Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-upcycling of polyvinyl chloride and polyesters

Abstract

Catalytic upcycling of plastic wastes to valuable chemicals offers the opportunity to simultaneously address the enormous environmental problems associated with plastics and achieve the circular economy. However, the upcycling of plastic wastes containing polyvinyl chloride (PVC) is particularly challenging due to the interference of chlorine, which can be released during PVC depolymerization and deactivate the catalyst. Here we present a catalytic process for the co-upcycling of PVC and polyethylene terephthalate (PET). By using a chlorine-containing ionic liquid as the catalyst/solvent and ZnCl2 as Lewis acid catalyst, with in situ utilization of PVC-released chlorine, we successfully converted PET into terephthalic acid and 1,2-dichloroethane with high yields. The results reveal that chlorine from PVC, previously considered detrimental to the transformation of other polymers and the cause of catalyst poisoning, can actually have a positive role in the upcycling of plastic wastes. This work can incentivize further progress in plastics upcycling and pave the way to sustainable plastic wastes management, moving societies one step forward towards realizing the circular economy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed reaction route.
Fig. 2: Dehydrochlorination of PVC and storage of HCl in ionic liquids.
Fig. 3: Reaction performance of PET depolymerization by HCl or PVC.
Fig. 4: The simultaneous conversion of real-life PET–PVC plastic wastes with recycling of the ionic liquid and catalyst.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Geyer, R. in Plastic Waste and Recycling (ed Trevor M. Letcher) Ch. 2 (Academic Press, 2020).

  2. Li, H. et al. Expanding plastics recycling technologies: chemical aspects, technology status and challenges. Green Chem. 24, 8899–9002 (2022).

    CAS  Google Scholar 

  3. Martín, A. J., Mondelli, C., Jaydev, S. D. & Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem 7, 1487–1533 (2021).

    Google Scholar 

  4. Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    CAS  Google Scholar 

  5. Roy, P. S., Garnier, G., Allais, F. & Saito, K. Strategic approach towards plastic waste valorization: challenges and promising chemical upcycling possibilities. ChemSusChem 14, 4007–4027 (2021).

    CAS  Google Scholar 

  6. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Google Scholar 

  7. Lee, K., Jing, Y., Wang, Y. & Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem. 6, 635–652 (2022).

    Google Scholar 

  8. Hu, H. et al. Recycling and upgrading utilization of polymer plastics. Chin. J. Chem. 41, 469–480 (2023).

    CAS  Google Scholar 

  9. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    CAS  Google Scholar 

  10. Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    CAS  Google Scholar 

  11. Zhang, W. et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 379, 807–811 (2023).

    CAS  Google Scholar 

  12. Wang, N. M. et al. Chemical recycling of polyethylene by tandem catalytic conversion to propylene. J. Am. Chem. Soc. 144, 18526–18531 (2022).

    CAS  Google Scholar 

  13. Kots, P. A., Vance, B. C. & Vlachos, D. G. Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: a comparative study. React. Chem. Eng. 7, 41–54 (2022).

    CAS  Google Scholar 

  14. Yeung, C. W. S., Teo, J. Y. Q., Loh, X. J. & Lim, J. Y. C. Polyolefins and polystyrene as chemical resources for a sustainable future: challenges, advances, and prospects. ACS Mater. Lett. 3, 1660–1676 (2021).

    CAS  Google Scholar 

  15. Huang, Z. et al. Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light. J. Am. Chem. Soc. 144, 6532–6542 (2022).

    CAS  Google Scholar 

  16. Oh, S. & Stache, E. E. Chemical upcycling of commercial polystyrene via catalyst-controlled photooxidation. J. Am. Chem. Soc. 144, 5745–5749 (2022).

    CAS  Google Scholar 

  17. Cao, R. et al. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst. Nat. Commun. 13, 4809 (2022).

    CAS  Google Scholar 

  18. Xu, Z. et al. Cascade degradation and upcycling of polystyrene waste to high-value chemicals. Proc. Natl Acad. Sci. USA 119, e2203346119 (2022).

    CAS  Google Scholar 

  19. Payne, J. & Jones, M. D. The chemical recycling of polyesters for a circular plastics economy: challenges and emerging opportunities. ChemSusChem 14, 4041–4070 (2021).

    CAS  Google Scholar 

  20. Tian, S. et al. Catalytic amination of polylactic ccid to alanine. J. Am. Chem. Soc. 143, 16358–16363 (2021).

    CAS  Google Scholar 

  21. Sun, B. et al. Valorization of waste biodegradable polyester for methyl methacrylate production. Nat. Sustain https://doi.org/10.1038/s41893-023-01082-z (2023).

  22. Kratish, Y. & Marks, T. J. Efficient polyester hydrogenolytic deconstruction via tandem catalysis. Angew. Chem. Int. Ed. 61, e202112576 (2021).

    Google Scholar 

  23. Li, Y. et al. Catalytic transformation of PET and CO2 into high‐value chemicals. Angew. Chem. Int. Ed. 61, e202117205 (2022).

    CAS  Google Scholar 

  24. Lu, S. et al. H2‐free plastic conversion: converting PET back to BTX by unlocking hidden hydrogen. ChemSusChem 14, 4242–4250 (2021).

    CAS  Google Scholar 

  25. Hofmann, M., Sundermeier, J., Alberti, C. & Enthaler, S. Zinc(II) acetate catalyzed depolymerization of poly(ethylene terephthalate). ChemistrySelect 5, 10010–10014 (2020).

    CAS  Google Scholar 

  26. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    CAS  Google Scholar 

  27. Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    CAS  Google Scholar 

  28. Kim, D. H. et al. One-pot chemo-bioprocess of PET depolymerization and recycling enabled by a biocompatible catalyst, betaine. ACS Catal. 11, 3996–4008 (2021).

    CAS  Google Scholar 

  29. Jiao, Y., Wang, M. & Ma, D. Catalytic cracking of polylactic acid to acrylic acid. Chin. J. Chem. 41, 2071–2076 (2023).

    CAS  Google Scholar 

  30. Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    CAS  Google Scholar 

  31. Jing, Y. et al. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew. Chem. Int. Ed. 60, 5527–5535 (2021).

    CAS  Google Scholar 

  32. Miskolczi, N., Bartha, L. & Angyal, A. Pyrolysis of polyvinyl chloride (PVC)-containing mixed plastic wastes for recovery of hydrocarbons. Energy Fuels 23, 2743–2749 (2009).

    CAS  Google Scholar 

  33. Paci, M. & La Mantia, F. P. Influence of small amounts of polyvinylchloride on the recycling of polyethyleneterephthalate. Polym. Degrad. Stab. 63, 11–14 (1999).

    CAS  Google Scholar 

  34. Bhaskar, T., Negoro, R., Muto, A. & Sakata, Y. Prevention of chlorinated hydrocarbons formation during pyrolysis of PVC or PVDC mixed plastics. Green Chem. 8, 697–700 (2006).

    CAS  Google Scholar 

  35. Yu, J., Sun, L., Ma, C., Qiao, Y. & Yao, H. Thermal degradation of PVC: a review. Waste Manage. 48, 300–314 (2016).

    CAS  Google Scholar 

  36. Meng, T.-T., Zhang, H., Lü, F., Shao, L.-M. & He, P.-J. Comparing the effects of different metal oxides on low temperature decomposition of PVC. J. Anal. Appl. Pyrolysis 159, 105312 (2021).

    CAS  Google Scholar 

  37. Ling, M. et al. Hydrothermal treatment of polyvinyl chloride: reactors, dechlorination chemistry, application, and challenges. Chemosphere 316, 137718 (2023).

    CAS  Google Scholar 

  38. Lin, R., Amrute, A. P. & Pérez-Ramírez, J. Halogen-mediated conversion of hydrocarbons to commodities. Chem. Rev. 117, 4182–4247 (2017).

    CAS  Google Scholar 

  39. Fagnani, D. E., Kim, D., Camarero, S. I., Alfaro, J. F. & McNeil, A. J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 15, 222–229 (2022).

    Google Scholar 

  40. Feng, B., Jing, Y., Liu, X., Guo, Y. & Wang, Y. Waste PVC upcycling: transferring unmanageable Cl species into value-added Cl-containing chemicals. Appl. Catal. B 331, 122671 (2023).

    CAS  Google Scholar 

  41. Zhang, Y., Jiang, H., Wang, K., Wang, H. & Wang, C. Green flotation of polyethylene terephthalate and polyvinyl chloride assisted by surface modification of selective CaCO3 coating. J. Clean. Prod. 242, 118441 (2020).

    CAS  Google Scholar 

  42. Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399–2407 (2001).

    Google Scholar 

  43. Xiao, Q. et al. Tuning the basicity for highly efficient and reversible hydrogen chloride absorption to develop a green acid scavenger. ACS Sustain. Chem. Eng. 10, 2289–2293 (2022).

    CAS  Google Scholar 

  44. Glas, D., Hulsbosch, J., Dubois, P., Binnemans, K. & De Vos, D. E. End-of-life treatment of poly(vinyl chloride) and chlorinated polyethylene by dehydrochlorination in ionic liquids. ChemSusChem 7, 610–617 (2014).

    CAS  Google Scholar 

  45. Lorenzetti, A., Choi, S. Y., Roso, M., Modesti, M. & McNally, T. Effect of dual functional ionic liquids on the thermal degradation of poly(vinyl chloride). Polym. Degrad. Stabil. 129, 12–18 (2016).

    CAS  Google Scholar 

  46. Oster, K. et al. Dehydrochlorination of PVC in multi-layered blisterpacks using ionic liquids. Green. Chem. 22, 5132–5142 (2020).

    CAS  Google Scholar 

  47. Dong, N., Hui, H., Li, S. & Du, L. Study on preparation of aromatic-rich oil by thermal dechlorination and fast pyrolysis of PVC. J. Anal. Appl. Pyrolysis 169, 105817 (2023).

    CAS  Google Scholar 

  48. Chang, Y. et al. Converting polyvinyl chloride plastic wastes to carbonaceous materials via room-temperature dehalogenation for high-performance supercapacitor. ACS Appl. Energy Mater. 1, 5685–5693 (2018).

    CAS  Google Scholar 

  49. Wang, J. et al. Polyvinyl chloride-derived carbon spheres for CO2 adsorption. ChemSusChem 13, 6426–6432 (2020).

    CAS  Google Scholar 

  50. O’Rourke, G. et al. Catalytic tandem dehydrochlorination-hydrogenation of PVC towards valorisation of chlorinated plastic waste. Chem. Sci. 14, 4401–4412 (2023).

    Google Scholar 

Download references

Acknowledgements

This work received financial support from the Natural Science Foundation of China (22072002, 21725301, 22232001, 21932002, 21821004), China National Petroleum Corporation–Peking University Strategic Cooperation Project of Fundamental Research, National Key R&D Program of China (2022YFA1504800, 2021YFA1501102) and the New Cornerstone Science Foundation. D.M. acknowledges support from the Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

D.M. and M.W. conceived the project. R.C., M.-Q.Z, Y.J. and Y.L. performed most of the reactions. R.C., M.-Q.Z, Y.J., B.S., D.X., M.W. and D.M. analysed the data and wrote the paper. All authors contributed to the discussion and revision of the paper. We appreciate the help of Analytical Instrumentation Center of Peking University.

Corresponding authors

Correspondence to Meng Wang or Ding Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Bert M. Weckhuysen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–7.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Zhang, MQ., Jiao, Y. et al. Co-upcycling of polyvinyl chloride and polyesters. Nat Sustain 6, 1685–1692 (2023). https://doi.org/10.1038/s41893-023-01234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01234-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing