Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Renewable and safer bisphenol A substitutes enabled by selective zeolite alkylation

Abstract

Bisphenol A (BPA) is an industrial chemical that has been used for the manufacturing of polycarbonate plastics, epoxy resins and other consumer products, including food contact materials and dental resins. However, its petrochemical origin and adverse health effects, such as xeno-oestrogenic activity (EA), pose a challenge for sustainability. Here we show a green synthetic pathway towards genuinely sustainable BPA alternatives from a renewable lignin source. At the heart of this production route is a selective alkylation reaction between bio-based arene (for example, guaiacol) and alkene (for example, isoeugenol) molecules, catalysed by a recyclable zeolite catalyst H-USY. Zeolite catalysis favours regioselectivity and prompts higher reaction rate and chemoselectivity, enabling high yields of bisguaiacols. The synthesized bisguaiacols can be valorized into high-molecular-weight thermoplastic and thermosetting polymers with promising thermophysical properties, showcasing their potential as BPA replacements. This work progresses beyond the state of the art by demonstrating that renewability is not only a goal but also a means for safer chemicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The sustainable advantages of the proposed bisguaiacol process versus the current industrial bisphenol process.
Fig. 2: Product distributions.
Fig. 3: Kinetic analyses of p,p’-2a and α-3a formation by confined H-USY and unconfined H2SO4 catalysis.
Fig. 4: Key physical and thermal properties of bisguaiacol monomers and polymers.
Fig. 5: In vitro hERα activity of p,p’-bisguaiacols and p,p’-bisphenols.

Similar content being viewed by others

Data availability

The data that support the findings of this study are reported within the Article and its Supplementary Information, and are available from the corresponding author upon request.

References

  1. Schnell, H. Linear aromatic polyesters of carbonic acid. Ind. Eng. Chem. 51, 157–160 (1959).

    Article  CAS  Google Scholar 

  2. Pham, H. Q. & Marks, M. J. in Ullmann’s Encyclopedia of Industrial Chemistry (eds Ley, C. et al.) 161–164 (Wiley-VCH, 2005).

  3. Dodds, E. C. & Lawson, W. Synthetic estrogenic agents without the phenanthrene nucleus. Nature 137, 996 (1936).

    Article  CAS  Google Scholar 

  4. Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L. & Feldman, D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132, 2279–2286 (1993).

    Article  CAS  Google Scholar 

  5. Brotons, J. A., Olea -Serrano, M. F., Villalobos, M., Pedraza, V. & Olea, N. Xenoestrogens released from lacquer coatings in food cans. Environ. Health Perspect. 103, 608–612 (1995).

    Article  CAS  Google Scholar 

  6. Corrales, J. et al. Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose Response 13, 1559325815598308 (2015).

  7. Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G. & vom Saal, F. S. Exposure to bisphenol A advances puberty. Nature 401, 763–764 (1999).

    Article  CAS  Google Scholar 

  8. Nadal, A. Fat from plastics? Linking bisphenol A exposure and obesity. Nat. Rev. Endocrinol. 9, 9–10 (2013).

    Article  CAS  Google Scholar 

  9. Heindel, J. J., Newbold, R. & Schug, T. T. Endocrine disruptors and obesity. Nat. Rev. Endocrinol. 11, 653–661 (2015).

    Article  CAS  Google Scholar 

  10. Heindel, J. J. et al. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod. Toxicol. 98, 29–60 (2020).

    Article  CAS  Google Scholar 

  11. Vom Saal, F. S. & Vandenberg, L. N. Update on the health effects of bisphenol A: overwhelming evidence of harm. Endocrinology 162, bqaa171 (2021).

    Article  Google Scholar 

  12. Eladak, S. et al. A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 103, 11–21 (2015).

    Article  CAS  Google Scholar 

  13. Zimmerman, J. B. & Anastas, P. T. Toward substitution with no regrets. Science 347, 1198–1199 (2015).

    Article  CAS  Google Scholar 

  14. Warner, G. R. & Flaws, J. A. Common bisphenol A replacements are reproductive toxicants. Nat. Rev. Endocrinol. 14, 691–692 (2018).

    Article  CAS  Google Scholar 

  15. Soto, A. M., Schaeberle, C., Maier, M. S., Sonnenschein, C. & Maffini, M. V. Evidence of absence: estrogenicity assessment of a new food-contact coating and the bisphenol used in its synthesis. Environ. Sci. Technol. 51, 1718–1726 (2017).

    Article  CAS  Google Scholar 

  16. Koelewijn, S.-F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 19, 2561–2570 (2017).

    Article  CAS  Google Scholar 

  17. Koelewijn, S.-F. et al. Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chem. 20, 1050–1058 (2018).

    Article  CAS  Google Scholar 

  18. Janvier, M. et al. Syringaresinol: a renewable and safer alternative to bisphenol A for epoxy-amine resins. ChemSusChem 10, 738–746 (2017).

    Article  CAS  Google Scholar 

  19. Trita, A. S. et al. Synthesis of potential bisphenol A substitutes by isomerising metathesis of renewable raw materials. Green Chem. 19, 3051–3060 (2017).

    Article  CAS  Google Scholar 

  20. Szafran, A. T., Stossi, F., Mancini, M. G., Walker, C. L. & Mancini, M. A. Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS ONE 12, e0180141 (2017).

    Article  Google Scholar 

  21. Koelewijn, S.-F. et al. Regioselective synthesis, isomerisation, in vitro oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers. Green Chem. 21, 6622–6633 (2019).

    Article  CAS  Google Scholar 

  22. Peng, Y., Nicastro, K. H., Epps, T. H. III & Wu, C. Methoxy groups reduced the estrogenic activity of lignin-derivable replacements relative to bisphenol A and bisphenol F as studied through two in vitro assays. Food Chem. 338, 127656 (2021).

    Article  CAS  Google Scholar 

  23. Amitrano, A., Mahajan, J. S., Korley, L. T. & Epps, T. H. Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed via molecular docking simulations. RSC Adv. 11, 22149–22158 (2021).

    Article  CAS  Google Scholar 

  24. Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 153, 895–905 (2010).

    Article  CAS  Google Scholar 

  25. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    Article  CAS  Google Scholar 

  26. Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014).

    Article  Google Scholar 

  27. Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).

    Article  CAS  Google Scholar 

  28. Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).

    Article  CAS  Google Scholar 

  29. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article  CAS  Google Scholar 

  30. Renders, T., den Bosch, S. V., Koelewijn, S.-F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).

    Article  CAS  Google Scholar 

  31. Meier, D., Berns, J., Grünwald, C. & Faix, O. Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of Organocell lignin. J. Anal. Appl. Pyrolysis 25, 335–347 (1993).

    Article  CAS  Google Scholar 

  32. Onwudili, J. A. & Williams, P. T. Catalytic depolymerization of alkali lignin in subcritical water: influence of formic acid and Pd/C catalyst on the yields of liquid monomeric aromatic products. Green Chem. 16, 4740–4748 (2014).

    Article  CAS  Google Scholar 

  33. Luo, H. et al. Total utilization of Miscanthus biomass, lignin and carbohydrates, using earth-abundant nickel catalyst. ACS Sustain. Chem. Eng. 4, 2316–2322 (2016).

    Article  CAS  Google Scholar 

  34. Anderson, E. M. et al. Reductive catalytic fractionation of corn stover lignin. ACS Sustain. Chem. Eng. 4, 6940–6950 (2016).

    Article  CAS  Google Scholar 

  35. Zhao, Z. & Moghadasian, M. H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem. 109, 691–702 (2008).

    Article  CAS  Google Scholar 

  36. Chandra, G. et al. Alkoxy polycarbonates, bisphenol monomers and methods of making and using the same. US patent 9,120,893 (2015).

  37. Trullemans, L. et al. A guide towards safe, functional and renewable BPA alternatives by rational molecular design: structure–property and structure–toxicity relationships. Polym. Chem. 12, 5870–5901 (2021).

    Article  CAS  Google Scholar 

  38. Hernandez, E. D., Bassett, A. W., Sadler, J. M., La Scala, J. J. & Stanzione, J. F. Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Sustain. Chem. Eng. 4, 4328–4339 (2016).

    Article  CAS  Google Scholar 

  39. Hambleton, K. M. & Stanzione, J. F. Synthesis and characterization of a low-molecular-weight novolac epoxy derived from lignin-inspired phenolics. ACS Omega 6, 23855–23861 (2021).

    Article  CAS  Google Scholar 

  40. Cavani, F., Corrado, M. & Mezzogori, R. A note on the role of methanol in the homogeneous and heterogeneous acid-catalyzed hydroxymethylation of guaiacol with aqueous solutions of formaldehyde. J. Mol. Catal. A 182–183, 447–453 (2002).

    Article  Google Scholar 

  41. De Vos, D. E. & Jacobs, P. A. Zeolite effects in liquid phase organic transformations. Microporous Mesoporous Mater. 82, 293–304 (2005).

    Article  Google Scholar 

  42. Galkin, M. V. & Samec, J. S. M. Selective route to 2-propenyl aryls directly from wood by a tandem organosolv and palladium-catalysed transfer hydrogenolysis. ChemSusChem 7, 2154–2158 (2014).

    Article  CAS  Google Scholar 

  43. Xiao, L.-P. et al. Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide. ACS Catal. 7, 7535–7542 (2017).

    Article  CAS  Google Scholar 

  44. Martínez, C. & Corma, A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 255, 1558–1580 (2011).

    Article  Google Scholar 

  45. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  Google Scholar 

  46. Åqvist, J., Kazemi, M., Isaksen, G. V. & Brandsdal, B. O. Entropy and enzyme catalysis. Acc. Chem. Res. 50, 199–207 (2017).

    Article  Google Scholar 

  47. Beste, A. & Buchanan, A. C. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. J. Org. Chem. 74, 2837–2841 (2009).

    Article  CAS  Google Scholar 

  48. Liu, P., Zeng, L., Ye, G. & Xu, J. Bisphenol A-based co-polyarylates: synthesis, properties and thermal decomposition mechanism. J. Polym. Res. 20, 279 (2013).

    Article  CAS  Google Scholar 

  49. Curia, S. et al. Towards sustainable high‐performance thermoplastics: synthesis, characterization, and enzymatic hydrolysis of bisguaiacol‐based polyesters. ChemSusChem 11, 2529–2539 (2018).

    Article  CAS  Google Scholar 

  50. Witters, H. et al. The assessment of estrogenic or anti-estrogenic activity of chemicals by the human stably transfected estrogen sensitive MELN cell line: results of test performance and transferability. Reprod. Toxicol. 30, 60–72 (2010).

    Article  CAS  Google Scholar 

  51. Vandermarken, T. et al. Characterisation and implementation of the ERE-CALUX bioassay on indoor dust samples of kindergartens to assess estrogenic potencies. J. Steroid Biochem. Mol. Biol. 155, 182–189 (2016).

    Article  CAS  Google Scholar 

  52. Kuhire, S. S., Nagane, S. S. & Wadgaonkar, P. P. Pendant furyl containing bisphenols, polymers therefrom and a process for the preparation thereof. WO patent 2015140818A4 (2015).

  53. Ping, Z., Linbo, W. & Bo-Geng, L. Thermal stability of aromatic polyesters prepared from diphenolic acid and its esters. Polym. Degrad. Stab. 94, 1261–1266 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

B.F.S. thanks the KU Leuven industrial research fund (C32/18/021 to L.T. and S.-F.K.). This work was performed in the framework of the Catalisti Cluster cSBO project PADDL, with the financial support of VLAIO HBC.2019.0118, within the iBOF programme Next-BIOREF project 20-VLIR-iBOF-026 (T.H., G.P. and H.W.) and the EOS project BIOFACT 30902231 (E.C.). I.B. and M.E. were supported by Research Foundation Flanders project G089016N of the Free University of Brussels (VUB). We thank D. Kerstens for the zeolite characterization and B. Van Meerbeek of the department BIOMAT at KU Leuven for help with the Vickers hardness tests (KU Leuven infrastructure funding KA/20/079).

Author information

Authors and Affiliations

Authors

Contributions

S.-F.K., L.T. and B.F.S. conceived and directed the project. S.-F.K. and L.T. carried out key experiments and wrote the manuscript. G.P. synthesized the polycarbonates. I.B. and M.E. performed the CALUX bioassay. T.H. and H.W. performed the MELN bioassay. H.W., I.B. and M.E. performed the in vitro EA screenings. E.C. and J.V.A. carried out the adapted RCF experiments. P.V.P. contributed to the screening and analysis of thermal properties and M.D. to the kinetic experimental design. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Steven-Friso Koelewijn or Bert F. Sels.

Ethics declarations

Competing interests

Patent applications (WO/2018/134427, WO/2019/002503) are pending or granted for inventors S.-F.K. and B.F.S. (US/EP/CN). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Guoyong Song and Bert M. Weckhuysen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, figures, tables and references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trullemans, L., Koelewijn, SF., Boonen, I. et al. Renewable and safer bisphenol A substitutes enabled by selective zeolite alkylation. Nat Sustain 6, 1693–1704 (2023). https://doi.org/10.1038/s41893-023-01201-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01201-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing