Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis

Abstract

YcaO enzymes catalyze ATP-dependent post-translation modifications on peptides, including the installation of (ox/thi)azoline, thioamide and/or amidine moieties. Here we demonstrate that, in the biosynthesis of the bis-methyloxazolic alkaloid muscoride A, the YcaO enzyme MusD carries out both ATP-dependent cyclodehydration and peptide bond cleavage, which is a mechanism unprecedented for such a reaction. YcaO-catalyzed modifications are proposed to occur through a backbone O-phosphorylated intermediate, but this mechanism remains speculative. We report, to our knowedge, the first characterization of an acyl-phosphate species consistent with the proposed mechanism for backbone amide activation. The 3.1-Å-resolution cryogenic electron microscopy structure of MusD along with biochemical analysis allow identification of residues that enable peptide cleavage reaction. Bioinformatics analysis identifies other cyanobactin pathways that may deploy bifunctional YcaO enzymes. Our structural, mutational and mechanistic studies expand the scope of modifications catalyzed by YcaO proteins to include peptide hydrolysis and provide evidence for a unifying mechanism for the catalytically diverse outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Canonical YcaO-catalyzed enzymatic reactions.
Fig. 2: Characterization of cyanobactin biosynthesis.
Fig. 3: MusD cleaves the C-terminal peptide of the bis-methyloxazole precusor.
Fig. 4: Identification of an O-phosphorylated intermediate.
Fig. 5: Cryo-EM structure of the MusD YcaO.
Fig. 6: Compairson of YcaO active site structures.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the manuscript, the Supplementary Dataset or the Supplementary Information. Cryo-EM density map of MusD has been deposited in the Electron Microscopy Data Bank (accession no. EMD-26344). The atomic coordinate has been deposited in the Protein Data Bank (ID: 7U58). Source data are provided for Figs. 24 and Extended Data Figs. 1, 2, 5, 6, 7 and 10. Source data are provided with this paper.

References

  1. Burkhart, B. J., Schwalen, C. J., Mann, G., Naismith, J. H. & Mitchell, D. A. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem. Rev. 117, 5389–5456 (2017).

    Article  CAS  Google Scholar 

  2. Dunbar, K. L., Melby, J. O. & Mitchell, D. A. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol. 8, 569–575 (2012).

    Article  CAS  Google Scholar 

  3. Nayak, D. D., Mahanta, N., Mitchell, D. A. & Metcalf, W. W. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea. eLife 6, e29218 (2017).

    Article  Google Scholar 

  4. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  Google Scholar 

  5. Montalban-Lopez, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  CAS  Google Scholar 

  6. Li, Y. M., Milne, J. C., Madison, L. L., Kolter, R. & Walsh, C. T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274, 1188–1193 (1996).

    Article  CAS  Google Scholar 

  7. McIntosh, J. A., Donia, M. S. & Schmidt, E. W. Insights into heterocyclization from two highly similar enzymes. J. Am. Chem. Soc. 132, 4089–4091 (2010).

    Article  CAS  Google Scholar 

  8. Vinogradov, A. A. & Suga, H. Introduction to thiopeptides: biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem. Biol. 27, 1032–1051 (2020).

    Article  CAS  Google Scholar 

  9. Melby, J. O., Nard, N. J. & Mitchell, D. A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 15, 369–378 (2011).

    Article  CAS  Google Scholar 

  10. Franz, L., Kazmaier, U., Truman, A. W. & Koehnke, J. Bottromycins—biosynthesis, synthesis and activity. Nat. Prod. Rep. 38, 1659–1683 (2021).

    Article  CAS  Google Scholar 

  11. Travin, D. Y. et al. Biosynthesis of translation inhibitor klebsazolicin proceeds through heterocyclization and N-terminal amidine formation catalyzed by a single YcaO enzyme. J. Am. Chem. Soc. 140, 5625–5633 (2018).

    Article  CAS  Google Scholar 

  12. Franz, L., Adam, S., Santos-Aberturas, J., Truman, A. W. & Koehnke, J. Macroamidine formation in bottromycins is catalyzed by a divergent YcaO enzyme. J. Am. Chem. Soc. 139, 18158–18161 (2017).

    Article  CAS  Google Scholar 

  13. Kjaerulff, L. et al. Thioholgamides: thioamide-containing cytotoxic RiPP natural products. ACS Chem. Biol. 12, 2837–2841 (2017).

    Article  CAS  Google Scholar 

  14. Santos-Aberturas, J. et al. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res 47, 4624–4637 (2019).

    Article  CAS  Google Scholar 

  15. Liu, J. et al. Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Org. Biomol. Chem. 17, 3727–3731 (2019).

    Article  CAS  Google Scholar 

  16. Dong, S. H., Liu, A., Mahanta, N., Mitchell, D. A. & Nair, S. K. Mechanistic basis for ribosomal peptide backbone modifications. ACS Cent. Sci. 5, 842–851 (2019).

    Article  CAS  Google Scholar 

  17. Mahanta, N., Liu, A., Dong, S., Nair, S. K. & Mitchell, D. A. Enzymatic reconstitution of ribosomal peptide backbone thioamidation. Proc. Natl Acad. Sci. USA 115, 3030–3035 (2018).

    Article  CAS  Google Scholar 

  18. Gu, W., Dong, S. H., Sarkar, S., Nair, S. K. & Schmidt, E. W. The biochemistry and structural biology of cyanobactin pathways: enabling combinatorial biosynthesis. Methods Enzymol. 604, 113–163 (2018).

    Article  CAS  Google Scholar 

  19. Sivonen, K., Leikoski, N., Fewer, D. P. & Jokela, J. Cyanobactins–ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 86, 1213–1225 (2010).

    Article  CAS  Google Scholar 

  20. Gu, W. & Schmidt, E. W. Three principles of diversity-generating biosynthesis. Acc. Chem. Res. 50, 2569–2576 (2017).

    Article  CAS  Google Scholar 

  21. Agarwal, V., Pierce, E., McIntosh, J., Schmidt, E. W. & Nair, S. K. Structures of cyanobactin maturation enzymes define a family of transamidating proteases. Chem. Biol. 19, 1411–1422 (2012).

    Article  CAS  Google Scholar 

  22. Koehnke, J. et al. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nat. Struct. Mol. Biol. 19, 767–772 (2012).

    Article  CAS  Google Scholar 

  23. McIntosh, J. A. et al. Circular logic: nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst. J. Am. Chem. Soc. 132, 15499–15501 (2010).

    Article  CAS  Google Scholar 

  24. Akito, N., Hitoshi, K. & Jinsaku, S. Muscoride A: a new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum. Tetrahedron Lett. 36, 4097–4100 (1995).

    Article  Google Scholar 

  25. Amaike, K., Muto, K., Yamaguchi, J. & Itami, K. Decarbonylative C–H coupling of azoles and aryl esters: unprecedented nickel catalysis and application to the synthesis of muscoride A. J. Am. Chem. Soc. 134, 13573–13576 (2012).

    Article  CAS  Google Scholar 

  26. Coqueron, P. Y., Didier, C. & Ciufolini, M. A. Iterative oxazole assembly via alpha-chloroglycinates: total synthesis of (−)-muscoride A. Angew. Chem. Int. Ed. Engl. 42, 1411–1414 (2003).

    Article  CAS  Google Scholar 

  27. Correa, A., Cornella, J. & Martin, R. Nickel-catalyzed decarbonylative C–H coupling reactions: a strategy for preparing bis(heteroaryl) backbones. Angew. Chem. Int. Ed. Engl. 52, 1878–1880 (2013).

    Article  CAS  Google Scholar 

  28. Wipf, P. & Venkatraman, S. Total synthesis of (–)-muscoride A. J. Org. Chem. 61, 6517–6522 (1996).

    Article  CAS  Google Scholar 

  29. J.C., M., G, P. & R.M., T. Total synthesis of (–)-muscoride A: a novel bis-oxazole based alkaloid from the cyanobacterium Nostoc muscorum. Synthesis S1, 613–618 (1998).

    Google Scholar 

  30. Mattila, A. et al. Biosynthesis of the bis-prenylated alkaloids muscoride A and B. ACS Chem. Biol. 14, 2683–2690 (2019).

    Article  CAS  Google Scholar 

  31. Eryilmaz, E., Shah, N. H., Muir, T. W. & Cowburn, D. Structural and dynamical features of inteins and implications on protein splicing. J. Biol. Chem. 289, 14506–14511 (2014).

    Article  CAS  Google Scholar 

  32. Perler, F. B. Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92, 1–4 (1998).

    Article  CAS  Google Scholar 

  33. Perler, F. B., Xu, M. Q. & Paulus, H. Protein splicing and autoproteolysis mechanisms. Curr. Opin. Chem. Biol. 1, 292–299 (1997).

    Article  CAS  Google Scholar 

  34. Attwood, P. V., Besant, P. G. & Piggott, M. J. Focus on phosphoaspartate and phosphoglutamate. Amino Acids 40, 1035–1051 (2011).

    Article  CAS  Google Scholar 

  35. Koehnke, J. et al. The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction. Angew. Chem. Int. Ed. Engl. 52, 13991–13996 (2013).

    Article  CAS  Google Scholar 

  36. Koehnke, J. et al. Structural analysis of leader peptide binding enables leader-free cyanobactin processing. Nat. Chem. Biol. 11, 558–563 (2015).

    Article  CAS  Google Scholar 

  37. Donia, M. S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).

    Article  CAS  Google Scholar 

  38. Donia, M. S., Ravel, J. & Schmidt, E. W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).

    Article  CAS  Google Scholar 

  39. Ge, Y. et al. Insights into the mechanism of the cyanobactin heterocyclase enzyme. Biochemistry 58, 2125–2132 (2019).

    Article  CAS  Google Scholar 

  40. Zallot, R., Oberg, N. & Gerlt, J. A. Discovery of new enzymatic functions and metabolic pathways using genomic enzymology web tools. Curr. Opin. Biotechnol. 69, 77–90 (2021).

    Article  CAS  Google Scholar 

  41. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).

    Article  CAS  Google Scholar 

  42. Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    Article  CAS  Google Scholar 

  43. Truman, A. W. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides. Beilstein J. Org. Chem. 12, 1250–1268 (2016).

    Article  CAS  Google Scholar 

  44. Dunbar, K. L. et al. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat. Chem. Biol. 10, 823–829 (2014).

    Article  CAS  Google Scholar 

  45. Ghilarov, D., Serebryakova, M., Shkundina, I. & Severinov, K. A major portion of DNA gyrase inhibitor microcin B17 undergoes an N,O-peptidyl shift during synthesis. J. Biol. Chem. 286, 26308–26318 (2011).

    Article  CAS  Google Scholar 

  46. Adam, S. et al. Characterization of the stereoselective P450 enzyme BotCYP enables the in vitro biosynthesis of the bottromycin core scaffold. J. Am. Chem. Soc. 142, 20560–20565 (2020).

    Article  CAS  Google Scholar 

  47. Sikandar, A., Franz, L., Melse, O., Antes, I. & Koehnke, J. Thiazoline-specific amidohydrolase PurAH is the gatekeeper of bottromycin biosynthesis. J. Am. Chem. Soc. 141, 9748–9752 (2019).

    Article  CAS  Google Scholar 

  48. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  Google Scholar 

  49. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  Google Scholar 

  50. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article  CAS  Google Scholar 

  51. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  Google Scholar 

  52. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  Google Scholar 

  53. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  55. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  56. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) (GM079038 to S.K.N.). The Bruker UltrafleXtreme MALDI TOF/TOF mass spectrometer was purchased, in part, with a grant from the NIH (S10RR027109A). The Titan Glacios was purchased, in part, with a grant from the NIH (S10OD028700). We thank K. M. Flatt, X. Chen and J. Sun (Purdue University) for help with cryo-EM experiments and data processing. We also thank J. Gerlt and D. Mitchell for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and S.K.N. designed and performed the experiments. Both authors analyzed data and assisted in the writing and editorial process. S.K.N. conceived of and supervised the project.

Corresponding author

Correspondence to Satish K. Nair.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Jesko Koehnke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 MALDI-TOF-MS analysis of spontaneous hydrolysis of 2c.

1d was incubated with MusD for 15 min. The reaction was then quenched by Ziptip to extract peptides to remove the ATP/enzyme. Peptides were eluted from Ziptip using elution buffer (75% ACN and 25% H2O containing 0.1 TFA%) and mixed with Tris-buffer (20 mM, pH 7.5). We specify this time as the initial point (0 h) for the hydrolysis reaction. The spontaneous hydrolysis of 2c was then determined by MALDI-TOF-MS analysis of the sample over the designated time periods.

Source data

Extended Data Fig. 2 MALDI-TOF-MS analysis of hydroxamate product.

a. 1d (50 µM) was incubated with MusD (10 µM) in the presence of ATP/Mg2+ at 22 °C for 15 min (Blue line). Then NH2OH was added to the reaction to a final concentration of 1 M and the mixture was incubated at 22 °C for another 20 min (red line), resulting in the identification of a new product 1h. b. The propose chemical structure of 1h.

Source data

Extended Data Fig. 3 Single-particle cryo-EM analysis of MusD.

a. Flowchart for cryo-EM data processing. The final average resolution for the entire MusD is estimated to be 3.1 Å. b. Representative 2D classes (box size 256 Å). c. Local resolution map of the final 3D reconstruction. d. The gold-standard Fourier shell correlation (FSC) curve for the 3D reconstruction calculated in cryoSPARC. FSC = 0.143 is indicated.

Extended Data Fig. 4 Flow chart for cryo-EM data processing to obtain MusD map with N-terminal density.

After ab-initio reconstruction and heterogeneous refinement, two maps were selected for further NU-refinement. Density for the N-terminal RRE can be observed in the low-resolution map (3.75 Å).

Extended Data Fig. 5 Activity of Ala-substituted MusD variants.

Positions in the active site of MusD were targeted for Ala replacement by site-directed mutagenesis based the CryoEM structure of MusD. These MusD variants were assayed for enzymatic activity by co-expression with MusE and MusOX, and analyzed using MALDI-TOF-MS.

Source data

Extended Data Fig. 6 In vitro reconstitution of MusDE665A activity.

MALDI-TOF-MS analysis of incubation of MusE (50 µM) with MusDE665A (10 µM) and MusOX (10 µM) in the presence of 2 mM ATP/Mg2+ and 100 µM FMN. MusDE665A/MusOX can catalyze the formation of 1d, but the hydrolysis of peptide bond was not observed.

Source data

Extended Data Fig. 7 MALDI–TOF analysis of modification of MusE variants by MusD and MusOX through co-expression in E. coli.

The results were summarized in the table. * indicates hydrolysis product. ξ indicates the formation of two a(ox/thia)zoloes, # indicates the formation of one a(ox/thi)azoles & indicates unmodified MusE variants.

Source data

Extended Data Fig. 8 Bioinformatic analyses suggest other bifunctional YcaOs.

a. Colored sequence similarity network (SSN) of the closest 448 homologues of MusD (alignment score 330) found across cyanobacteria clustered based on sequence similarity (MusD is found in cluster 10). b-d. Genome neighborhood network (GNN) analysis of selected clusters identified in the SSN, which likely encode for cyanobactins. The GNNs were generated using default ‘Neighborhood size” (10) and a query-neighbor co-occurrence threshold of 20%. The circles that are critical for the biosynthesis of cyanobactin are colored in yellow. The GNNs are shown for (b) cluster 10, (c) cluster 4, and (d) cluster 2.

Extended Data Fig. 9 Cyanobactin biosynthetic gene cluster lack of enzyme G.

Proposed cyanobactin biosynthetic gene cluster with high similarity to that of muscoride A (cluster 10) as identified in the SSN and GNN analysis.

Extended Data Fig. 10 MALDI–TOF analysis of coexpression of MusD/OX with either MusESTS or MusETSS.

a. Coexpression of MusD/OX with MusESTS led to a mass loss 216 Da, relative to the unmofied peptide, which corresponds to the formation of three heterocycles and the removal of the C-terminal Gly-Val. b. Coexpression of MusD/OX with MusESTS led to the production of three MusETSS derivatives. A mass loss of 216 Da (relative to the unmodified precursor) (m/z = 6983) is the major product, consistent with the formation of three heterocycles and the removal of the C-terminal Gly-Val. A mass loss of 196 (m/z = 6913) corresponds to formation of two heterocycles and removal of the C-terminal Gly-Val. A mass loss of 176 (m/z = 6933) corresponds to one heterocycles and removal of the C-terminal Gly-Val.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Supplementary Table 1

Reporting Summary

Supplementary Data 1

Accession number of YcaO enzymes

Source data

Source Data Fig. 2

Raw data for Fig. 2c,d

Source Data Fig. 3

Raw data for Fig. 3a

Source Data Fig. 4

Raw data for Fig. 4a–c

Source Data Extended Data Fig. 1

Raw data for Extended Data Fig. 1b

Source Data Extended Data Fig. 2

Raw data for Extended Data Fig. 2a

Source Data Extended Data Fig. 5

Raw data for Extended Data Fig. 5

Source Data Extended Data Fig. 6

Raw data for Extended Data Fig. 6b

Source Data Extended Data Fig. 7

Raw data for Extended Data Fig. 7

Source Data Extended Data Fig. 10

Raw data for Extended Data Fig. 10a,b

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Nair, S.K. YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis. Nat Chem Biol 19, 111–119 (2023). https://doi.org/10.1038/s41589-022-01141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-022-01141-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing