Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoproteomic identification of a DPP4 homolog in Bacteroides thetaiotaomicron

Abstract

Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioinformatics and activity-based protein profiling of B. thetaiotaomicron identify serine hydrolases specific to the Bacteroidetes phylum.
Fig. 2: BT4193 is a functional homolog of human DPP4 (hDPP4).
Fig. 3: Human DPP4 inhibitors target BT4193.
Fig. 4: Substrate specificity of BT4193 and BT3254 is driven by P1 Pro.
Fig. 5: BT4193 confers resistance to envelope stressors vancomycin and polymyxin B.
Fig. 6: BT4193, but not hDPP4-targeting drugs, impacts B. thetaiotaomicron fitness during in vitro growth in diverse communities.

Similar content being viewed by others

Data availability

Selection of serine hydrolase-associated Pfam domains was performed with the MEROPS (https://www.ebi.ac.uk/merops/) and ESTHER (https://bioweb.supagro.inrae.fr/ESTHER/general?what=index) databases. Proteomes for bioinformatic prediction of serine hydrolases were downloaded from UniProt, and accession codes for each proteome are included in Supplementary Table 2. Proteomes were annotated with Pfam domains using pfam_scan.pl (http://ftp.ebi.ac.uk/pub/databases/Pfam/). Proteomes of reference isolates from the NIH Human Microbiome Project gastrointestinal tract were downloaded from https://www.hmpdacc.org/hmp/HMRGD/. Carbohydrate-active enzymes were identified using the CAZyme database (http://www.cazy.org/). Raw proteomics data for this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD035963. Raw MSP–MS data can be obtained through massive.ucsd.edu under the dataset identifier numbers MSV000091339 (hDPP4), MSV000091338 (BT4193) and MSV000089969 (BT3254). Raw 16S rRNA data for community assembly experiments can be obtained at https://doi.org/10.25740/rn970zy4428. All other data are available in the source data provided with this paper.

Code availability

Code for bioinformatic analyses of serine hydrolases, analysis of fitness data, quantification of area under the growth curves and plotting of Venn diagrams can be obtained at https://doi.org/10.5281/zenodo.7835000. Code for analyzing community assembly experiments can be obtained at https://doi.org/10.5281/zenodo.7830074.

References

  1. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364, eaau6323 (2019).

    Article  PubMed  Google Scholar 

  5. Kidd, D., Liu, Y. & Cravatt, B. F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Parasar, B. et al. Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity. ACS Cent. Sci. 5, 867–873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, L. et al. Activity-based probes for functional interrogation of retaining β-glucuronidases. Nat. Chem. Biol. 13, 867–873 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Whidbey, C. et al. A probe-enabled approach for the selective isolation and characterization of functionally active subpopulations in the gut microbiome. J. Am. Chem. Soc. 141, 42–47 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Chatterjee, S. et al. A comprehensive and scalable database search system for metaproteomics. BMC Genomics 17, 642 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Issa Isaac, N., Philippe, D., Nicholas, A., Raoult, D. & Eric, C. Metaproteomics of the human gut microbiota: challenges and contributions to other OMICS. Clin. Mass Spectrom. 14, 18–30 (2019).

    Article  PubMed  Google Scholar 

  11. Simon, G. M. & Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bachovchin, D. A. & Cravatt, B. F. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat. Rev. Drug Discov. 11, 52–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ortega, C. et al. Systematic survey of serine hydrolase activity in Mycobacterium tuberculosis defines changes associated with persistence. Cell Chem. Biol. 23, 290–298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Babin, B. M. et al. Identification of covalent inhibitors that disrupt M. tuberculosis growth by targeting multiple serine hydrolases involved in lipid metabolism. Cell Chem. Biol. 29, 897–909 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Li, M. et al. Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling. Cell Chem. Biol. 29, 883–896 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deacon, C. F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front. Endocrinol. 10, 80 (2019).

    Article  Google Scholar 

  17. Deacon, C. F. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes. Metab. 13, 7–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Klemann, C., Wagner, L., Stephan, M. & von Hörsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 185, 1–21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Macfarlane, G. T., Allison, C., Gibson, S. A. W. & Cummings, J. H. Contribution of the microflora to proteolysis in the human large intestine. J. Appl. Bacteriol. 64, 37–46 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Mills, R. H. et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat. Microbiol. 7, 262–276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bachovchin, D. A. et al. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl Acad. Sci. USA 107, 20941–20946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaschani, F. et al. Diversity of serine hydrolase activities of unchallenged and Botrytis-infected Arabidopsis thaliana. Mol. Cell. Proteom. 8, 1082–1093 (2009).

    Article  CAS  Google Scholar 

  24. Hatzios, S. K. et al. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat. Chem. Biol. 12, 268–274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lentz, C. S. et al. Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nat. Chem. Biol. 14, 609–617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keller, L. J. et al. Characterization of serine hydrolases across clinical isolates of commensal skin bacteria Staphylococcus epidermidis using activity-based protein profiling. ACS Infect. Dis. 6, 930–938 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Zweerink, S. et al. Activity-based protein profiling as a robust method for enzyme identification and screening in extremophilic Archaea. Nat. Commun. 8, 15352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Human Microbiome Project Consortium. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  29. Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rasmussen, H. B., Branner, S., Wiberg, F. C. & Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol. 10, 19–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Hino, M. et al. Glycylprolyl β-naphthylamidase activity in human serum. Clin. Chim. Acta 62, 5–11 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Macfarlane, S. & Macfarlane, G. T. Formation of a dipeptidyl arylamidase by Bacteroides splanchnicus NCTC 10825 with specificities towards glycylprolyl-x and valylalanine-x substrates. J. Med. Microbiol. 46, 547–555 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Banbula, A. et al. Emerging family of proline-specific peptidases of Porphyromonas gingivalis: purification and characterization of serine dipeptidyl peptidase, a structural and functional homologue of mammalian prolyl dipeptidyl peptidase IV. Infect. Immun. 68, 1176–1182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olivares, M. et al. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia 61, 1838–1848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leiting, B. et al. Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII. Biochem. J. 371, 525–532 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cartmell, A. et al. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat. Microbiol. 3, 1314–1326 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilson, M. M., Anderson, D. E. & Bernstein, H. D. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLoS ONE 10, e0117732 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, H. et al. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Rep. 34, 108789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Domingues, M. M. et al. Biophysical characterization of polymyxin b interaction with LPS aggregates and membrane model systems. Biopolymers 98, 338–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, L., Li, P., Tang, Z., Yan, X. & Feng, B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Sci. Rep. 6, 33251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aranda-Díaz, A. et al. Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota. Cell Host Microbe 30, 260–272 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aranda-Díaz, A. et al. Assembly of gut-derived bacterial communities follows ‘early-bird’ resource utilization dynamics. Preprint at bioRxiv https://doi.org/10.1101/2023.01.13.523996 (2023).

  43. Cullen, T. W. et al. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347, 170–175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller, S. I. Antibiotic resistance and regulation of the Gram-negative bacterial outer membrane barrier by host innate immune molecules. mBio 7, e01541-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sampson, B. A., Misra, R. & Benson, S. A. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122, 491–501 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vallet, S.-U. et al. Loss of bacterial cell pole stabilization in Caulobacter crescentus sensitizes to outer membrane stress and peptidoglycan-directed antibiotics. mBio 11, e00538-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jacobson, A. N., Choudhury, B. P. & Fischbach, M. A. The biosynthesis of lipooligosaccharide from Bacteroides thetaiotaomicron. mBio 9, e02289-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fang, M., Wang, D., Coresh, J. & Selvin, E. Trends in diabetes treatment and control in U.S. adults, 1999–2018. N. Engl. J. Med. 384, 2219–2228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Waumans, Y., Baerts, L., Kehoe, K., Lambeir, A.-M. & De Meester, I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front. Immunol. 6, 387 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rea, D. et al. Crystal structure of Porphyromonas gingivalis dipeptidyl peptidase 4 and structure-activity relationships based on inhibitor profiling. Eur. J. Med. Chem. 139, 482–491 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Nabeno, M. et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun. 434, 191–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Boulton, D. W. Clinical pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor. Clin. Pharmacokinet. 56, 11–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Vincent, S. H. et al. Metabolism and excretion of the dipeptidyl peptidase 4 inhibitor [14C]sitagliptin in humans. Drug Metab. Dispos. 35, 533–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Nemoto, T. K. & Ohara-Nemoto, Y. Exopeptidases and gingipains in Porphyromonas gingivalis as prerequisites for its amino acid metabolism.Jpn Dent. Sci. Rev. 52, 22–29 (2016).

    Article  PubMed  Google Scholar 

  55. Oda, H., Saiki, K., Tonosaki, M., Yajima, A. & Konishi, K. Participation of the secreted dipeptidyl and tripeptidyl aminopeptidases in asaccharolytic growth of Porphyromonas gingivalis. J. Periodontal. Res. 44, 362–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Olivares, M. et al. The potential role of the dipeptidyl peptidase-4-like activity from the gut microbiota on the host health. Front. Microbiol. 9, 1900 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Thuy-Boun, P. S. et al. Quantitative metaproteomics and activity-based protein profiling of patient fecal microbiome identifies host and microbial serine-type endopeptidase activity associated with ulcerative colitis. Mol. Cell. Proteom. 21, 100197 (2022).

    Article  CAS  Google Scholar 

  58. McFadden, D. W., Rudnicki, M., Nussbaum, M. S., Balasubramaniam, A. & Fischer, J. E. Independent release of peptide YY (PYY) into the circulation and ileal lumen of the awake dog. J. Surg. Res. 46, 380–385 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, C. D., Newton, T. R., Zinner, M. J., Ashley, S. W. & McFadden, D. W. Intraluminal peptide YY induces colonic absorption in vivo. Dis. Colon Rectum 40, 478–482 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Stevens, L. J. et al. A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. Eur. J. Pharm. Sci. 137, 104989 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Zhu, W. et al. Xenosiderophore utilization promotes Bacteroides thetaiotaomicron resilience during colitis. Cell Host Microbe 27, 376–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu, C.-S., Lin, C.-J. & Hwang, J.-K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 13, 1402–1406 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J. & Gevaert, K. Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Ursell, T. et al. Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. BMC Biol. 15, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stein, F., Kress, M., Reither, S., Piljić, A. & Schultz, C. FluoQ: a tool for rapid analysis of multiparameter fluorescence imaging data applied to oscillatory events. ACS Chem. Biol. 8, 1862–1868 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the laboratories of J. Sonnenburg and M. Howitt at Stanford University for the use of their equipment and W. Zhu at Vanderbilt University Medical Center for gifting the plasmids pKI_1 and pKI_2. L.J.K. was supported by the Stanford ChEM-H Chemistry/Biology Interface Predoctoral Training Program (T32 GM120007), a Stanford Molecular Pharmacology Training Grant (T32 GM113854), and a Stanford Graduate Fellowship. T.H.N. was supported by a National Science Foundation Graduate Research Fellowship (DGE-1656518). B.M.H. was supported by the UCSD Graduate Training Program in Cellular and Molecular Pharmacology through an institutional training grant from the National Institute of General Medical Sciences (T32 GM007752). M.L. was supported by Deutsche Forschungsgemeinschaft (DFG) for funding under the Walter Benjamin Program. R.C. was supported by the NIH Training (T32 HG000044) and a Stand Up 2 Cancer grant (to A.S.B.). F.F. was supported by a National Science Foundation Graduate Research Fellowship (DGE-1656518), a Stanford ChEM-H O’Leary-Thiry Graduate Fellowship, and Stanford’s Enhancing Diversity in Graduate Education Doctoral Fellowship Program. This work was supported by the NIH (grants R01 EB026332 and R01 EB026285 (to M.B.), R01 DK131005 (to A.J.O.), R01 AI148623 and R01 AI143757 (to A.S.B.) and RM GM135102 and R01 AI147023 (to K.C.H.)) and National Science Foundation (grant EF-2125383 (to K.C.H.)). K.C.H. is a Chan Zuckerberg Biohub Investigator.

Author information

Authors and Affiliations

Authors

Contributions

L.J.K. and M.B. conceived and designed the study. L.J.K. ran bioinformatic analyses, synthesized fluorogenic peptide substrates, purified recombinant enzymes and performed enzyme kinetics, gel-based ABPP and microbiology experiments. T.H.N. performed community assembly and fluorescent vancomycin microscopy experiments. L.J.L., B.M.H. and D.J.G. performed MSP–MS experiments. N.N., K.M.L. and M.J.N. performed MS-based ABPP experiments. R.C. performed B. thetaiotaomicron genetics. F.F. and P.I. synthesized FP-alkyne. P.I. assisted with bioinformatic analyses. L.J.K., T.H.N., L.J.L., B.M.H., M.L., M.G., D.J.G., P.I., A.J.O., K.C.H. and M.B. analyzed and interpreted data. L.J.K., T.H.N., K.C.H. and M.B. prepared the figures and wrote and edited the paper. All authors reviewed and revised the paper.

Corresponding author

Correspondence to Matthew Bogyo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Michael Zimmermann and the other anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bacteria from the phylum Bacteroidetes have a larger fraction of their proteome predicted to be serine hydrolases.

Percentage of the total proteome based on the number of proteins that are predicted serine hydrolases, colored by phylum. The horizontal line corresponds to the percentage of predicted human serine hydrolases as a reference.

Source data

Extended Data Fig. 2 hDPP4 inhibitors act on BT4193 but not BT3254.

a, Quantification of percent inhibition of GP-AMC cleavage in wild type (WT) B. thetaiotaomicron lysate (ex/em: 380/460 nm) after pretreatment with inhibitor for 30 min at 37 °C. Activity was normalized to DMSO treatment (mean ± SEM; n = 6 independent replicates). b, Apparent IC50 values of recombinant hDPP4 and BT4193 after treatment with inhibitor for 30 min prior to measuring activity via GP-AMC cleavage and the corresponding curves. Activity was normalized to DMSO treatment (100%) and no enzyme controls (0%), and fit with dose-dependent four parameter inhibition. Selectivity index (SI) is the ratio of BT4193 to hDPP4 apparent IC50 values (mean ± SD; n = 2 independent experiments, each calculated with 3 independent replicates). c, Quantification of inhibition of recombinant BT3254 by hDPP4 inhibitors after 30 min of pretreatment. Velocities were normalized to DMSO pretreatment. Data represent the mean ± SEM of 9 independent replicates.

Source data

Extended Data Fig. 3 Recombinant BT4193 and BT3254 prefer P1 Pro residues.

Quantification of cleavage velocity of di- and tripeptide fluorogenic peptides with ACC-containing substrates (ex/em: 355/460 nm) by recombinantly expressed and purified BT4193 and BT3254. Hydroxyproline is abbreviated as Hyp. Data represent the mean ± SEM of one representative experiment with 3 independent replicates. Statistical significance was determined using a two-tailed one-sample t-test compared with 0 (BT4193: AP-ACC, p = 0.0026; AA-ACC, p = 0.014; AL-ACC, p = 0.10; AS-ACC, p = 0.019; AT-ACC, p = 0.20; AHyp-ACC, p = 0.0049; BT3254: AAP-ACC, p = 0.0004; AAA-ACC, p = 0.0085; *P < 0.05; **P < 0.01; ***P < 0.001).

Source data

Extended Data Fig. 4 BT4193 confers resistance to deoxycholic acid and polymyxin B.

a, Growth of B. thetaiotaomicron strains during deoxycholic acid treatment, and quantification of area under the growth curve normalized to untreated bacteria. The ∆BT4193BT3254 strain exhibited decreased fitness in the presence of deoxycholic acid (mean ± SEM; 16 independent replicates). Statistical significance was determined using a one-way ANOVA test with post hoc Dunnett’s multiple comparisons tests compared with wild type (p = 0.0002; WT-∆BT4193, p = 0.14; WT-∆BT3254, p = 0.42; WT-∆BT4193BT3254, p < 0.0001; WT-∆BT4193::BT4193WT, p = 0.45; WT-∆BT4193::BT4193S606A, p = 0.72; ****P < 0.0001). b, Growth of B. thetaiotaomicron strains during polymyxin B treatment.

Source data

Extended Data Fig. 5 Complementation with catalytically inactive BT4193 does not rescue loss of DPP4 activity in B. thetaiotaomicron lysate.

Quantification of initial velocities of fluorogenic peptide substrate cleavage (ex/em: 380/460 nm for AMC substrates; ex/em: 355/460 nm for ACC substrates) in lysate generated from wild type (WT), knockout, and complemented B. thetaiotaomicron strains. Data represent the mean ± SEM of 8 independent replicates for WT and ∆BT4193 and 9 independent replicates for ∆BT3254, ∆BT4193BT3254, ∆BT4193::BT4193WT, and ∆BT4193::BT4193S606A. Statistical significance was determined using a one-way ANOVA test with post hoc Dunnett’s multiple comparisons tests compared with wild type (GP-AMC: p < 0.0001; WT-∆BT4193, p < 0.0001; WT-∆BT3254, p = 0.55; WT-∆BT4193BT3254, p < 0.0001; WT-∆BT4193::BT4193WT, p = 0.0004; WT-∆BT4193::BT4193S606A, p < 0.0001; AP-ACC: p < 0.0001; WT-∆BT4193, p < 0.0001; WT-∆BT3254, p = 0.96; WT-∆BT4193BT3254, p < 0.0001; WT-∆BT4193::BT4193WT, p < 0.0001; WT-∆BT4193::BT4193S606A, p < 0.0001; AAP-ACC: p < 0.0001; WT-∆BT4193, p =  1.00; WT-∆BT3254, p < 0.0001; WT-∆BT4193BT3254, p < 0.0001; WT-∆BT4193::BT4193WT, p = 1.00; WT-∆BT4193::BT4193S606A, p = 0.77; ***P < 0.001; ****P < 0.0001).

Source data

Extended Data Fig. 6 ∆BT4193 strains are not universally susceptible to stressors.

Quantification of the area under the growth curve of B. thetaiotaomicron strains under pH, ethanol, or sodium chloride stress, normalized to untreated bacteria. Deletion of BT4193 did not impact fitness in response to pH, ethanol treatment, or sodium chloride treatment (mean ± SEM; n = 8 independent replicates for pH 7.3, pH 6, pH 5, 0.25 M NaCl; n = 7 independent replicates for 5% EtOH WT, 5% EtOH ∆BT4193; n = 8 independent replicates for 5% EtOH ∆BT3254, 5% EtOH ∆BT4193BT3254). Lack of statistical significance was determined using a one-way ANOVA test (pH 7.3, p =  1.00; pH 6, p = 0.69; pH 5, p = 0.71; 5% EtOH, p = 0.48; 0.25 M NaCl, p = 0.11).

Source data

Extended Data Fig. 7 Loss of BT4193 does not affect monoculture growth in rich media.

Representative growth of B. thetaiotaomicron strains in BHI or mGAM (mean ± SEM; n = 8 independent replicates).

Source data

Extended Data Fig. 8 Overall community structure was not affected by deletion of BT4193.

Quantification of relative abundance of bacteria within the 15-member synthetic communities at the family level after 48 h of growth in BHI or mGAM. Each group of four bars represents replicates for a community with each strain and medium combination.

Source data

Extended Data Fig. 9 Treatment with hDPP4-targeting drugs does not affect the fitness of bacteria from the phylum Bacteroidetes in stool-derived communities.

Quantification of the relative abundance of bacteria from the phylum Bacteroidetes in eight stool-derived communities after 48 h treatment with 10 µM saxagliptin or 10 µM sitagliptin in BHI or mGAM (mean ± SEM; n = 3 independent replicates). Lack of statistical significance was determined using a one-way ANOVA test (BHI: Community 1, p = 0.71; Community 2, p = 0.58; Community 3, p = 0.69; Community 4, p = 0.077; Community 5, p = 0.91; Community 6, p = 0.19; Community 7, p = 0.70; Community 8, p = 0.19; mGAM: Community 1, p = 0.15; Community 2, p = 1.00; Community 3, p = 0.10; Community 4, p = 0.25; Community 5, p = 0.33; Community 6, p = 0.20; Community 7, p = 0.16; Community 8, p = 0.91).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Note.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–9.

Supplementary Data

Supporting data for Supplementary Figs. 3 and 7–13.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed gel.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, L.J., Nguyen, T.H., Liu, L.J. et al. Chemoproteomic identification of a DPP4 homolog in Bacteroides thetaiotaomicron. Nat Chem Biol 19, 1469–1479 (2023). https://doi.org/10.1038/s41589-023-01357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01357-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research