Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities

Abstract

Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2–NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HDAC1 and HDAC2 are selective dependencies in multiple myeloma and neuroblastoma, respectively.
Fig. 2: Collateral synthetic lethality between HDAC1 and HDAC2.
Fig. 3: Hemizygous HDAC1 deletion is necessary and sufficient to sensitize neuroblastoma to loss of HDAC2.
Fig. 4: HDAC2 degradation dysregulates transcription.
Fig. 5: HDAC2 degradation destabilizes the NuRD complex in HDAC1-deficient neuroblastoma cells.
Fig. 6: HDAC2 degradation compromises NuRD function and exploits cancer-specific NuRD dependencies.
Fig. 7: Proposed mechanism for HDAC2 dependency in neuroblastoma.

Data availability

For availability of the data from DepMap and cBioportal see ‘Analyses of datasets from DepMap’ and ‘Analyses of datasets from cBioportal.’ All raw next-generation sequencing data (SLAM-seq, 3′ end mRNA-seq, CUT&RUN, and ATAC-seq) and the related processed data were deposited in the NCBI Gene Expression Omnibus (GEO) database under accession number GSE202706. Quantitative proteomics data were deposited in the PRIDE database by EMBL’s European Bioinformatics Institute (EMBL-EBI) under accession number PXD034444. Previously published datasets (H3K27ac ChIP and H3K4me3 ChIP in BE(2)-C cells) used in this study can be found on GEO under accession number GSE80154. No restrictions on data availability apply. Source data are provided with this paper.

Code availability

The sources of the codes used in this study can be found in corresponding method sections and are available online.

References

  1. Shortt, J., Ott, C. J., Johnstone, R. W. & Bradner, J. E. A chemical probe toolbox for dissecting the cancer epigenome. Nat. Rev. Cancer 17, 160–183 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Chang, L., Ruiz, P., Ito, T. & Sellers, W. R. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell. 39, 466–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seto, E. & Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713–a018713 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bachy, E. et al. Final analysis of the Ro-CHOP Phase III Study (Conducted by LYSA): romidepsin plus CHOP in patients with peripheral T-cell lymphoma. Blood 136, 32–33 (2020).

    Article  Google Scholar 

  5. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Kelly, R. D. W. & Cowley, S. M. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem. Soc. Trans. 41, 741–749 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Millard, C. J., Watson, P. J., Fairall, L., Schwabe, J. W. R. & Targeting Class, I. Histone deacetylases in a ‘complex’ environment. Trends Pharmacol. Sci. 38, 363–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transciptional regulator Rpd3p. Science 272, 408–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dovey, O. M., Foster, C. T. & Cowley, S. M. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc. Natl Acad. Sci. USA 107, 8242–8247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21, 2672–2681 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jamaladdin, S. et al. Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 9840–9845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamaguchi, T. et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 24, 455–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilting, R. H. et al. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J. 29, 2586–2597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. LeBoeuf, M. et al. Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev. Cell 19, 807–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heideman, M. R. et al. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood 121, 2038–2050 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dovey, O. M. et al. Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood 121, 1335–1344 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Matthews, G. M. et al. Functional–genetic dissection of HDAC dependencies in mouse lymphoid and myeloid malignancies. Blood 126, 2392–2403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stubbs, M. C. et al. Selective inhibition of HDAC1 and HDAC2 as a potential therapeutic option for B-ALL. Clin. Cancer Res. 21, 2348–2358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frumm, S. M. et al. Selective HDAC1/HDAC2 inhibitors induce neuroblastoma differentiation. Chem. Biol. 20, 713–725 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ito, T. et al. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat. Genet. 53, 1664–1672 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov. 19, 23–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34, 1136–1144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oike, T. et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 73, 5508–5518 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Ogiwara, H. et al. Targeting p300 addiction in CBP-deficient cancers causes synthetic lethality by apoptotic cell death due to abrogation of MYC expression. Cancer Discov. 6, 430–445 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Lelij, P. et al. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. eLife 6, e26980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parrish, P. C. R. et al. Discovery of synthetic lethal and tumor suppressor paralog pairs in the human genome. Cell Rep. 36, 109597 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malone, C. F. et al. Selective modulation of a pan-essential protein as a therapeutic strategy in cancer. Cancer Discov. 11, 2282–2299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caron, H. et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N–myc amplification. Nat. Genet. 4, 187–190 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Maris, J. M. et al. Significance of chromosome 1p loss of heterozygosity in neuroblastoma. Cancer Res. 55, 4664–4669 (1995).

    CAS  PubMed  Google Scholar 

  36. Janoueix-Lerosey, I. et al. Gene expression profiling of 1p35-36 genes in neuroblastoma. Oncogene 23, 5912–5922 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Komotar, R. J., Otten, M. L., Starke, R. M. & Anderson, R. C. E. Chromosome 1p and 11q deletions and outcome in neuroblastoma—a critical review. Clin. Med Oncol. 2, 419–420 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Merup, M. et al. 6q deletions in acute lymphoblastic leukemia and non-Hodgkin’s lymphomas. Blood 91, 3397–3400 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Thelander, E. F. et al. Characterization of 6q deletions in mature B cell lymphomas and childhood acute lymphoblastic leukemia. Leuk. Lymphoma 49, 477–487 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Taborelli, M. et al. Chromosome band 6q deletion pattern in malignant lymphomas. Cancer Genet Cytogenet 165, 106–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Aktas Samur, A. et al. Deciphering the chronology of copy number alterations in multiple myeloma. Blood Cancer J. 9, 39 (2019).

  42. Durbin, A. D. et al. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nat. Genet. 50, 1240–1246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeid, R. et al. Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nat. Genet. 50, 515–523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, L. et al. CRISPR–Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J. Clin. Invest. 128, 446–462 (2018).

    Article  PubMed  Google Scholar 

  46. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. García-López, J. et al. Large 1p36 deletions affecting Arid1a locus facilitate mycn-driven oncogenesis in neuroblastoma. Cell Rep. 30, 454–464 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shi H., et al. ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. Sci Adv. 6, eaaz3440 (2020).

  49. Cerami, E. et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  50. Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jaeger, M. G. & Winter, G. E. Fast-acting chemical tools to delineate causality in transcriptional control. Mol. Cell 81, 1617–1630 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y. & Erb, M. A. Enabling cancer target validation with genetically encoded systems for ligand-induced protein degradation. Curr. Res Chem. Biol. 1, 100011 (2021).

    Article  CAS  Google Scholar 

  54. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shearstone, J. R. et al. Chemical inhibition of histone deacetylases 1 and 2 induces fetal hemoglobin through activation of GATA2. PLoS ONE 11, 1–27 (2016).

    Article  Google Scholar 

  57. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schölz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–425 (2015).

    Article  PubMed  Google Scholar 

  59. Marques, J. G. et al. NURD subunit CHD4 regulates super-enhancer accessibility in rhabdomyosarcoma and represents a general tumor dependency. eLife 9, 1–30 (2020).

    Article  Google Scholar 

  60. Gryder, B. E. et al. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat. Genet. 51, 1714–1722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Emdal, K. B. et al. Integrated proximal proteomics reveals IRS2 as a determinant of cell survival in ALK-driven neuroblastoma. Sci. Signal 11, eaap9752 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Rihani, A., Vandesompele, J., Speleman, F. & Van Maerken, T. Inhibition of CDK4/6 as a novel therapeutic option for neuroblastoma. Cancer Cell Int. 15, 76 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xiong, Y. et al. Chemo-proteomics exploration of HDAC degradability by small molecule degraders. Cell Chem. Biol. 28, 1514–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Hsu, J. H. R. et al. EED-Targeted PROTACs Degrade EED, EZH2, and SUZ12 in the PRC2 Complex. Cell Chem. Biol. 27, 41–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sher, F. et al. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat. Genet. 51, 1149–1159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vinogradova, E. V. et al. An activity-guided map of electrophile-cysteine interactions in primary human T cells. Cell 182, 1009–1026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Denslow, S. A. & Wade, P. A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Low, J. K. K. et al. The nucleosome remodeling and deacetylase complex has an asymmetric, dynamic, and modular architecture. Cell Rep. 33, 108450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Millard, C. J. et al. The structure of the core NuRD repression complex provides insights into its interaction with chromatin. eLife 5, 1–21 (2016).

    Article  Google Scholar 

  72. Reid, X. J., Low, J. K. K. & Mackay, J. P. A NuRD for all seasons. Trends Biochem. Sci. 48, 11–25 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 2015, 21.29.1–21.29.9 (2015).

    Google Scholar 

  74. Gryder, B. E. et al. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat. Commun. 10, 3004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Qu, K. et al. Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell 32, 27–41 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pan, J. et al. Interrogation of mammalian protein complex structure, function, and membership using genome-scale fitness screens. Cell Syst. 6, 555–568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lai, A. Y. & Wade, P. A. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat. Rev. Cancer 11, 588–596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bornelöv, S. et al. The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression. Mol. Cell 71, 56–72 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Smalley, J. P. et al. Optimization of class I histone deacetylase PROTACs reveals that HDAC1/2 degradation is critical to induce apoptosis and cell arrest in cancer cells. J. Med. Chem. 65, 5642–5659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smalley, J. P. et al. PROTAC-mediated degradation of class i histone deacetylase enzymes in corepressor complexes. Chem. Commun. 56, 4476–4479 (2020).

    Article  CAS  Google Scholar 

  82. Cross, J. M. et al. A ‘click’ chemistry approach to novel entinostat (MS-275) based class I histone deacetylase proteolysis targeting chimeras. RSC Med Chem. 13, 1634–1639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baker, I. M., Smalley, J. P., Sabat, K. A., Hodgkinson, J. T. & Cowley, S. M. Comprehensive transcriptomic analysis of novel class I HDAC proteolysis targeting chimeras (PROTACs). Biochemistry 62, 645–656 (2022).

    Article  PubMed  Google Scholar 

  84. Scholes, N. S., Mayor-Ruiz, C. & Winter, G. E. Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chem. Biol. 28, 1048–1060 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. 56, 5738–5743 (2017).

    Article  CAS  Google Scholar 

  86. Olson, C. M. et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol. 14, 163–170 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Cantley, J. et al. Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nat Commun. 13, 6814 (2022).

  88. Gopalsamy, A. Selectivity through targeted protein degradation (TPD). J. Med. Chem. 65, 8113–8126 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Toriki, E. S. et al. Rational chemical design of molecular glue degraders. Cent. Sci. 9, 915–926 (ACS, 2023).

  90. Sakuma, T., Nakade, S., Sakane, Y., Suzuki, K. I. T. & Yamamoto, T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protoc. 11, 118–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Shi, J. et al. Discovery of cancer drug targets by CRISPR–Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Neumann, T. et al. Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets. BMC Bioinf. 20, 258 (2019).

    Article  Google Scholar 

  95. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Subramanian, A. et al. Gene set enrichment analysis:na knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) through a NIH Director’s Early Independence Award (DP5-OD26380, M.A.E.) and by the Ono Pharma Foundation. We thank M. G. Jaeger for his critical feedback on the paper prior to submission. We also thank the flow cytometry core, the NGS core at The Scripps Research Institute, and the NGS at La Jolla Institute for Immunology for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. designed and executed most experiments, analyzed the data, and produced figures. D.R. designed and executed the proteomics experiments supervised by B.F.C. U.O. designed and executed the in vivo experiments, supervised by M.J. B.K. designed and executed the ATAC-seq experiments supervised by C.J.O. C.J.O., S.N., and A.D.D. provided critical cell lines for the experiments. J.N.A., A.R., K.B., T.R.B., and P.A.B. contributed to construct cloning, cell proliferation assays, lentivirus production, and data analysis. Y.Z. and M.A.E. wrote the manuscript. M.A.E. conceived, planed, and supervised the research project.

Corresponding author

Correspondence to Michael A. Erb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Shaun Cowley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Carolina Perdigoto and Dimitris Typas were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 HDAC1 and HDAC2 are selective dependencies in neuroblastoma and lymphoid malignancies.

a, Volcano plots of HDAC1 (left) and HDAC2 (right) differential dependencies in cancer lineages. P value were determined by two-tailed Student’s t-test. b, Boxplots of dependency scores of core regulatory circuitry (CRC) transcription factor genes in neuroblastoma (blue, n = 34) and other cancer cell lines (black, n = 1,020). Boxes represent 25–75 percentiles with whiskers extending to 10–90 percentiles and the center line represents the median of the data. P values were determined by two-tailed Student’s t-test. c, Schematic illustration of CRISPR/Cas9-based competitive growth assay. d, Validation of on-target effects of HDAC1 and HDAC2 guides by immunoblot. e, TIDE (tracking of indels by decomposition) analysis shows a cutting efficiency of 88.7% for sgAAVS1. P values were determined by two-tailed t-test of the variance.

Source data

Extended Data Fig. 2 Selective dependencies of HDAC1 and HDAC2 are validated in human cell lines and in vivo.

a, Representative plots of flow cytometry gating for CRISPR/Cas9-based competitive growth assay in BE(2)-C and RPMI-8226 cells. b, Protein levels of HDAC1 and HDAC2 in pre-xenografting BE(2)-C cells with sgLuc or HDAC2-targeting guide and end-point tumors with HDAC2-targeting guide. c. HDAC1 expression versus HDAC1 copy number in all neuroblastoma cell lines. d. HDAC2 expression versus HDAC2 copy number in all lymphoid cell lines. Data from DepMap, CCLE expression and gene copy number 22Q4. e. Protein levels of HDAC1, HDAC2, HDAC3 in the neuroblastoma and lymphoid cell line, including multiple myeloma (MM) and chronic lymphocytic lymphoma (CLL) with/without HDAC1/2 hemizygous deletions highlighted in (c) and (d). f. Proliferation of BE(2)-C cells overexpressing GFP or HDAC1. Mean ± s.e.m., n = 3. g, Boxplots of HDAC1 dependency scores in DLBCL lines (purple, n = 8), non-DLBCL lymphocyte lines (blue, n = 19), and other lineages (grey, n = 962). h, Boxplot of HDAC2 transcript levels in DLBCL lines (purple, n = 20), non-DLBCL lymphocyte lines (blue, n = 63), and other lineages (grey, n = 1,292). Data from DepMap, CRISPR_genetic_effect 22Q1 and CCLE_expression 22Q1. Boxes represent 25–75 percentiles with whiskers extending to 10–90 percentiles and the center line represents the median of the data. P values were determined by two-tailed Student’s t-test.

Source data

Extended Data Fig. 3 Hemizygous deletion of HDAC1 leads to high dependency on HDAC2 neuroblastoma.

a, Competitive growth assays with HDAC2-targeting guides in and RPMI-8226. Mean ± s.e.m., n = 3. Experiments were performed at the same time with Fig. 1e, hence shared the same control groups. b, Competitive growth assays with HDAC1-targeting guides in and BE(2)-C cells. Mean ± s.e.m., n = 3. Experiments were performed at the same time with Fig. 1d, hence shared the same control groups. c,d HDAC1 RNA expression (c) or HDAC1 copy number (d) versus HDAC2 dependency in plasma cell lines (left) and soft tissue lines (right). P values (two-tailed) were determined by Pearson correlation coefficient (r). Data from DepMap, CCLE expression and gene copy number 22Q4. e, Representative plots of flow cytometry gating for CRISPR/Cas9-based competitive growth assay in SK-N-AS, MM.1S, KELLY, and CHP-212 cells. f, Competitive growth assays with HDAC1-targeting guides in and SK-N-AS cells. Mean ± s.e.m., n = 3. Experiments were performed at the same time with Fig. 3b, hence shared the same control groups.

Source data

Extended Data Fig. 4 HDAC1 and HDAC2 form synthetic lethality in multiple myeloma and neuroblastoma.

a. Representative plots of flow cytometry gating for CRISPR/Cas9-based two-color competitive growth assay in SK-N-AS, OCI-AML2, BE(2)-C, RPMI-8226, and MM.1S cells. b, Control groups related to the two-color competitive growth assay in Fig. 3e. c, Two-color competitive growth assay with HDAC1-sg1 and HDAC2-sg1 in BE(2)-C, RPMI-8226, MM.1 S, and OCI-AML2 cells. Mean ± s.d., n = 3. Proportion of each sub-population normalized to day 4. d, Copy number of genes located at 1p36-1p34.3 in neuroblastoma cell lines highlighted in Extended Data Fig. 3a. Data from CCLE copy number, 22Q4. e. Representative plots of flow cytometry gating for CRISPR/Cas9-based competitive growth assay in GI-ME-N cells. f. Competitive growth assay with HDAC1 or HDAC2 targeting guides in GI-ME-N cells which harbor 1p36 deletion but not HDAC1 deletion. Mean ± s.e.m., n = 3. g, Competitive growth assay with HDAC2 targeting guides MM.1S cells. Mean ± s.e.m., n = 3. Experiments were performed at the same time with Fig. 3f, hence shared the same control groups.

Source data

Extended Data Fig. 5 dTAG system allows efficient degradation of HDAC2 without affecting its normal functions.

a, Schematic illustration of the dTAG system. dTAG PROTACs mediate dimerization of the FKBP12F36A-tagged protein of interest and an E3 ubiquitin ligase, which results in ubiquitination and proteasomal degradation of the target protein. b, Representative Sanger sequencing chromatograms of HDAC2 locus of a clone with successful dTAG knock-in. c, Immunoblot validation of HDAC2-dTAG cell lines with and without HDAC1 overexpression. d, Dose response of dTAG-13 treatment in BE(2)-C-HDAC2-dTAG cells (2 h). e, Rank-ordered heatmaps of CUT&RUN signal for HDAC2 in wild-type BE(2)-C cells and HA in BE(2)-C-HDAC2-dTAG cells (ranked based on HA signal at HDAC2-HA binding sites in BE(2)-C-HDAC2-dTAG cells). f,g Correlations of HDAC2 CUT&RUN in BE(2)-C cells versus HA CUT&RUN in BE(2)-C-HDAC2-dTAG cells at HDAC2 binding sites in wild-type BE(2)-C cells (f) (n = 10,832) and at HDAC2-HA binding sites in BE(2)-C-HDAC2-dTAG cells (g) (n = 8,661). P values (two-tailed) were determined by Pearson correlation coefficient (r). h, Co-immunoprecipitation of HDAC2-dTAG (IP: HA) and NuRD subunits. i, Competitive growth assay with HDAC1- or HDAC2-targeting guides in BE(2)-C-HDAC2-dTAG cells. Mean ± s.e.m., n = 3. j, Proliferation of BE(2)-C wild-type cells are not affected by dTAG-13 (500 nM) (blue) compared to the DMSO group (black). Mean ± s.e.m., n = 3.

Source data

Extended Data Fig. 6 HDAC2 degradation disrupts transcriptional regulation.

a, Boxplot of SLAM-seq changes at genes with (n = 5,082) or without (n = 8,117) HDAC2 bound at the promoter (TSS ± 1 kb) with ACY-957 (5 µM) or dTAG-13 (500 nM) for 2 h. b, CUT&RUN signals with DMSO control and 2-h dTAG-13 (500 nM) treatment. c, Genomic feature distribution of typical and asymmetric HDAC2 sites. d, Volcano plots of changes in total mRNA abundance (3′-end mRNA-seq) following dTAG-13 treatment (500 nM) for 8 h. e, Boxplots of 3′-end mRNA-seq changes following 8-h dTAG-13 (500 nM) treatment. Genes are grouped by 2-h SLAM-seq data (significantly downregulated, n = 59; significantly upregulated, n = 224; steady, n = 12,916). f,g Volcano plots of 3′-end mRNA-seq changes following dTAG-13 treatment (500 nM) for 24 h (f), and 72 h (g). n = 3. h, Boxplots of 3′-end mRNA-seq change of genes with (n = 5,082) or without (n = 8,117) HDAC2-bound promoter. i, Boxplot of 3′-end mRNA-seq changes following 72-h dTAG-13 treatment (500 nM) in BE(2)C-HDAC2-dTAG cells (No enhancer, n = 7,588; TE, n = 5,026; SE, n = 585). j, Boxplot of neuroblastoma-specific differential dependencies for genes in SK-N-BE(2) cells (unexpressed, CPM < 3 by 3′-end mRNA-seq data, n = 7,973; expressed-and-no-enhancer, n = 7,588; TE-controlled, n = 5,026; SE-controlled, n = 585). k, Volcano plot of total transcript changes following 24-h dTAG-13 (500 nM) treatment in BE(2)-C-HDAC2-dTAG cells overexpressing HDAC1. l, Volcano plots of changes of genes with neuroblastoma-selective dependencies (differential dependency < −0.2, n = 91) by 3′-end mRNA-seq following 8-h, 24-h, and 72-h dTAG-13 treatments (500 nM) in BE(2)C-HDAC2-dTAG cells and 24-h treatment in HDAC1-overexpressing BE(2)C-HDAC2-dTAG cells. For volcano plots, P values were determined by two-tailed Student’s t-test. For boxplots in e and i boxes represent 25–75 percentiles with whiskers extending to 10–90 percentiles and the center line represents the median. P values were determined by two-tailed Student’s t-test. For other boxplots, boxes represent 25–75 percentiles with whiskers extending 1.5 IQR and the center line represents the median. P values were determined by two-tailed Welch’s t-test.

Source data

Extended Data Fig. 7 HDAC2 degradation transiently upregulated transcriptome and suppressed mRNA synthesis in long term.

a,b Volcano plots depicting in SLAM-seq changes following 500 nM dTAG-13 treatments for 8 h (a) and 24 h (b). n = 3. P values were determined by two-tailed Student’s t-test. c. Boxplot of SLAM-seq changes at genes not associated with an enhancer (n = 7,588), associated with typical enhancers (n = 5,026), or associated with super enhancers (n = 585) with dTAG-13 (500 nM) for 2 h, 8 h, or 24 h. Boxes represent 25–75 percentiles with whiskers extending 1.5 IQR and the center line represents the median of the data. P values were determined by two-tailed Welch’s t-test.

Source data

Extended Data Fig. 8 HDAC2 loss destabilizes the NuRD complex.

a, GSEA of proteomic changes following 2-h dTAG-13 (500 nM) treatment. b, Changes of mRNA abundance given by 3′ end mRNA-seq from Extended Data Fig. 6e versus changes of protein abundance given by quantitative proteomics from Fig. 5b. P value (two-tailed) was determined by Pearson correlation coefficient (r). n = 8,109. c, DMSO-normalized changes in gene expression (qRT-PCR) following dTAG-13 treatments (500 nM). Gene expression levels are normalized to B2M transcript level. See Source Data File for raw data. Mean ± propagated error (∆∆Ct), n = 3. IRS2 was used as a positive control as it was significantly downregulated by 24-h dTAG-13 treatment shown by 3′-end mRNA-seq (Extended Data Fig. 6l). d,e Immunoblots of NuRD subunits (d) and MiDAC subunits (e) with 2-h and 24-h dTAG-13 treatments in BE(2)-C-HDAC2-dTAG cells. f. Dependency scores of MiDAC subunits in neuroblastoma (n = 34) and other cell lines (n = 1,020). Boxes represent 25–75 percentiles with whiskers extending to 10–90 percentiles and the center line represents the median of the data. P values were determined by two-tailed Student’s t-test.

Source data

Extended Data Fig. 9 Destabilized NuRD complex leads to dysregulated chromatin accessibility.

a, Genomic feature distribution of HDAC2, MBD3, and CHD4 sites. b. Heatmaps (top) and metaplots (bottom) of ATAC-seq signals with DMSO and dTAG-13 (500 nM) treatments for 2 h (left) and 24 h (right) in triplicates. c, Volcano plots of chromatin accessibility changes measured by ATAC-seq following dTAG-13 (500 nM) treatment for 2 h (left) or 24 h (right). n = 3. d, Boxplots of chromatin accessibility changes grouped by genomic localizations. For 2-h treatment, TSS (n = 14,142), TE (n = 19,687), SE (n = 2,557), and other sites (n = 71,044). For 24-h treatment, TSS (n = 14,167), TE (n = 19,369), SE (n = 2,546), and other sites (n = 68,458). e. Boxplots of chromatin accessibility changes grouped by genomic localizations and HDAC1, MBD3, and CHD4 co-occupancy. For 2-h treatment, at TSS HDAC2-occupied sites n = 4,370, MBD3-occupied sites n = 2,041, and CHD4-occupied sites n = 324; at TE HDAC2-occupied sites n = 3,565, MBD3-occupied sites n = 5,871, and CHD4-occupied sites n = 2,697; at SE HDAC2-occupied sites n = 880, MBD3-occupied sites n = 1,102, and CHD4-occupied sites n = 612; at other sites HDAC2-occupied sites n = 766, MBD3-occupied sites n = 2,045, and CHD4-occupied sites n = 748. For 24-h treatment, at TSS HDAC2-occupied sites n = 4,361, MBD3-occupied sites n = 2,028, and CHD4-occupied sites n = 320; at TE HDAC2-occupied sites n = 3,572, MBD3-occupied sites n = 5,837, and CHD4-occupied sites n = 2,655; at SE HDAC2-occupied sites n = 874, MBD3-occupied sites n = 1,098, and CHD4-occupied sites n = 604; at other sites HDAC2-occupied sites n = 766, MBD3-occupied sites n = 1,969, and CHD4-occupied sites n = 738. f, Immunoblots with subcellular fractionation in BE2C-HDAC2-dTAG cells with dTAG-13 treatments (500 nM). Experiments were performed in two biological replicates. For volcano plots, P values were determined by two-tailed Student’s t-test. Boxplots represent 25–75 percentiles with whiskers extending 1.5 IQR and the center line represents the median. P values were determined by two-tailed Welch’s t-test.

Source data

Extended Data Fig. 10 HDAC2 degradation exploits lineage-specific NuRD dependencies.

a, Dependency scores of HDAC1/2-containing complexes in neuroblastoma (n = 34), multiple myeloma (n = 21), and other cell lines (n = 999). b, Boxplots of Pearson correlation coefficients between MBD2, MBD3, MTA2, and MTA3 dependency scores compared to all other genes (n = 17,386). c, Unsupervised clustering of dependency scores of NuRD subunits in all cell lines. For boxplots, boxes represent 25–75 percentiles with whiskers extending to 10–90 percentiles and the center line represents the median of the data. P values were determined by two-tailed Student’s t-test.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Table 1

SLAM-seq_conversion_rate_all, Expressed_gene_annotations, mRNA-seq_ERCC-normalized_CPM, Quantitative_proteomics_2hdtag, Quantitative_proteomics_24hdtag, Expressed_gene_annotations

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed western blots.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 9

Unprocessed western blots.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Remillard, D., Onubogu, U. et al. Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities. Nat Struct Mol Biol 30, 1160–1171 (2023). https://doi.org/10.1038/s41594-023-01041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01041-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer