Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structure of human sphingomyelin synthase and its mechanistic implications for sphingomyelin synthesis

Abstract

Sphingomyelin (SM) has key roles in modulating mammalian membrane properties and serves as an important pool for bioactive molecules. SM biosynthesis is mediated by the sphingomyelin synthase (SMS) family, comprising SMS1, SMS2 and SMS-related (SMSr) members. Although SMS1 and SMS2 exhibit SMS activity, SMSr possesses ceramide phosphoethanolamine synthase activity. Here we determined the cryo-electron microscopic structures of human SMSr in complexes with ceramide, diacylglycerol/phosphoethanolamine and ceramide/phosphoethanolamine (CPE). The structures revealed a hexameric arrangement with a reaction chamber located between the transmembrane helices. Within this structure, a catalytic pentad E–H/D–H–D was identified, situated at the interface between the lipophilic and hydrophilic segments of the reaction chamber. Additionally, the study unveiled the two-step synthesis process catalyzed by SMSr, involving PE–PLC (phosphatidylethanolamine–phospholipase C) hydrolysis and the subsequent transfer of the phosphoethanolamine moiety to ceramide. This research provides insights into the catalytic mechanism of SMSr and expands our understanding of sphingolipid metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: hSMSr forms a homohexameric complex showing both PE–PLC and CPE synthase activities.
Fig. 2: The hexamerization of hSMSr.
Fig. 3: The reaction chamber and binding pocket of ceramide.
Fig. 4: The phospholipids hydrolysis moment of the SM synthesis reaction.
Fig. 5: The gain of SMS function of hSMSr.
Fig. 6: The catalytic mechanism suggested by cryo-EM structures.

Similar content being viewed by others

Data availability

The coordinates are deposited in the Protein Data Bank (PDB) with accession codes 8W9Y, 8IJQ, 8IJR and 8W9W. The cryo-EM maps have been deposited in the Electron Microscopy Data Bank (EMDB) with accession codes EMD-37385, EMD-35492, EMD-35493 and EMD-37383. Other relevant data generated in this study are provided in the Supplementary Information and Source Data files. Source data are provided with this paper.

References

  1. Spector, A. A. & Yorek, M. A. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Ullman, M. D. & Radin, N. S. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J. Biol. Chem. 249, 1506–1512 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Slotte, J. P. Biological functions of sphingomyelins. Prog. Lipid Res. 52, 424–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Holthuis, J. C., Pomorski, T., Raggers, R. J., Sprong, H. & Van Meer, G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81, 1689–1723 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Huitema, K., van den Dikkenberg, J., Brouwers, J. F. & Holthuis, J. C. Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dykstra, M., Cherukuri, A., Sohn, H. W., Tzeng, S. J. & Pierce, S. K. Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Varshney, P., Yadav, V. & Saini, N. Lipid rafts in immune signalling: current progress and future perspective. Immunology 149, 13–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Taniguchi, M. & Okazaki, T. Role of ceramide/sphingomyelin (SM) balance regulated through ‘SM cycle’ in cancer. Cell Signal. 87, 110119 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Taniguchi, M. & Okazaki, T. Ceramide/sphingomyelin rheostat regulated by sphingomyelin synthases and chronic diseases in murine models. J. Lipid Atheroscler. 9, 380–405 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ogretmen, B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer 18, 33–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Y. & Cao, Y. The sphingomyelin synthase family: proteins, diseases, and inhibitors. Biol. Chem. 398, 1319–1325 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Barenholz, Y. & Thompson, T. E. Sphingomyelins in bilayers and biological membranes. Biochim. Biophys. Acta 604, 129–158 (1980).

    CAS  PubMed  Google Scholar 

  18. Yamaoka, S., Miyaji, M., Kitano, T., Umehara, H. & Okazaki, T. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J. Biol. Chem. 279, 18688–18693 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Vacaru, A. M. et al. Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J. Cell Biol. 185, 1013–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ternes, P., Brouwers, J. F., van den Dikkenberg, J. & Holthuis, J. C. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase. J. Lipid Res. 50, 2270–2277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yano, M. et al. Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1-null mice. J. Biol. Chem. 286, 3992–4002 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Yano, M. et al. Increased oxidative stress impairs adipose tissue function in sphingomyelin synthase 1 null mice. PLoS One 8, e61380 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitsutake, S. et al. Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes. J. Biol. Chem. 286, 28544–28555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, Z. et al. Reducing plasma membrane sphingomyelin increases insulin sensitivity. Mol. Cell. Biol. 31, 4205–4218 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, J. et al. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ. Res. 105, 295–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan, Y. et al. Selective reduction in the sphingomyelin content of atherogenic lipoproteins inhibits their retention in murine aortas and the subsequent development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 2114–2120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi, X. Y. et al. Discovery of the selective sphingomyelin synthase 2 inhibitors with the novel structure of oxazolopyridine. Bioorg. Med. Chem. Lett. 27, 3511–3515 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Ding, T. et al. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity. J. Lipid Res. 56, 537–545 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bickert, A. et al. Functional characterization of enzymes catalyzing ceramide phosphoethanolamine biosynthesis in mice. J. Lipid Res. 56, 821–835 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiang, Y. P., Li, Z., Chen, Y., Cao, Y. & Jiang, X. C. Sphingomyelin synthase related protein is a mammalian phosphatidylethanolamine phospholipase C. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1866, 159017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tafesse, F. G., Ternes, P. & Holthuis, J. C. The multigenic sphingomyelin synthase family. J. Biol. Chem. 281, 29421–29425 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Cabukusta, B. et al. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci. Rep. 7, 41290 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cabukusta, B., Kohlen, J. A., Richter, C. P., You, C. & Holthuis, J. C. M. Monitoring changes in the oligomeric state of a candidate endoplasmic reticulum (ER) ceramide sensor by single-molecule photobleaching. J. Biol. Chem. 291, 24735–24746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hitosugi, T. et al. Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation. Nat. Commun. 4, 1790 (2013).

    Article  ADS  PubMed  Google Scholar 

  37. Hayashi, Y. et al. Carboxyl-terminal tail-mediated homodimerizations of sphingomyelin synthases are responsible for efficient export from the endoplasmic reticulum. J. Biol. Chem. 292, 1122–1141 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi, Y. et al. Complex formation of sphingomyelin synthase 1 with glucosylceramide synthase increases sphingomyelin and decreases glucosylceramide levels. J. Biol. Chem. 293, 17505–17522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murakami, C. & Sakane, F. Sphingomyelin synthase-related protein generates diacylglycerol via the hydrolysis of glycerophospholipids in the absence of ceramide. J. Biol. Chem. 296, 100454 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chiang, Y. P., Li, Z., Chen, Y., Cao, Y. & Jiang, X. C. Sphingomyelin synthases 1 and 2 exhibit phosphatidylcholine phospholipase C activity. J. Biol. Chem. 297, 101398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Yeang, C. et al. The domain responsible for sphingomyelin synthase (SMS) activity. Biochim. Biophys. Acta 1781, 610–617 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lou, B. et al. Pharmacologic inhibition of sphingomyelin synthase (SMS) activity reduces apolipoprotein-B secretion from hepatocytes and attenuates endotoxin-mediated macrophage inflammation. PLoS One 9, e102641 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Adachi, R. et al. Discovery and characterization of selective human sphingomyelin synthase 2 inhibitors. Eur. J. Med. Chem. 136, 283–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Scheres, S. H. W. in The Resolution Revolution: Recent Advances in cryoEM (ed. Crowther, R. A.) Vol 579, 125–157 (Elsevier, 2016).

  46. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  ADS  PubMed  Google Scholar 

  51. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Lei, D. Ye and L. Wang for scientific discussion and R. Liao for assistance with the data analysis. This work was supported by National Natural Science Foundation of China (grants 82072468 and 82272519 to Y.C.), National Key Research and Development Program of China (grant 2018YFC1004704 to Y.C.), Shanghai Municipal Committee of Science and Technology (grants. 20S11902000 to Y.C. and 21TQ016 to L.Z.), SHIPM-pi fund (grant JY201804 to Y.C. and J.Z.) from Shanghai Institute of Precision Medicine, the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine. This work was also supported by the Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System (A.Q. and J.Z.) and the Innovative Research Team of High-level Local Universities (grant SHSMU-ZLCX20211700 to Y.C.) from the Shanghai Municipal Education Commission. We thank the staff members of the Electron Microimaging Center, Bioimaging Facility and Proteomics Platform at Shanghai Institute of Precision Medicine for providing technical support and assistance in data collection.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and L.Z. conceived the study. Y.C., L.Z., K.H., Q.Z., B.R., Y.Ch, D.Y., A.Q., J.Z. and S.L. designed the experiments. K.H., Q.Z., Y.X., H.L. and J.Y. performed the biochemical assay. Q.Z., K.H., M.C., Y.S. and Y.C. performed structural biology experiments. Y.C. and D.Y. built and refined structural models. Y.C., K.H., Q.Z., D.Y., J.Y., L.Z., J.Z. and X.J. wrote the manuscript.

Corresponding authors

Correspondence to Deqiang Yao, Jie Zhao, Lu Zhou or Yu Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Yongchan Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Sara Osman, in collaboration with the Nature Structural & Molecular Biology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 1

Unprocessed TLC images

Source Data Fig. 2

Unprocessed western blot images

Source Data Fig. 3

Unprocessed TLC images

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Unprocessed TLC images

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Unprocessed TLC images

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Unprocessed TLC images

Source Data Fig. 6

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Zhang, Q., Chen, Y. et al. Cryo-EM structure of human sphingomyelin synthase and its mechanistic implications for sphingomyelin synthesis. Nat Struct Mol Biol (2024). https://doi.org/10.1038/s41594-024-01237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41594-024-01237-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing