Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flash upcycling of waste glass fibre-reinforced plastics to silicon carbide

Abstract

The increasing use of fibre-reinforced plastics (FRPs) has triggered an urgent need for proper end-of-life management strategies. Currently, most adopted methods are landfilling, incineration and solvolysis, which lead to undesirable environmental contamination and waste of resources. To address this issue, we develop a solvent-free and energy-efficient flash upcycling method enabling ultrafast conversion of the mixture of different FRPs to SiC, a widely used reinforcement and semiconducting material, with high yields (>90%). By tuning operation conditions, SiC with two different phases, 3C-SiC and 6H-SiC, can be selectively synthesized with high phase purity (90–99%). The obtained SiC powders can be used as the anode material for lithium-ion batteries. The 3C-SiC anode exhibits superior reversible capacity and rate performance at 0.2 C over the 6H-SiC anode (741 mAh g−1 vs 626 mAh g−1), while both show good cycling stability. Life cycle assessment reveals that the flash upcycling method developed here greatly reduces the energy demand, greenhouse gas emissions and water consumption over other available FRP disposal methods. Overall, this work provides a viable method for sustainable management of end-of-life FRPs, contributing to clean production and circular economy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upcycling FRP to silicon carbide by FCR.
Fig. 2: Phase-controllable synthesis of SiC.
Fig. 3: Mechanism of SiC phase transformation.
Fig. 4: Phase-dependent LIB performance of SiC anode.
Fig. 5: Life cycle assessment for FRP recycling.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Goncalves, R. M., Martinho, A. & Oliveira, J. P. Recycling of reinforced glass fibers waste: current status. Materials 15, 1596 (2022).

    Article  CAS  Google Scholar 

  2. Cunliffe, A. M. & Williams, P. T. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis. Fuel 82, 2223–2230 (2003).

    Article  CAS  Google Scholar 

  3. Cui, G. et al. Massive growth of graphene quartz fiber as a multifunctional electrode. ACS Nano 14, 5938–5945 (2020).

    Article  CAS  Google Scholar 

  4. Cheng, Y. et al. Graphene infrared radiation management targeting photothermal conversion for electric-energy-free crude oil collection. J. Am. Chem. Soc. 144, 15562–15568 (2022).

    Article  CAS  Google Scholar 

  5. Sathishkumar, T., Satheeshkumar, S. & Naveen, J. Glass fiber-reinforced polymer composites–a review. J. Reinf. Plast. Compos. 33, 1258–1275 (2014).

    Article  CAS  Google Scholar 

  6. Xue, X., Liu, S.-Y., Zhang, Z.-Y., Wang, Q.-Z. & Xiao, C.-Z. A technology review of recycling methods for fiber-reinforced thermosets. J. Reinf. Plast. Compos. 41, 459–480 (2021).

    Article  Google Scholar 

  7. Karuppannan Gopalraj, S. & Kärki, T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2, 433 (2020).

    Article  CAS  Google Scholar 

  8. Jensen, J. P. & Skelton, K. Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy. Renew. Sustain. Energy Rev. 97, 165–176 (2018).

    Article  Google Scholar 

  9. Krauklis, A. E., Karl, C. W., Gagani, A. I. & Jørgensen, J. K. Composite material recycling technology—state-of-the-art and sustainable development for the 2020s. J. Compos. Sci. 5, 28 (2021).

  10. Thomason, J., Jenkins, P. & Yang, L. Glass fibre strength—a review with relation to composite recycling. Fibers 4, 18 (2016).

    Article  Google Scholar 

  11. Zheng, Y., Yanful, E. K. & Bassi, A. S. A review of plastic waste biodegradation. Crit. Rev. Biotechnol. 25, 243–250 (2005).

    Article  CAS  Google Scholar 

  12. Bahl, S., Dolma, J., Jyot Singh, J. & Sehgal, S. Biodegradation of plastics: a state of the art review. Mater. Today Proc. 39, 31–34 (2021).

    Article  CAS  Google Scholar 

  13. Jacob, A. Composites can be recycled. Reinf. Plast. 55, 45–46 (2011).

    Article  Google Scholar 

  14. Naqvi, S. R. et al. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 136, 118–129 (2018).

    Article  CAS  Google Scholar 

  15. Liu, Y., Meng, L., Huang, Y. & Liu, L. Method of recovering the fibrous fraction of glass/epoxy composites. J. Reinf. Plast. Compos. 25, 1525–1533 (2006).

    Article  CAS  Google Scholar 

  16. Ahrens, A. et al. Catalytic disconnection of C–O bonds in epoxy resins and composites. Nature 617, 730–737 (2023).

    Article  CAS  Google Scholar 

  17. Wang, J.-F. et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide. Nat. Mater. 22, 489–494 (2023).

    Article  CAS  Google Scholar 

  18. Booker, I. D., Farkas, I., Ivanov, I. G., Ul Hassan, J. & Janzén, E. Chloride-based SiC growth on a-axis 4H–SiC substrates. Physica B Condens. Matter 480, 23–25 (2016).

    Article  CAS  Google Scholar 

  19. Clavaguera-Mora, M. T. et al. Growth of SiC films obtained by LPCVD. Diam. Relat. Mater. 6, 1306–1310 (1997).

    Article  CAS  Google Scholar 

  20. Yan, J. Y., Chen, Q. S., Jiang, Y. N. & Zhang, H. Improvement of the thermal design in the SiC PVT growth process. J. Cryst. Growth 385, 34–37 (2014).

    Article  CAS  Google Scholar 

  21. Herro, Z. et al. Investigation of mass transport during PVT growth of SiC by 13C labeling of source material. J. Cryst. Growth 258, 261–267 (2003).

    Article  CAS  Google Scholar 

  22. Shin, Y., Wang, C. M. & Exarhos, G. Synthesis of SiC ceramics by the carbothermal reduction of mineralized wood with silica. Adv. Mater. 17, 73–77 (2005).

    Article  CAS  Google Scholar 

  23. Guo, X., Zhu, L., Li, W. & Yang, H. Preparation of SiC powders by carbothermal reduction with bamboo charcoal as renewable carbon source. J. Adv. Ceram. 2, 128–134 (2013).

    Article  CAS  Google Scholar 

  24. Jiang, R. et al. Ultrafast synthesis for functional nanomaterials. Cell Rep. Phys. Sci. 2, 100302 (2021).

    Article  CAS  Google Scholar 

  25. Cheng, Y. et al. Electric current aligning component units during graphene fiber Joule heating. Adv. Funct. Mater. 32, 202103493 (2022).

    Article  Google Scholar 

  26. Liu, S. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 32, 2006034 (2020).

    Article  CAS  Google Scholar 

  27. Zhu, W. et al. Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batteries. Adv. Mater. 35, 2208974 (2023).

    Article  CAS  Google Scholar 

  28. Wyss, K. M., Deng, B. & Tour, J. M. Upcycling and urban mining for nanomaterial synthesis. Nano Today 49, 101781 (2023).

    Article  CAS  Google Scholar 

  29. Yu, F. et al. Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation. Nat. Commun. 14, 4975 (2023).

    Article  CAS  Google Scholar 

  30. Jia, C. et al. Graphene environmental footprint greatly reduced when derived from biomass waste via flash Joule heating. One Earth 5, 1394–1403 (2022).

    Article  Google Scholar 

  31. Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577, 647–651 (2020).

    Article  CAS  Google Scholar 

  32. Deng, B. et al. Heavy metal removal from coal fly ash for low carbon footprint cement. Commun. Eng. 2, 13 (2023).

    Article  Google Scholar 

  33. Deng, B. et al. High-temperature electrothermal remediation of multi-pollutants in soil. Nat. Commun. 14, 6371 (2023).

    Article  CAS  Google Scholar 

  34. Shen, Z. et al. Tunable fabrication and photoluminescence property of SiC nanowires with different microstructures. Appl. Surf. Sci. 506, 144979 (2020).

    Article  CAS  Google Scholar 

  35. Persson, C. & Lindefelt, U. Dependence of energy gaps and effective masses on atomic positions in hexagonal SiC. J. Appl. Phys. 86, 5036–5039 (1999).

    Article  CAS  Google Scholar 

  36. Kong, L. et al. Two novel SiC phases: structure, mechanical, and transport properties. Mater. Res. Express 7, 085902 (2020).

    Article  CAS  Google Scholar 

  37. Shimojo, F. et al. Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys. Rev. Lett. 84, 3338 (2000).

    Article  CAS  Google Scholar 

  38. Yoo, W. S. Y. W. S. & Matsunami, H. M. H. Solid-state phase transformation in cubic silicon carbide. Jpn. J. Appl. Phys. 30, 545 (1991).

    Article  CAS  Google Scholar 

  39. Feldman, D. W., Parker, J. H., Choyke, W. J. & Patrick, L. Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev. 173, 787–793 (1968).

    Article  CAS  Google Scholar 

  40. Yu, M., Temeche, E., Indris, S. & Laine, R. M. Adjusting SiO2:C mole ratios in rice hull ash (RHA) to control carbothermal reduction to nanostructured SiC, Si3N4 or Si2N2O composites. Green Chem. 23, 7751–7762 (2021).

    Article  CAS  Google Scholar 

  41. Son, N. T., Carlsson, P., ul Hassan, J., Magnusson, B. & Janzén, E. Defects and carrier compensation in semi-insulating 4H-SiC substrates. Phys. Rev. B 75, 155204 (2007).

    Article  Google Scholar 

  42. Sun, C. et al. Interfacial coupled design of epitaxial graphene@SiC schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 77, 105092 (2020).

    Article  CAS  Google Scholar 

  43. Yu, M., Temeche, E., Indris, S., Lai, W. & Laine, R. M. Silicon carbide (SiC) derived from agricultural waste potentially competitive with silicon anodes. Green Chem. 24, 4061–4070 (2022).

    Article  CAS  Google Scholar 

  44. Li, H. et al. Re-utilization of waste graphite anode materials from spent lithium-ion batteries. J. Electroanal. Chem. 932, 117247 (2023).

    Article  CAS  Google Scholar 

  45. Chen, W. et al. Flash recycling of graphite anodes. Adv. Mater. 35, e2207303 (2023).

    Article  Google Scholar 

  46. Qian, J. et al. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv. Energy Mater. 8, 1703159 (2018).

    Article  Google Scholar 

  47. Chen, C. et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015).

    Article  CAS  Google Scholar 

  48. Kim, N., Park, H., Yoon, N. & Lee, J. K. Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes. ACS Nano 12, 3853–3864 (2018).

    Article  CAS  Google Scholar 

  49. Yang, X. et al. Amorphous tin-based composite oxide: a high-rate and ultralong-life sodium-ion-storage material. Adv. Energy Mater. 8, 1701827 (2018).

    Article  Google Scholar 

  50. Universal Matter Inc. (accessed 20 July 2023); https://www.universalmatter.com/

  51. Eddy, L. et al. Automated laboratory kilogram-scale graphene production from coal. Small Methods https://doi.org/10.1002/smtd.202301144 (2023).

  52. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys. Rev. B 57, 1505 (1998).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  55. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  56. Rauls, E., Frauenheim, T., Gali, A. & Deák, P. Theoretical study of vacancy diffusion and vacancy-assisted clustering of antisites in sic. Phys. Rev. B 68, 155208 (2003).

    Article  Google Scholar 

  57. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the Air Force Office of Scientific Research (FA9550-22-1-0526, J.M.T.), the US Army Corps of Engineers, ERDC grant (W912HZ-21-2-0050, J.M.T.) and a Rice Academy Fellowship (Y. Cheng). We acknowledge the use of the Electron Microscopy Centre (EMC) at Rice University. The characterization equipment used in this project is partly from the Shared Equipment Authority (SEA) at Rice University. We thank B. Chen of Rice University for helpful discussion of the XPS results. DFT computing time was provided by National Energy Research Scientific Computing Center (NERSC) with the high-performance computing system, Perlmutter.

Author information

Authors and Affiliations

Authors

Contributions

J.M.T. and Y. Cheng conceived the idea and designed the experiments. Y. Cheng conducted the synthesis and most of the characterizations with the help of J.C., B.D., W.C., B.L., S.X. and T.S. Y. Cheng and J.C. conducted the assembly and electrochemical tests of the LIBs. B.D. conducted the TEM and SAED tests. K.J.S. helped with the GC–MS tests. L.E. maintained the flash system and assisted with the scale-up experiments. G.W. conducted the EPR test. Y. Chen and A.A.M. conducted the UV–Vis measurement. C.K. provided the waste GFRP samples. Y.Z. and B.I.Y. conducted the MD and DFT simulation. Y. Cheng analysed the simulation results with the assistance of Y.Z. Y. Cheng, J.C., B.D., Y.Z. and J.M.T. wrote and edited the paper. All aspects of the research were overseen by J.M.T. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Yufeng Zhao or James M. Tour.

Ethics declarations

Competing interests

Y. Cheng, J.C., B.D. and J.M.T. are listed as inventors of a patent application filed by Rice University, United States Provisional Application No. 63/585,465. The other authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Yanan Chen, Nanda Sahoo and Xiangdong Zhu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–46 and Tables 1–10.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Chen, J., Deng, B. et al. Flash upcycling of waste glass fibre-reinforced plastics to silicon carbide. Nat Sustain 7, 452–462 (2024). https://doi.org/10.1038/s41893-024-01287-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01287-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing