Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts

Abstract

Alternative splicing affects more than 95% of multi-exon genes in the human genome. These changes affect the proteome in a myriad of ways. Here, we review our understanding of the breadth of these changes from their effect on protein structure to their influence on interactions. These changes encompass effects on nucleic acid binding in the nucleus to protein–carbohydrate interactions in the extracellular milieu, altering interactions involving all major classes of biological molecules. Protein isoforms have profound influences on cellular and tissue physiology, for example, by shaping neuronal connections, enhancing insulin secretion by pancreatic beta cells and allowing for alternative viral defense strategies in stem cells. More broadly, alternative splicing enables repurposing proteins from one context to another and thereby contributes to both the evolution of new traits as well as the creation of disease-specific interactomes that drive pathological phenotypes. In this Review, we highlight this universal character of alternative splicing as a central regulator of protein function with implications for almost every biological process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AS-based changes to protein structure can modulate interactions in eight major ways.
Fig. 2: The types of protein–non-protein interactions that are modulated by AS.
Fig. 3: The range of functional diversification of protein isoforms created by AS.

Similar content being viewed by others

Data availability

The data analyzed (and/or generated) during the current study are included within the paper and its Supplementary Information or are available from the corresponding author upon request.

References

  1. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonnal, S. C., Lopez-Oreja, I. & Valcarcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. 17, 457–474 (2020).

    Article  PubMed  Google Scholar 

  4. Pistoni, M., Ghigna, C. & Gabellini, D. Alternative splicing and muscular dystrophy. RNA Biol. 7, 441–452 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Quesnel-Vallieres, M., Weatheritt, R. J., Cordes, S. P. & Blencowe, B. J. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat. Rev. Genet. 20, 51–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Naro, C. et al. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Dev. Cell 41, 82–93 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2022).

  10. Irimia, M. et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159, 1511–1523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weatheritt, R. J., Davey, N. E. & Gibson, T. J. Linear motifs confer functional diversity onto splice variants. Nucleic Acids Res. 40, 7123–7131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sinitcyn, P. et al. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01714-x (2023). This paper demonstrates the abundance of splicing-derived protein isoforms at the protein level using deep-coverage mass spectrometry.

  15. Gabut, M. et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147, 132–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Weatheritt, R. J. & Gibson, T. J. Linear motifs: lost in (pre)translation. Trends Biochem. Sci. 37, 333–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Chatterjee, T. K. & Fisher, R. A. Mild heat and proteotoxic stress promote unique subcellular trafficking and nucleolar accumulation of RGS6 and other RGS proteins. Role of the RGS domain in stress-induced trafficking of RGS proteins. J. Biol. Chem. 278, 30272–30282 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Chatterjee, T. K., Liu, Z. & Fisher, R. A. Human RGS6 gene structure, complex alternative splicing, and role of N terminus and G protein γ-subunit-like (GGL) domain in subcellular localization of RGS6 splice variants. J. Biol. Chem. 278, 30261–30271 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Dudek, S. M., Birukov, K. G., Zhan, X. & Garcia, J. G. Novel interaction of cortactin with endothelial cell myosin light chain kinase. Biochem. Biophys. Res. Commun. 298, 511–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Seo, P. S. et al. Alternatively spliced exon 5 of the FERM domain of protein 4.1R encodes a novel binding site for erythrocyte p55 and is critical for membrane targeting in epithelial cells. Biochim. Biophys. Acta 1793, 281–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Day, J. M. et al. Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J. Biol. Chem. 279, 12511–12518 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Erdmann, K. S. et al. The adenomatous polyposis coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Oncogene 19, 3894–3901 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Kachel, N. et al. Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. J. Mol. Biol. 334, 143–155 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Seol, D. W. & Billiar, T. R. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J. Biol. Chem. 274, 2072–2076 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Walma, T. et al. A closed binding pocket and global destabilization modify the binding properties of an alternatively spliced form of the second PDZ domain of PTP-BL. Structure 12, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Tian, X. et al. DIPK2A promotes STX17- and VAMP7-mediated autophagosome–lysosome fusion by binding to VAMP7B. Autophagy 16, 797–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Warren, C. F. A., Wong-Brown, M. W. & Bowden, N. A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 10, 177 (2019).

    Google Scholar 

  29. Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Fletcher, J. I. et al. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc. Natl Acad. Sci. USA 105, 18081–18087 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edlich, F. et al. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moldoveanu, T. & Czabotar, P. E. BAX, BAK, and BOK: a coming of age for the BCL-2 family effector proteins. Cold Spring Harb. Perspect. Biol. 12, a036319 (2020).

    CAS  Google Scholar 

  33. Lindenboim, L., Kringel, S., Braun, T., Borner, C. & Stein, R. Bak but not Bax is essential for Bcl-xS-induced apoptosis. Cell Death Differ. 12, 713–723 (2005).

    CAS  Google Scholar 

  34. Minn, A. J., Boise, L. H. & Thompson, C. B. Bcl-xS antagonizes the protective effects of Bcl-xL. J. Biol. Chem. 271, 6306–6312 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Plotz, M., Gillissen, B., Hossini, A. M., Daniel, P. T. & Eberle, J. Disruption of the VDAC2–Bak interaction by Bcl-xS mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ. 19, 1928–1938 (2012).

    CAS  Google Scholar 

  36. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Lam, S. D., Babu, M. M., Lees, J. & Orengo, C. A. Biological impact of mutually exclusive exon switching. PLoS Comput. Biol. 17, e1008708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chellaiah, A. T., McEwen, D. G., Werner, S., Xu, J. & Ornitz, D. M. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem. 269, 11620–11627 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Ornitz, D. M. et al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292–15297 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X. et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281, 15694–15700 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Orr-Urtreger, A. et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol. 158, 475–486 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Bagheri-Fam, S. et al. Testis determination requires a specific FGFR2 isoform to repress FOXL2. Endocrinology 158, 3832–3843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petiot, A., Perriton, C. L., Dickson, C. & Cohn, M. J. Development of the mammalian urethra is controlled by Fgfr2-IIIb. Development 132, 2441–2450 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Revest, J. M. et al. Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev. Biol. 231, 47–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Grose, R. et al. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J. 26, 1268–1278 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gonatopoulos-Pournatzis, T. & Blencowe, B. J. Microexons: at the nexus of nervous system development, behaviour and autism spectrum disorder. Curr. Opin. Genet. Dev. 65, 22–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Dergai, M. et al. Microexon-based regulation of ITSN1 and Src SH3 domains specificity relies on introduction of charged amino acids into the interaction interface. Biochem. Biophys. Res. Commun. 399, 307–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Gerth, F. et al. Intersectin associates with synapsin and regulates its nanoscale localization and function. Proc. Natl Acad. Sci. USA 114, 12057–12062 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davey, N. E. et al. Attributes of short linear motifs. Mol. Biosyst. 8, 268–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Prinos, P. et al. Alternative splicing of SYK regulates mitosis and cell survival. Nat. Struct. Mol. Biol. 18, 673–679 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Tsai, K. W., Tseng, H. C. & Lin, W. C. Two wobble-splicing events affect ING4 protein subnuclear localization and degradation. Exp. Cell. Res. 314, 3130–3141 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, S. et al. Esrp1-regulated splicing of Arhgef11 isoforms is required for epithelial tight junction integrity. Cell Rep. 25, 2417–2430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kotani, Y. et al. Alternative exon skipping biases substrate preference of the deubiquitylase USP15 for mysterin/RNF213, the moyamoya disease susceptibility factor. Sci. Rep. 7, 44293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Okumoto, K. et al. New splicing variants of mitochondrial Rho GTPase-1 (Miro1) transport peroxisomes. J. Cell Biol. 217, 619–633 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marcel, V. & Hainaut, P. p53 isoforms—a conspiracy to kidnap p53 tumor suppressor activity? Cell. Mol. Life Sci. 66, 391–406 (2009).

    Article  CAS  Google Scholar 

  57. Hynes, N. E. et al. Signalling change: signal transduction through the decades. Nat. Rev. Mol. Cell Biol. 14, 393–398 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Jin, J. & Pawson, T. Modular evolution of phosphorylation-based signalling systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2540–2555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bodmer, D., Ascano, M. & Kuruvilla, R. Isoform-specific dephosphorylation of dynamin1 by calcineurin couples neurotrophin receptor endocytosis to axonal growth. Neuron 70, 1085–1099 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Faure, C., Ramos, M. & Girault, J. A. Pyk2 cytonuclear localization: mechanisms and regulation by serine dephosphorylation. Cell. Mol. Life Sci. 70, 137–152 (2013).

    Article  CAS  Google Scholar 

  61. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci. USA 103, 45–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Toffolo, E. et al. Phosphorylation of neuronal lysine-specific demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2. J. Neurochem. 128, 603–616 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, S. J. et al. Selective axonal translation of the mRNA isoform encoding prenylated Cdc42 supports axon growth. J. Cell Sci. 134, jcs251967 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barac, A. et al. Direct interaction of p21-activated kinase 4 with PDZ-RhoGEF, a G protein-linked Rho guanine exchange factor. J. Biol. Chem. 279, 6182–6189 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Hebron, K. E. et al. Alternative splicing of ALCAM enables tunable regulation of cell–cell adhesion through differential proteolysis. Sci. Rep. 8, 3208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shirakabe, K. et al. Mechanistic insights into ectodomain shedding: susceptibility of CADM1 adhesion molecule is determined by alternative splicing and O-glycosylation. Sci. Rep. 7, 46174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Komuro, A., Nagai, M., Navin, N. E. & Sudol, M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278, 33334–33341 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Rio, C., Buxbaum, J. D., Peschon, J. J. & Corfas, G. Tumor necrosis factor-α-converting enzyme is required for cleavage of erbB4/HER4. J. Biol. Chem. 275, 10379–10387 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, R. et al. Identification of new OPA1 cleavage site reveals that short isoforms regulate mitochondrial fusion. Mol. Biol. Cell 32, 157–168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang, K. et al. Identification of a novel antiapoptotic human protein kinase C δ isoform, PKCδVIII in NT2 cells. Biochemistry 47, 787–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ghayur, T. et al. Proteolytic activation of protein kinase C δ by an ICE/CED 3-like protease induces characteristics of apoptosis. J. Exp. Med. 184, 2399–2404 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Apostolatos, A. et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J. Biol. Chem. 287, 9299–9310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carter, G. et al. Dysregulated alternative splicing pattern of PKCδ during differentiation of human preadipocytes represents distinct differences between lean and obese adipocytes. ISRN Obes. 2013, 161345 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Patel, R. et al. Protein kinase C δ (PKCδ) splice variants modulate apoptosis pathway in 3T3L1 cells during adipogenesis: identification of PKCδII inhibitor. J. Biol. Chem. 288, 26834–26846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strehler, E. E. & Zacharias, D. A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Gueroussov, S. et al. Regulatory expansion in mammals of multivalent hnRNP assemblies that globally control alternative splicing. Cell 170, 324–339 (2017). This paper demonstrates how splicing regulates the ability of splice factors to undergo phase separation with downstream impact on their role in RNA splicing.

    Article  CAS  PubMed  Google Scholar 

  77. Batlle, C. et al. hnRNPDL phase separation is regulated by alternative splicing and disease-causing mutations accelerate its aggregation. Cell Rep. 30, 1117–1128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ying, Y. et al. Splicing activation by Rbfox requires self-aggregation through its tyrosine-rich domain. Cell 170, 312–323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gueroussov, S. et al. An alternative splicing event amplifies evolutionary differences between vertebrates. Science 349, 868–873 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Gerth, F. et al. Exon inclusion modulates conformational plasticity and autoinhibition of the intersectin 1 SH3A domain. Structure 27, 977–987 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Kojima, C. et al. Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J. 23, 4413–4422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brignatz, C. et al. Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn. Mol. Cell. Biol. 29, 6438–6448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O’Loughlin, T., Masters, T. A. & Buss, F. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics. EMBO Rep. 19, e44884 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li, J. et al. Alternative splicing controls teneurin–latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nat. Commun. 11, 2140 (2020). This paper provides detailed characterisation of how AS can modulate the rigidity of protein structure, thereby shaping which interactions the protein engages in.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sando, R., Jiang, X. & Sudhof, T. C. Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science 363, eaav7969 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Greener, J. G. & Sternberg, M. J. Structure-based prediction of protein allostery. Curr. Opin. Struct. Biol. 50, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Dombrauckas, J. D., Santarsiero, B. D. & Mesecar, A. D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417–9429 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Nandi, S., Razzaghi, M., Srivastava, D. & Dey, M. Structural basis for allosteric regulation of pyruvate kinase M2 by phosphorylation and acetylation. J. Biol. Chem. 295, 17425–17440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mazurek, S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Zandany, N. et al. Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism. Nat. Commun. 6, 6488 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Fu, N. Y. et al. Foxp1 is indispensable for ductal morphogenesis and controls the exit of mammary stem cells from quiescence. Dev. Cell 47, 629–644 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, H. et al. The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nat. Immunol. 15, 667–675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Poirier, E. Z. et al. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373, 231–236 (2021). This paper exemplifies how splicing can shape nucleic acid-interaction regions of proteins and thereby change the RNA secondary structure they preferably interact with.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hudson, W. H. & Ortlund, E. A. The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol. 15, 749–760 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ullmark, T., Montano, G. & Gullberg, U. DNA and RNA binding by the Wilms’ tumour gene 1 (WT1) protein +KTS and −KTS isoforms—from initial observations to recent global genomic analyses. Eur. J. Haematol. 100, 229–240 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Laity, J. H., Dyson, H. J. & Wright, P. E. Molecular basis for modulation of biological function by alternate splicing of the Wilms’ tumor suppressor protein. Proc. Natl Acad. Sci. USA 97, 11932–11935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nishikawa, T., Wojciak, J. M., Dyson, H. J. & Wright, P. E. RNA binding by the KTS splice variants of Wilms’ tumor suppressor protein WT1. Biochemistry 59, 3889–3901 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Bor, Y. C. et al. The Wilms’ tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes Dev. 20, 1597–1608 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Larsson, S. H. et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81, 391–401 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Damianov, A. & Black, D. L. Autoregulation of Fox protein expression to produce dominant negative splicing factors. RNA 16, 405–416 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, K. K., Adelstein, R. S. & Kawamoto, S. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development. Biochem. Biophys. Res. Commun. 450, 1662–1667 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nutter, C. A. et al. Dysregulation of RBFOX2 is an early event in cardiac pathogenesis of diabetes. Cell Rep. 15, 2200–2213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kojo, H., Tajima, K., Fukagawa, M., Isogai, T. & Nishimura, S. A novel estrogen receptor-related protein γ splice variant lacking a DNA binding domain exon modulates transcriptional activity of a moderate range of nuclear receptors. J. Steroid Biochem. Mol. Biol. 98, 181–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Qi, Y. et al. A splicing isoform of TEAD4 attenuates the Hippo–YAP signalling to inhibit tumour proliferation. Nat. Commun. 7, ncomms11840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Seo, P. J., Kim, M. J., Ryu, J. Y., Jeong, E. Y. & Park, C. M. Two splice variants of the IDD14 transcription factor competitively form nonfunctional heterodimers which may regulate starch metabolism. Nat. Commun. 2, 303 (2011).

    Article  PubMed  Google Scholar 

  106. Roman, C., Cohn, L. & Calame, K. A dominant negative form of transcription activator mTFE3 created by differential splicing. Science 254, 94–97 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Falkenburger, B. H., Jensen, J. B., Dickson, E. J., Suh, B. C. & Hille, B. Phosphoinositides: lipid regulators of membrane proteins. J. Physiol. 588, 3179–3185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Otsuguro, K. et al. Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 283, 10026–10036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Casanova, J. E. Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8, 1476–1485 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Cronin, T. C., DiNitto, J. P., Czech, M. P. & Lambright, D. G. Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains. EMBO J. 23, 3711–3720 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Klarlund, J. K., Tsiaras, W., Holik, J. J., Chawla, A. & Czech, M. P. Distinct polyphosphoinositide binding selectivities for pleckstrin homology domains of GRP1-like proteins based on diglycine versus triglycine motifs. J. Biol. Chem. 275, 32816–32821 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Ratcliffe, C. D. H. et al. HGF-induced migration depends on the PI(3,4,5)P3-binding microexon-spliced variant of the Arf6 exchange factor cytohesin-1. J. Cell Biol. 218, 285–298 (2019). This study demonstrates how a single amino acid insertion changes phosphoinositide affinities, which impacts growth factor-stimulated cell migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Malek, M. et al. PTEN regulates PI(3,4)P2 signaling downstream of class I PI3K. Mol. Cell 68, 566–580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Golec, E. et al. Alternative splicing encodes functional intracellular CD59 isoforms that mediate insulin secretion and are down-regulated in diabetic islets. Proc. Natl Acad. Sci. USA 119, e2120083119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Goodwin, R. G. et al. Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell 60, 941–951 (1990).

    Article  CAS  PubMed  Google Scholar 

  116. Hong, C. et al. Activated T cells secrete an alternatively spliced form of common γ-chain that inhibits cytokine signaling and exacerbates inflammation. Immunity 40, 910–923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang, P. J., Low, P. Y., Wang, I., Hsu, S. D. & Angata, T. Soluble Siglec-14 glycan-recognition protein is generated by alternative splicing and suppresses myeloid inflammatory responses. J. Biol. Chem. 293, 19645–19658 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lainez, B. et al. Identification and characterization of a novel spliced variant that encodes human soluble tumor necrosis factor receptor 2. Int. Immunol. 16, 169–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Lundstrom, W. et al. Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proc. Natl Acad. Sci. USA 110, E1761–E1770 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Berg, T. J. et al. Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J. Biol. Chem. 285, 35255–35266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Merry, C. L. R., Lindahl, U., Couchman, J. & Esko, J. D. Proteoglycans and sulfated glycosaminoglycans. In Essentials of Glycobiology (eds Varki, A. et al.) 217–232 (Cold Spring Harbor, 2022).

  122. Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gomez, A. M., Traunmuller, L. & Scheiffele, P. Neurexins: molecular codes for shaping neuronal synapses. Nat. Rev. Neurosci. 22, 137–151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oku, S. et al. Alternative splicing at neuroligin site A regulates glycan interaction and synaptogenic activity. eLife 9, e58668 (2020). This study shows how AS modulates interactions with carbohydrates, altering cell–cell interactions and synapse formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xie, Y. et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 5, 181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kalinina, J. et al. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure 20, 77–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shimizu, A. et al. A novel alternatively spliced fibroblast growth factor receptor 3 isoform lacking the acid box domain is expressed during chondrogenic differentiation of ATDC5 cells. J. Biol. Chem. 276, 11031–11040 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Li, X., Wang, X. & Snyder, M. Systematic investigation of protein–small molecule interactions. IUBMB Life 65, 2–8 (2013).

    Article  CAS  Google Scholar 

  129. Li, X., Gianoulis, T. A., Yip, K. Y., Gerstein, M. & Snyder, M. Extensive in vivo metabolite–protein interactions revealed by large-scale systematic analyses. Cell 143, 639–650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim, N. et al. Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135, 334–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tseng, C. N., Zhang, L., Cascio, M. & Wang, Z. Z. Calcium plays a critical role in determining the acetylcholine receptor-clustering activities of alternatively spliced isoforms of agrin. J. Biol. Chem. 278, 17236–17245 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Vecellio Reane, D. et al. A MICU1 splice variant confers high sensitivity to the mitochondrial Ca2+ uptake machinery of skeletal muscle. Mol. Cell 64, 760–773 (2016). This study demonstrates how splicing can modulate Ca2+ affinities within a physiological range (graded response), thereby tailoring protein isoforms to the Ca2+ homeostasis of the given cell type.

    Article  CAS  PubMed  Google Scholar 

  133. Asipu, A., Hayward, B. E., O’Reilly, J. & Bonthron, D. T. Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria. Diabetes 52, 2426–2432 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Li, X. et al. A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation. Nat. Cell Biol. 18, 561–571 (2016). This study documents how splicing repurposes KHK from a metabolic kinase to an anabolic protein kinase by changing substrate preferences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lu, Z. & Hunter, T. Metabolic kinases moonlighting as protein kinases. Trends Biochem. Sci. 43, 301–310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Batista, N. J. et al. The molecular and cellular basis of Hutchinson–Gilford progeria syndrome and potential treatments. Genes 14, 602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bradley, R. K. & Anczukow, O. RNA splicing dysregulation and the hallmarks of cancer. Nat. Rev. Cancer 23, 135–155 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lopez-Martinez, A., Soblechero-Martin, P., de-la-Puente-Ovejero, L., Nogales-Gadea, G. & Arechavala-Gomeza, V. An overview of alternative splicing defects implicated in myotonic dystrophy type I. Genes 11, 1109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ren, P. et al. Alternative splicing: a new cause and potential therapeutic target in autoimmune disease. Front. Immunol. 12, 713540 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Dou, Z. et al. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J. Exp. Clin. Cancer Res. 40, 194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chi, C. et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome–lysosome fusion. Proc. Natl Acad. Sci. USA 116, 556–565 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Clayburgh, D. R. et al. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J. Biol. Chem. 279, 55506–55513 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Graham, W. V. et al. Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat. Med. 25, 690–700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lim, S. et al. Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development. Nat. Chem. Biol. 16, 31–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Choi, J. W. et al. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet. 7, e1001351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Han, J. M. et al. AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc. Natl Acad. Sci. USA 105, 11206–11211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Asnani, M. et al. Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia 34, 1202–1207 (2020).

    Article  PubMed  Google Scholar 

  148. Zheng, S. et al. Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies. Blood Cancer Discov. 3, 103–115 (2022).

    Google Scholar 

  149. Lamba, J. K. et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III Children’s Oncology Group trial AAML0531. J. Clin. Oncol. 35, 2674–2682 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Aregger, M., Xing, K. & Gonatopoulos-Pournatzis, T. Application of CHyMErA Cas9–Cas12a combinatorial genome-editing platform for genetic interaction mapping and gene fragment deletion screening. Nat. Protoc. 16, 4722–4765 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Engreitz, J., Abudayyeh, O., Gootenberg, J. & Zhang, F. CRISPR tools for systematic studies of RNA regulation. Cold Spring Harb. Perspect. Biol. 11, a035386 (2019).

    CAS  Google Scholar 

  152. Gonatopoulos-Pournatzis, T. et al. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform. Nat. Biotechnol. 38, 638–648 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).

  154. Timp, W. & Timp, G. Beyond mass spectrometry, the next step in proteomics. Sci. Adv. 6, eaax8978 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B.J. Blencowe and J.S. Mattick for their critical reading of and helpful comments on the manuscript as well as all members of the Neurotranscriptomics Lab at the Garvan Institute of Medical Research for fruitful discussions on AS’s impact on proteins. P.K.-H. was supported by a University International Postgraduate Award scholarship from the University of New South Wales and a Peter & Emma Thomsens legat (stipend). R.J.W. was supported by the E.P. Oldham—Viertel Senior Medical Fellowship, Cancer Council NSW, the Scrimshaw Family Foundation and an NSW Health grant.

Author information

Authors and Affiliations

Authors

Contributions

P.K.-H. and R.J.W. jointly conceived, wrote and edited this Review.

Corresponding authors

Correspondence to Peter Kjer-Hansen or Robert J. Weatheritt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Chien-Ling Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

This file contains all examples given in the text as well as additional examples of how AS shapes protein interactions with non-proteins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kjer-Hansen, P., Weatheritt, R.J. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat Struct Mol Biol 30, 1844–1856 (2023). https://doi.org/10.1038/s41594-023-01155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01155-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing