Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Model organism data evolving in support of translational medicine

Abstract

Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disease-related journal publications using model organisms 1988–2017.
Fig. 2: Increasing occurrence of publications involving both zebrafish and other model organisms.
Fig. 3: The relationship between human diseases and associated genes in the Alliance model organism data.

Similar content being viewed by others

References

  1. Ericsson, A. C., Crim, M. J. & Franklin, C. L. A brief history of animal modeling. Mo. Med. 110, 201–205 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Duronio, R. J., O’Farrell, P. H., Sluder, G. & Su, T. T. Sophisticated lessons from simple organisms: appreciating the value of curiosity-driven research. Dis. Model. Mech. 10, 1381–1389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krogh, A. The progress of physiology. Science 70, 200–204 (1929).

    Article  CAS  PubMed  Google Scholar 

  4. Rigden, D. J. & Fernández, X. M. The 2018 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res. 46(D1), D1–D7 (2018).

    Article  PubMed  Google Scholar 

  5. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

    Article  CAS  Google Scholar 

  6. Donlin, M. J. Using the Generic Genome Browser (GBrowse). Curr. Protoc. Bioinforma. Chapter 9, Unit 9.9 (2009).

  7. Chao, H.-T., Liu, L. & Bellen, H. J. Building dialogues between clinical and biomedical research through cross-species collaborations. Semin. Cell Dev. Biol. 70, 49–57 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wangler, M. F. et al. Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics 207, 9–27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manolio, T. A. et al. Bedside back to bench: building bridges between basic and clinical genomic research. Cell 169, 6–12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oliver, S. G., Lock, A., Harris, M. A., Nurse, P. & Wood, V. Model organism databases: essential resources that need the support of both funders and users. BMC Biol. 14, 49 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poux, S. et al. On expert curation and scalability: UniProtKB/Swiss-Prot as a case study. Bioinformatics 33, 3454–3460 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gramates, L. S. et al. FlyBase at 25: looking to the future. Nucleic Acids Res. 45(D1), D663–D671 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wangler, M. F., Yamamoto, S. & Bellen, H. J. Fruit flies in biomedical research. Genetics 199, 639–653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bellen, H. J. et al. The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188, 731–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perrimon, N., Bonini, N. M. & Dhillon, P. Fruit flies on the front line: the translational impact of Drosophila. Dis. Model. Mech. 9, 229–231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bilder, D. & Irvine, K. D. Taking stock of the Drosophila research ecosystem. Genetics 206, 1227–1236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaufman, T. C. A short history and description of Drosophila melanogaster classical genetics: chromosome aberrations, forward genetic screens, and the nature of mutations. Genetics 206, 665–689 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kanca, O. & Bellen, H. J. & Schnorrer, F. Gene tagging strategies to assess protein expression, localization, and function in Drosophila. Genetics 207, 389–412 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Bier, E., Harrison, M. M., O’Connor-Giles, K. M. & Wildonger, J. Advances in engineering the fly genome with the CRISPR–Cas system. Genetics 208, 1–18 (2018).

    Article  PubMed  Google Scholar 

  22. Germani, F., Bergantinos, C. & Johnston, L. A. Mosaic analysis inDrosophila. Genetics 208, 473–490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bandura, J. L. et al. humpty dumpty is required for developmental DNA amplification and cell proliferation in Drosophila. Curr. Biol. 15, 755–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Evrony, G. D. et al. Integrated genome and transcriptome sequencing identifies a noncoding mutation in the genome replication factor DONSON as the cause of microcephaly–micromelia syndrome. Genome Res. 27, 1323–1335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lesly, S., Bandura, J. L. & Calvi, B. R. Rapid DNA synthesis during early Drosophila embryogenesis is sensitive to maternal Humpty Dumpty protein function. Genetics 207, 935–947 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reynolds, J. J. et al. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism. Nat. Genet. 49, 537–549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vidal, M., Wells, S., Ryan, A. & Cagan, R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res. 65, 3538–3541 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Dar, A. C., Das, T. K., Shokat, K. M. & Cagan, R. L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Millburn, G. H., Crosby, M. A., Gramates, L. S. & Tweedie, S. FlyBase portals to human disease research using Drosophila models. Dis. Model. Mech. 9, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu, Y., Comjean, A., Mohr, S.E. & Perrimon, N. Gene2Function: an integrated online resource for gene function discovery. G3 7, 2855–2858 (2017).

  31. Hu, Y. et al. Molecular Interaction Search Tool (MIST): an integrated resource for mining gene and protein interaction data. Nucleic Acids Res. 46(D1), D567–D574 (2018).

    Article  PubMed  Google Scholar 

  32. Wang, J. et al. MARRVEL: integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Am. J. Hum. Genet. 100, 843–853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gelbart, W. M. et al. FlyBase: a Drosophila database. The FlyBase consortium. Nucleic Acids Res. 25, 63–66 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keane, T. M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. International Mouse Knockout Consortium. A mouse for all reasons. Cell 128, 9–13 (2007).

    Article  CAS  Google Scholar 

  36. Bradley, A. et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23, 580–586 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brown, S. D. M. & Moore, M. W. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm. Genome 23, 632–640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Collaborative Cross Consortium. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190, 389–401 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  39. Threadgill, D.W. & Churchill, G.A. Ten years of the collaborative cross. G3 2, 153–156 (2012).

  40. Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The Diversity Outbred mouse population. Mamm. Genome 23, 713–718 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Svenson, K. L. et al. High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 190, 437–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Philip, V. M. et al. Genetic analysis in the Collaborative Cross breeding population. Genome Res. 21, 1223–1238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Logan, R. W. et al. High-precision genetic mapping of behavioral traits in the diversity outbred mouse population. Genes Brain Behav. 12, 424–437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chesler, E. J. Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse populations in behavioral genetics research. Mamm. Genome 25, 3–11 (2014).

    Article  PubMed  Google Scholar 

  45. Wilke, M. et al. Mouse models of cystic fibrosis: phenotypic analysis and research applications. J. Cyst. Fibros. 10(Suppl. 2), S152–S171 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Tsuji, T. & Kunieda, T. A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J. Biol. Chem. 280, 14288–14292 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Morelli, K. H. et al. Severity of demyelinating and axonal neuropathy mouse models is modified by genes affecting structure and function of peripheral nodes. Cell Rep. 18, 3178–3191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, W.-H. et al. CRISPR repair reveals causative mutation in a preclinical model of retinitis pigmentosa. Mol. Ther. 24, 1388–1394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Metzger, M. W. et al. Heterozygosity for the mood disorder-associated variant Gln460Arg alters P2X7 receptor function and sleep quality. J. Neurosci. 37, 11688–11700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bjursell, M. et al. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates α1-antitrypsin deficiency phenotype. EBioMedicine 29, 104–111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hara, S. & Takada, S. Genome editing for the reproduction and remedy of human diseases in mice. J. Hum. Genet. 63, 107–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Molenhuis, R. T., Bruining, H. & Kas, M. J. Modelling autistic features in mice using quantitative genetic approaches. Adv. Anat. Embryol. Cell Biol. 224, 65–84 (2017).

    Article  PubMed  Google Scholar 

  55. St Clair, D. & Johnstone, M. Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Phil. Trans. R. Soc. Lond. B 373, 20170037 (2018).

    Article  Google Scholar 

  56. Attie, A. D., Churchill, G. A. & Nadeau, J. H. How mice are indispensable for understanding obesity and diabetes genetics. Curr. Opin. Endocrinol. Diabetes Obes. 24, 83–91 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Skelton, J. K., Ortega-Prieto, A. M. & Dorner, M. A Hitchhiker’s guide to humanized mice: new pathways to studying viral infections. Immunology 154, 50–61 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gunawan, M. et al. A novel human systemic lupus erythematosus model in humanised mice. Sci. Rep. 7, 16642 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kitada, M., Ogura, Y. & Koya, D. Rodent models of diabetic nephropathy: their utility and limitations. Int. J. Nephrol. Renovasc. Dis. 9, 279–290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leite, J. P., Garcia-Cairasco, N. & Cavalheiro, E. A. New insights from the use of pilocarpine and kainate models. Epilepsy Res. 50, 93–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Cenci, M. A. & Crossman, A. R. Animal models of l-dopa-induced dyskinesia in Parkinson’s disease. Mov. Disord. https://doi.org/10.1002/mds.27337 (2018).

    Article  PubMed  Google Scholar 

  62. Kless, C., Rink, N., Rozman, J. & Klingenspor, M. Proximate causes for diet-induced obesity in laboratory mice: a case study. Eur. J. Clin. Nutr. 71, 306–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Combe, R. et al. How does circadian rhythm impact salt sensitivity of blood pressure in mice? A study in two close C57Bl/6 substrains. PLoS One 11, e0153472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dickson, P. E. et al. Association of novelty-related behaviors and intravenous cocaine self-administration in Diversity Outbred mice. Psychopharmacology 232, 1011–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Cervantes, M. C., Laughlin, R. E. & Jentsch, J. D. Cocaine self-administration behavior in inbred mouse lines segregating different capacities for inhibitory control. Psychopharmacology 229, 515–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sittig, L. J. et al. Genetic background limits generalizability of genotype–phenotype relationships. Neuron 91, 1253–1259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chesler, E. J. et al. Quantitative trait loci for sensitivity to ethanol intoxication in a C57BL/6J × 129S1/SvImJ inbred mouse cross. Mamm. Genome 23, 305–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thompson, M. B. The Min mouse: a genetic model for intestinal carcinogenesis. Toxicol. Pathol. 25, 329–332 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Dietrich, W. F. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of Apc Min-induced intestinal neoplasia. Cell 81, 957–966 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Kennedy, B. P. et al. A natural disruption of the secretory group II phospholipase A2 gene in inbred mouse strains. J. Biol. Chem. 270, 22378–22385 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Quach, N. D., Arnold, R. D. & Cummings, B. S. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem. Pharmacol. 90, 338–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yarla, N. S. et al. Phospholipase A2 isoforms as novel targets for prevention and treatment of inflammatory and oncologic diseases. Curr. Drug Targets 17, 1940–1962 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Shultz, L. D. et al. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb. Protoc. 2014, pdb.top073585 (2014).

    Article  Google Scholar 

  75. Wang, M. et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 32, 1537–1549 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dobrolecki, L. E. et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev. 35, 547–573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Williams, J. A. Using PDX for preclinical cancer drug discovery: the evolving field. J. Clin. Med. 7, 41 (2018).

    Article  PubMed Central  Google Scholar 

  79. Pan, C. X. et al. Development and characterization of bladder cancer patient-derived xenografts for molecularly guided targeted therapy. PLoS One 10, e0134346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Garralda, E. et al. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin. Cancer Res. 20, 2476–2484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smith, C. L., Blake, J. A., Kadin, J. A., Richardson, J. E. & Bult, C. J. Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse. Nucleic Acids Res. 46(D1), D836–D842 (2018).

    Article  PubMed  Google Scholar 

  83. Finger, J. H. et al. The mouse Gene Expression Database (GXD): 2017 update. Nucleic Acids Res. 45(D1), D730–D736 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Krupke, D. M. et al. The Mouse Tumor Biology Database: a comprehensive resource for mouse models of human cancer. Cancer Res. 77, e67–e70 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Drabkin, H. J. & Blake, J. A. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database. Database 2012, bas045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aitman, T., Dhillon, P. & Geurts, A. M. A RATional choice for translational research? Dis. Model. Mech. 9, 1069–1072 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jacob, H. J. et al. Genetic dissection of autoimmune type I diabetes in the BB rat. Nat. Genet. 2, 56–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Rapp, J. P. Genetic analysis of inherited hypertension in the rat. Physiol. Rev. 80, 135–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Remmers, E. F. et al. A genome scan localizes five non-MHC loci controlling collagen-induced arthritis in rats. Nat. Genet. 14, 82–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Shepel, L. A. et al. Genetic identification of multiple loci that control breast cancer susceptibility in the rat. Genetics 149, 289–299 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jacob, H. J., Lazar, J., Dwinell, M. R., Moreno, C. & Geurts, A. M. Gene targeting in the rat: advances and opportunities. Trends Genet. 26, 510–518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jacob, H. From rat pathophysiology to genomic medicine: an interview with Howard Jacob. Dis. Model. Mech. 9, 1073–1077 (2016).

    Article  PubMed  Google Scholar 

  93. Robbins, T. W. Cross-species studies of cognition relevant to drug discovery: a translational approach. Br. J. Pharmacol. 174, 3191–3199 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jordan, V. C. Proven value of translational research with appropriate animal models to advance breast cancer treatment and save lives: the tamoxifen tale. Br. J. Clin. Pharmacol. 79, 254–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chou, M. Y. & Mani, A. A successful story of translational orthodontic research: micro-osteoperforation—from experiments to clinical practice. APOS Trends Orthod 7, 6–11 (2017).

    Article  Google Scholar 

  96. Teixeira, C. C. et al. Cytokine expression and accelerated tooth movement. J. Dent. Res. 89, 1135–1141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Winge, Ø. On haplophase and diplophase of some Saccharomycetes. C. R. Trav. Lab. Carlsberg. Ser. Physiol. 21, 77–111 (1935).

    Google Scholar 

  98. Lindegren, C.C. The Yeast Cell: Its Genetics and Cytology (Education Publishers, Saint Louis, MO, USA, 1949).

  99. Lindegren., C. C., Lindegren, G., Shult, E. E. & Desborough, S. Chromosome maps of Saccharomyces. Nature 183, 800–802 (1959).

    Article  CAS  PubMed  Google Scholar 

  100. Lindegren, C. C. & Lindegren, G. Linkage relationships in Saccharomyces of genes controlling the fermentation of carbohydrates and the synthesis of vitamins, amino acids and nucleic acid components. Indian Phytopathol. 4, 11–20 (1951).

    Google Scholar 

  101. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Hieter, P. et al. Functional selection and analysis of yeast centromeric DNA. Cell 42, 913–921 (1985).

    Article  CAS  PubMed  Google Scholar 

  103. Deshpande, A. M. & Newlon, C. S. The ARS consensus sequence is required for chromosomal origin function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 4305–4313 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Louis, E. J., Naumova, E. S., Lee, A., Naumov, G. & Haber, J. E. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics 136, 789–802 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lowe, T. M. & Eddy, S. R. A computational screen for methylation guide snoRNAs in yeast. Science 283, 1168–1171 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Planta, R. J. & Mager, W. H. The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14, 471–477 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, J. M., Vanguri, S., Boeke, J. D., Gabriel, A. & Voytas, D. F. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8, 464–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Botstein, D. & Fink, G. R. Yeast: an experimental organism for 21st century biology. Genetics 189, 695–704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lasserre, J.-P. et al. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis. Model. Mech. 8, 509–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dolinski, K. & Botstein, D. Orthology and functional conservation in eukaryotes. Annu. Rev. Genet. 41, 465–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Engel, S. R. & Cherry, J. M. The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome. Database. Database 2013, bat012 (2013).

    PubMed  Google Scholar 

  119. Novo, M. et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc. Natl Acad. Sci. USA 106, 16333–16338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wenger, J. W., Schwartz, K. & Sherlock, G. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet. 6, e1000942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Libkind, D. et al. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl Acad. Sci. USA 108, 14539–14544 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kachroo, A. H. et al. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348, 921–925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kachroo, A. H. et al. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway. eLife 6, e25093 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gabaldón, T. & Koonin, E. V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 14, 360–366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Skrzypek, M. S. et al. Saccharomyces genome database informs human biology. Nucleic Acids Res. 46(D1), D736–D742 (2018).

    Article  PubMed  Google Scholar 

  126. Apfeld, J. & Alper, S. What can we learn about human disease from the nematode C. elegans?. Methods Mol. Biol. 1706, 53–75 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Riessland, M. et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am. J. Hum. Genet. 100, 297–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Culetto, E. & Sattelle, D. B. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum. Mol. Genet. 9, 869–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Ganner, A. & Neumann-Haefelin, E. Genetic kidney diseases: Caenorhabditis elegans as model system. Cell Tissue Res. 369, 105–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Bank, E. M. & Gruenbaum, Y. Caenorhabditis elegans as a model system for studying the nuclear lamina and laminopathic diseases. Nucleus 2, 350–357 (2011).

    Article  PubMed  Google Scholar 

  131. Lin, J. & Hackam, D. J. Worms, flies and four-legged friends: the applicability of biological models to the understanding of intestinal inflammatory diseases. Dis. Model. Mech. 4, 447–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Williams, M. J., Almén, M. S., Fredriksson, R. & Schiöth, H. B. What model organisms and interactomics can reveal about the genetics of human obesity. Cell. Mol. Life Sci. 69, 3819–3834 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Howe, K. L. et al. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 44(D1), D774–D780 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Kim, D.-K., Kim, T. H. & Lee, S.-J. Mechanisms of aging-related proteinopathies in Caenorhabditis elegans. Exp. Mol. Med. 48, e263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Alexander, A. G., Marfil, V. & Li, C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front. Genet. 5, 279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ma, L. et al. Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur. J. Pharmacol. 819, 169–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Griffin, E. F., Caldwell, K. A. & Caldwell, G. A. Genetic and pharmacological discovery for Alzheimer’s disease using Caenorhabditis elegans. ACS Chem. Neurosci. 8, 2596–2606 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Hindle, S., Hebbar, S. & Sweeney, S. T. Invertebrate models of lysosomal storage disease: what have we learned so far? Invert. Neurosci. 11, 59–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. de Voer, G., Peters, D. & Taschner, P. E. M. Caenorhabditis elegans as a model for lysosomal storage disorders. Biochim. Biophys. Acta 1782, 433–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Laale, H. The biology and use of zebrafish Brachydanio rerio in fisheries research: a literature review. J. Fish Biol. 10, 121–173 (1977).

    Article  Google Scholar 

  141. Fishman, M. C. Zebrafish—the canonical vertebrate. Science 294, 1290–1291 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Phillips, J. B. & Westerfield, M. Zebrafish models in translational research: tipping the scales toward advancements in human health. Dis. Model. Mech. 7, 739–743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lieschke, G. J. & Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Howe, D. G. D. G. et al. ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res. 41, D854–D860 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Bradford, Y. M. et al. Zebrafish models of human disease: gaining insight into human disease at ZFIN. ILAR J. 58, 4–16 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Berger, J. & Currie, P. D. Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis. Model. Mech. 5, 726–732 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Taylor, A. M. & Zon, L. I. Modeling Diamond Blackfan anemia in the zebrafish. Semin. Hematol. 48, 81–88 (2011).

    Article  PubMed  Google Scholar 

  148. Pena, I. A. et al. Pyridoxine-dependent epilepsy in zebrafish caused by Aldh7a1 deficiency. Genetics 207, 1501–1518 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Cortelazzo, A. et al. Proteomic analysis of the Rett syndrome experimental model mecp2 Q63X mutant zebrafish. J. Proteomics 154, 128–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Pietri, T. et al. The first mecp2-null zebrafish model shows altered motor behaviors. Front. Neural Circuits 7, 118 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Gao, H. et al. Mecp2 regulates neural cell differentiation by suppressing the Id1 to Her2 axis in zebrafish. J. Cell Sci. 128, 2340–2350 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Noël, E. S. et al. A zebrafish loss-of-function model for human CFAP53 mutations reveals its specific role in laterality organ function. Hum. Mutat. 37, 194–200 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Cast, A. E., Gao, C., Amack, J. D. & Ware, S. M. An essential and highly conserved role for Zic3 in left–right patterning, gastrulation and convergent extension morphogenesis. Dev. Biol. 364, 22–31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu, S.-Y. et al. Expression of cataract-linked gamma-crystallin variants in zebrafish reveals a proteostasis network that senses protein stability. J. Biol. Chem. 291, 25387–25397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hunyadi, B., Siekierska, A., Sourbron, J., Copmans, D. & de Witte, P. A. M. Automated analysis of brain activity for seizure detection in zebrafish models of epilepsy. J. Neurosci. Methods 287, 13–24 (2017).

    Article  PubMed  Google Scholar 

  156. Feng, C.-W. et al. Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae. Zebrafish 11, 227–239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Díaz-Casado, M. E. et al. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network. J. Pineal Res. 61, 96–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Seth, A., Stemple, D. L. & Barroso, I. The emerging use of zebrafish to model metabolic disease. Dis. Model. Mech. 6, 1080–1088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chu, C.-Y. et al. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 7, e36474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Song, Y. & Cone, R. D. Creation of a genetic model of obesity in a teleost. FASEB J. 21, 2042–2049 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Oka, T. et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Montalbano, G. et al. Morphological differences in adipose tissue and changes in BDNF/Trkb expression in brain and gut of a diet induced obese zebrafish model. Ann. Anat. 204, 36–44 (2016).

    Article  PubMed  Google Scholar 

  163. Chakraborty, C., Hsu, C. H., Wen, Z. H., Lin, C. S. & Agoramoorthy, G. Zebrafish: a complete animal model for in vivo drug discovery and development. Curr. Drug Metab. 10, 116–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Parng, C., Seng, W. L., Semino, C. & McGrath, P. Zebrafish: a preclinical model for drug screening. Assay Drug Dev. Technol. 1, 41–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Williams, C. H. & Hong, C. C. Zebrafish small molecule screens: taking the phenotypic plunge. Comput. Struct. Biotechnol. J. 14, 350–356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Deveau, A. P., Bentley, V. L. & Berman, J. N. Using zebrafish models of leukemia to streamline drug screening and discovery. Exp. Hematol. 45, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. White, R. M. et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471, 518–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ordas, A. et al. Testing tuberculosis drug efficacy in a zebrafish high-throughput translational medicine screen. Antimicrob. Agents Chemother. 59, 753–762 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Baxendale, S., van Eeden, F. & Wilkinson, R. The power of zebrafish in personalised medicine. Adv. Exp. Med. Biol. 1007, 179–197 (2017).

    Article  PubMed  Google Scholar 

  170. Wu, J.-Q. et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J. Exp. Clin. Cancer Res. 36, 160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gaudenzi, G. et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine 57, 214–219 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Duck, G., Nenadic, G., Brass, A., Robertson, D. L. & Stevens, R. bioNerDS: exploring bioinformatics’ database and software use through literature mining. BMC Bioinformatics 14, 194 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Beagrie, N. & Houghton, J. The value and impact of the European Bioinformatics Institute. https://beagrie.com/static/resource/EBI-impact-report.pdf (2016).

  174. Hirsch, T. et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 551, 327–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Smedley, D. et al. Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat. Protoc. 10, 2004–2015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bone, W. P. et al. Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency. Genet. Med. 18, 608–617 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Köhler, S. et al. The Human Phenotype Ontology in 2017. Nucleic Acids Res. 45(D1), D865–D876 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Chong, J. X. et al. The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities. Am. J. Hum. Genet. 97, 199–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Picher-Martel, V., Valdmanis, P. N., Gould, P. V., Julien, J. P. & Dupré, N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol. Commun. 4, 70 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Renna, M., Jimenez-Sanchez, M., Sarkar, S. & Rubinsztein, D. C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J. Biol. Chem. 285, 11061–11067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bond, M., Holthaus, S.-M. K., Tammen, I., Tear, G. & Russell, C. Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim. Biophys. Acta 1832, 1842–1865 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Hu, Y. et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12, 357 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  184. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  185. Sansone, S.-A. et al. DATS, the data tag suite to enable discoverability of datasets. Sci. Data 4, 170059 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Chard, K. et al. I’ll take that to go: big data bags and minimal identifiers for exchange of large, complex datasets. in IEEE International Conference on Big Data (Big Data) 319–328 (2016).

  187. Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Gkoutos, G.V., Schofield, P.N. & Hoehndorf, R. The anatomy of phenotype ontologies: principles, properties and applications. Brief. Bioinform. https://doi.org/10.1093/bib/bbx035 (2017).

  189. Sprague, J. et al. The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids Res. 36, D768–D772 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Köhler, S. et al. Clinical interpretation of CNVs with cross-species phenotype data. J. Med. Genet. 51, 766–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Köhler, S. et al. Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Res. 2, 30 (2013).

    PubMed  Google Scholar 

  192. Rodríguez-García, M. Á., Gkoutos, G. V., Schofield, P. N. & Hoehndorf, R. Integrating phenotype ontologies with PhenomeNET. J. Biomed. Semantics 8, 58 (2017)..

  193. Oliveira, D. & Pesquita, C. Improving the interoperability of biomedical ontologies with compound alignments. J. Biomed. Semantics 9, 1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Haendel, M. Phenopackets: making phenotype profiles FAIR++ for disease diagnosis and discovery. FigShare https://doi.org/10.6084/m9.figshare.3180898.v1 (2016).

  195. Rine, J. A future of the model organism model. Mol. Biol. Cell 25, 549–553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the current and past members of FlyBase, WormBase, ZFIN, MGI, SGD, RGD, and the Gene Ontology Consortium for their dedication over the past 30 years. The resulting resources are truly amazing and have a real impact on human health. The following funding sources are acknowledged for each. ZFIN: National Human Genome Research Institute at the US National Institutes of Health (U41 HG002659). MGD: National Human Genome Research Institute at the US National Institutes of Health (U41 HG000330, R25 HG007053). WB: National Human Genome Research Institute at the US National Institutes of Health (U41 HG002223), the UK Medical Research Council and the UK Biotechnology and Biological Sciences Research Council. FB: National Human Genome Research Institute at the US National Institutes of Health (U41 HG000739); British Medical Research Council. SGD: National Human Genome Research Institute at the US National Institutes of Health (U41 HG001315). RGD: National Heart, Lung, and Blood Institute at the US National Institutes of Health (RO1 HL64541). GO: National Human Genome Research Institute at the US National Institutes of Health (U41 HG002273). Alliance of Genome Resources: National Human Genome Research Institute at the US National Institutes of Health (U41 H002223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Howe.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howe, D.G., Blake, J.A., Bradford, Y.M. et al. Model organism data evolving in support of translational medicine. Lab Anim 47, 277–289 (2018). https://doi.org/10.1038/s41684-018-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-018-0150-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing