IR response of heterojunctions obtained by direct CVD synthesis of MoS2 nanolayers on crystalline silicon. Nanotechnology 31, 425603 (2020).

    Article  Google Scholar 

  42. Leng, T. et al. Printed graphene/WS2 battery-free wireless photosensor on papers. 2D Mater. 7, 024004 (2020).

    Article  Google Scholar 

  43. Velusamy, D. et al. MXenes for plasmonic photodetection. Adv. Mater. 31, 1807658 (2019).

    Article  Google Scholar 

  44. Patel, D. Apple’s A14 packs 134 million transistors/mm2, but falls short of TSMC’s density claims. SemiAnalysis (27 October 2020).

  45. Adam, G. C. et al. 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Trans. Electron Devices 64, 312–318 (2017).

    Article  Google Scholar 

  46. Lanza, M., Smets, Q., Huyghebaert, C. & Li, L. Yield, variability, reliability and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020).

    Article  Google Scholar 

  47. Zhang, Q. et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron. 2, 164–170 (2019).

    Article  Google Scholar 

  48. Marega, G. M. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).

    Article  Google Scholar 

  49. Dodda, A. et al. Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks. Nat. Electron. 4, 364–374 (2021).

    Article  Google Scholar 

  50. Polyushkin, D. K. et al. Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020).

    Article  Google Scholar 

  51. Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    Article  Google Scholar 

  52. Lin, S. et al. Solution-processable 2D semiconductors for high performance large-area electronics. Nature 562, 254–258 (2018).

    Article  Google Scholar 

  53. Conti, S. et al. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11, 3566 (2020).

    Article  Google Scholar 

  54. Wang, Z., Kim, H. & Alshareef, H. N. Oxide thin-film electronics using All-MXene electrical contacts. Adv. Mater. 30, 1706656 (2018).

    Article  Google Scholar 

  55. Smets Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42-nm contact pitch and 250-µA/µm drain current. In Proc. 2019 IEEE International Electron Devices Meeting (IEDM) 23.2.1–23.2.4 (IEEE, 2019).

  56. Cheng, C.-C. et al. First demonstration of 40-nm channel length top-gate WS2 pFET using channel area-selective CVD growth directly on SiOx/Si substrate. In Proc. 2019 Symposium on VLSI Technology T244–T245 (IEEE, 2019).

  57. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  Google Scholar 

  58. Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2017).

    Article  Google Scholar 

  59. Lyu, B. et al. Large-area MXene electrode array for flexible electronics. ACS Nano 13, 11392–11400 (2019).

    Article  Google Scholar 

  60. Wang, Y. et al. High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Appl. Phys. Lett. 115, 193503 (2019).

    Article  Google Scholar 

  61. Sun, L. et al. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019).

    Article  Google Scholar 

  62. Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).

    Article  Google Scholar 

  63. Shen, Y. et al. Variability and yield in h-BN-based memristive circuits: the role of each type of defect. Adv. Mater. 33, 2103656 (2021).

    Article  Google Scholar 

  64. Sivan, M. et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019).

    Article  Google Scholar 

  65. Wang, C. H. et al. 3D monolithic stacked 1T1R cells using monolayer MoS2 FET and h-BN RRAM fabricated at low (150 °C) temperature. In Proc. IEEE International Electron Devices Meeting (IEDM) 22–25 (IEEE, 2018).

  66. Lee, H.-S. et al. Dual-gated MoS2 memtransistor crossbar array. Adv. Funct. Mater. 30, 2003683 (2020).

    Article  Google Scholar 

  67. Feng, X. et al. Self-selective multi-terminal memtransistor crossbar array for in-memory computing. ACS Nano 15, 1764–1774 (2020).

    Article  Google Scholar 

  68. Son, D. et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28, 9326–9332 (2016).

    Article  Google Scholar 

  69. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article  Google Scholar 

  70. Wen, C. et al. Advanced data encryption using 2D materials. Adv. Mater. 33, 2100185 (2021).

    Article  Google Scholar 

  71. Baijieteng Technology Corporation (BTC, accessed 13 January 2020); http://bjtiot.com/english/

  72. Autovision Program of Spearhead Projects (Graphen Flagship, accessed 13 January 2020); https://graphene-flagship.eu/innovation/spearheads/c3-sh08-autovision/

  73. Huawei achieves major breakthrough in graphene-assisted high temperature Li-ion batteries. Huawei (1 December 2016); https://www.huawei.com/en/news/2016/12/Graphene-Assisted-Li-ion-Batteries

  74. Shi, Y. et al. Engineering wafer-scale epitaxial two-dimensional materials through sapphire template screening for advanced high- performance nanoelectronics. ACS Nano 15, 9482–9494 (2021).

    Article  Google Scholar 

  75. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  Google Scholar 

  76. Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016).

    Article  Google Scholar 

  77. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    Article  Google Scholar 

  78. Phommahaxay, A. et al. The growing application field of laser debonding: from advanced packaging to future nanoelectronics. In Proc. 2019 International Wafer Level Packaging Conference (IWLPC) 1–8 (IEEE, 2019).

  79. Kim, M. et al. Sheet resistance analysis of interface-engineered multilayer graphene: mobility versus sheet carrier concentration. ACS Appl. Mater. Interfaces 12, 30932–30940 (2020).

    Article  Google Scholar 

  80. Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    Article  Google Scholar 

  81. Mun, J. et al. Low-temperature growth of layered molybdenum disulphide with controlled clusters. Sci. Rep. 6, 21854 (2016).

    Article  Google Scholar 

  82. Hartnett, J. G., Fowler, A. C., Tobar, M. E. & Krupka, J. The microwave characterization of single crystal lithium and calcium fluoride at cryogenic temperatures. IEEE T. Ultrason. Ferr. 51, 380–386 (2004).

    Article  Google Scholar 

  83. Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012).

    Article  Google Scholar 

  84. Koma, A., Saiki, K. & Sato, Y. Heteroepitaxy of a two-dimensional material on a three-dimensional material. Appl. Surf. Sci. 41, 451–456 (1990).

    Article  Google Scholar 

  85. Wen, C. et al. Dielectric properties of ultrathin CaF2 ionic crystals. Adv. Mater. 32, 2002525 (2020).

    Article  Google Scholar 

  86. Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Article  Google Scholar 

  87. Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    Article  Google Scholar 

  88. Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    Article  Google Scholar 

  89. Vescio, G. Inkjet-Printed Flexible Electronic Devices: from High-k Capacitors to h-BN/Graphene Thin Film Transistors. PhD thesis, Univ. Barcelona (2017).

  90. Hsieh, Y., Su, W., Huang, C. & Su, C. Solution-processed black phosphorus nanoflakes for integrating nonvolatile resistive random access memory and the mechanism unveiled. Nanotechnology 30, 445702 (2019).

    Article  Google Scholar 

  91. 2D Semiconductors (2DS, accessed 13 January 2020); https://www.2dsemiconductors.com/

  92. Afanas’ev, V. V. Band alignment at interfaces of two-dimensional materials: internal photoemission analysis. J. Phys. Condens. Matter 32, 413002 (2020).

    Article  Google Scholar 

  93. Xu, K. et al. Sub-10-nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017).

    Article  Google Scholar 

  94. Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017).

    Article  Google Scholar 

  95. Chen, Y., Gong, X. & Gai, J. Progress and challenges in transfer of large-area graphene films. Adv. Sci 3, 1500343 (2016).

    Article  Google Scholar 

  96. Smets, Q. et al. Source of variability in scaled MoS2 FETs. In Proc. 2020 IEEE International Electron Devices Meeting (IEDM) 3.1.1–3.1.4 (IEEE, 2020).

  97. Lupina, G. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015).

    Article  Google Scholar 

  98. Lim, J. Y. et al. Homogeneous 2D MoTe2 p–n junctions and CMOS inverters formed by atomic-layer deposition-induced doping. Adv. Mater. 29, 1701798 (2017).

    Article  Google Scholar 

  99. Yu, L. et al. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 15, 4928–4934 (2015).

    Article  Google Scholar 

  100. Suh, Y., Shin, D. & Chun, Y. T. Micro-to-nanometer patterning of solution-based materials for electronics and optoelectronics. RSC Adv. 9, 38084–38104 (2019).

    Article  Google Scholar 

  101. Hyun, W. J. et al. Printable hexagonal boron nitride ionogles. Faraday Discuss. 227, 92–104 (2021).

    Article  Google Scholar 

  102. Si, K. et al. Improving photoelectric performance of MoS2 photoelectrodes by annealing. Ceram. Int. 44, 21153–21158 (2018).

    Article  Google Scholar 

  103. Huang, S. et al. Thermal bubble inkjet printing of water-based graphene oxide and graphene inks on heated substrate. J. Phys. D 51, 135302 (2018).

    Article  Google Scholar 

  104. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Article  Google Scholar 

  105. Liu, L. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4, 342–347 (2021).

    Article  Google Scholar 

  106. Shin, Y. S. et al. Mobility engineering in vertical field effect transistors based on van der Waals heterostructures. Adv. Mater. 30, 1704435 (2018).

    Article  Google Scholar 

  107. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    Article  Google Scholar 

  108. Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387–392 (2018).

    Article  Google Scholar 

  109. Tang, Z. et al. A steep-slope MoS2/graphene Dirac-source field-effect transistor with a large drive current. Nano Lett. 21, 1758–1764 (2021).

    Article  Google Scholar 

  110. MUSE Semiconductor (MUSE, accessed 5 October 2021); https://www.musesemi.com/shared-block-tapeout-pricing

  111. McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).

    Article  Google Scholar 

  112. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  Google Scholar 

  113. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  Google Scholar 

  114. Li, T. et al. A native oxide high-k gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020).

    Article  Google Scholar 

  115. Park, H., Shin, G. H., Lee, K. J. & Choi, S.-Y. Atomic-scale etching of hexagonal boron nitride for device integration based on two-dimensional materials. Nanoscale 10, 15205–15212 (2018).

    Article  Google Scholar 

  116. Lim, W. S. et al. Atomic layer etching of graphene for full graphene device fabrication. Carbon 50, 429–435 (2012).

    Article  Google Scholar 

  117. Xu, X. et al. Enhanced quality of wafer-scale MoS2 films by a capping layer annealing process. Adv. Funct. Mater. 53, 1908040 (2020).

    Article  Google Scholar 

  118. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article  Google Scholar 

  119. Hui, F. & Lanza, M. Scanning probe microscopy for advanced nanoelectronics. Nat. Electron. 2, 221–229 (2019).

    Article  Google Scholar 

  120. Xiao, Y. et al. Highly accurate thickness determination of 2D materials. Cryst. Res. Technol. 56, 2100056 (2021).

    Article  Google Scholar 

  121. Lanza, M. et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano https://doi.org/10.1021/acsnano.1c06980 (2021).

  122. Song, H. et al. Two-dimensional materials for thermal management applications. Joule 2, 442–463 (2018).

    Article  Google Scholar 

  123. Deshmukh, S., Rojo, M. M., Yalon, E., Vaziri, S. & Pop, E. Probing self-heating in RRAM devices by sub-100-nm spatially resolved thermometry. In Proc. 2018 76th Device Research Conference (DRC) 1–2 (IEEE, 2018).

  124. Kaushik, N. et al. Reversible hysteresis inversion in MoS2 field effect transistors. njp 2D Mater. Appl. 1, 34 (2017).

    Article  Google Scholar 

  125. Wang, B. et al. Experimental observation and mitigation of dielectric screening in hexagonal boron nitride based resistive switching devices. Cryst. Res. Technol. 53, 1800006 (2018).

    Article  Google Scholar 

  126. Molle, A. et al. Silicene, silicene derivatives and their device applications. Chem. Soc. Rev. 47, 6370–6387 (2018).

    Article  Google Scholar 

  127. Abate, Y. et al. Recent progress on stability and passivation of black phosphorus. Adv. Mater. 30, 1704749 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by King Abdullah University of Science and Technology (KAUST). M.L. acknowledges S. Pazos from the King Abdullah University of Science and Technology for technical advice on 2D-LMs/CMOS hybrid integration.

Author information

Authors and Affiliations

Authors

Contributions

M.L. conceived the idea. K.Z. performed the literature research. K.Z. and M.L. wrote the manuscript. C.W., A.A.A., F.X., X.X., V.T., X.Z. and H.N.A. revised the manuscript, included some portions of text and provided additional references. All authors read the final manuscript.

Corresponding author

Correspondence to Mario Lanza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Cinza Casiraghi and Xiangfeng Duan for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Wen, C., Aljarb, A.A. et al. The development of integrated circuits based on two-dimensional materials. Nat Electron 4, 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00672-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing