Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes

Abstract

The hippocampus is critical for memory and cognition and neuropsychiatric disorders, and its subfields differ in architecture and function. Genome-wide association studies on hippocampal and subfield volumes are mainly conducted in European populations; however, other ancestral populations are under-represented. Here we conduct cross-ancestry genome-wide association meta-analyses in 65,791 individuals for hippocampal volume and 38,977 for subfield volumes, including 7,009 individuals of East Asian ancestry. We identify 339 variant–trait associations at P < 1.13 × 10−9 for 44 hippocampal traits, including 23 new associations. Common genetic variants have similar effects on hippocampal traits across ancestries, although ancestry-specific associations exist. Cross-ancestry analysis improves the fine-mapping precision and the prediction performance of polygenic scores in under-represented populations. These genetic variants are enriched for Wnt signaling and neuron differentiation and affect cognition, emotion and neuropsychiatric disorders. These findings may provide insight into the genetic architectures of hippocampal and subfield volumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-ancestry GWAS meta-analyses of hippocampal and subfield volumes.
Fig. 2: Ancestry-shared and ancestry-specific genetic associations of hippocampal and subfield volumes.
Fig. 3: Cross-ancestry analysis improves fine-mapping resolution.
Fig. 4: Prediction performance for hippocampal volumetric traits using PGSs constructed by different schemes.
Fig. 5: Functional annotations of genetic variants associated with hippocampal and subfield volumes.

Similar content being viewed by others

Data availability

The GWAS summary statistics used in this work from following two publicly available datasets: the UKBB study (https://open.win.ox.ac.uk/ukbiobank/big40/) and the ENIGMA study (https://enigma.ini.usc.edu/research/download-enigma-gwas-results/data-agreement-for-hippocampal-volume-gwas-download/). All GWAS summary statistics from EAS-specific and cross-ancestry meta-analyses of the 44 hippocampal and subfield volumes are publicly available on http://chimgen.tmu.edu.cn/en/index.php?c=article&id=2359, http://www.mulinlab.org/Hipp_img_TA_meta/ and the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/home) with the accession numbers: GCST90267894–GCST90267981. The PGSs are publicly available on the PGS Catalog (https://www.pgscatalog.org/) with the ID of PGP000464 and score IDs of PGS003591–PGS003722.

Code availability

We made use of publicly available software and tools. All codes used to generate results reported in this paper are publicly available at GitHub (https://github.com/Nana-Liu-genetics/Protocols) and Zenodo (https://doi.org/10.5281/zenodo.7847774)94.

References

  1. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morris, R. G., Garrud, P., Rawlins, J. N. & O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20, 1434–1447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Moreno-Jiménez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554–560 (2019).

    Article  PubMed  Google Scholar 

  6. Li, J. Q. et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry 87, 476–484 (2016).

    Article  PubMed  Google Scholar 

  7. Calabresi, P., Castrioto, A., Di Filippo, M. & Picconi, B. New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol. 12, 811–821 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Mattai, A. et al. Hippocampal volume development in healthy siblings of childhood-onset schizophrenia patients. Am. J. Psychiatry 168, 427–435 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Treadway, M. T. et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol. Psychiatry 77, 285–294 (2015).

    Article  PubMed  Google Scholar 

  10. Gonçalves, J. T., Schafer, S. T. & Gage, F. H. Adult neurogenesis in the hippocampus: from stem. Cells Behav. Cell 167, 897–914 (2016).

    Google Scholar 

  11. Kühn, S. et al. Plasticity of hippocampal subfield volume cornu ammonis 2+3 over the course of withdrawal in patients with alcohol dependence. JAMA Psychiatry 71, 806–811 (2014).

    Article  PubMed  Google Scholar 

  12. Pitman, R. K. et al. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 13, 769–787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fanselow, M. S. & Dong, H. W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iglesias, J. E. et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115, 117–137 (2015).

    Article  PubMed  Google Scholar 

  15. Ho, N. F. et al. Progression from selective to general involvement of hippocampal subfields in schizophrenia. Mol. Psychiatry 22, 142–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P. & Barnes, C. A. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 12, 585–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hibar, D. P. et al. Common genetic variants influence human subcortical brain structures. Nature 520, 224–229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bis, J. C. et al. Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nat. Genet. 44, 545–551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stein, J. L. et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat. Genet. 44, 552–561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hibar, D. P. et al. Novel genetic loci associated with hippocampal volume. Nat. Commun. 8, 13624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51, 1637–1644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Meer, D. et al. Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes. Mol. Psychiatry 25, 3053–3065 (2020).

    Article  PubMed  Google Scholar 

  25. Zahodne, L. B. et al. Structural MRI predictors of late-life cognition differ across African Americans, Hispanics, and Whites. Curr. Alzheimer Res. 12, 632–639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, M. et al. Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility. Mol. Psychiatry 19, 452–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Li, M. et al. Failure of replicating the association between hippocampal volume and 3 single-nucleotide polymorphisms identified from the European genome-wide association study in Asian populations. Neurobiol. Aging 35, 2883 (2014).

    Article  Google Scholar 

  28. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 6, 91 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen, M. H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182, 1198–1213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, Q. et al. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Mol. Psychiatry 25, 517–529 (2020).

    Article  PubMed  Google Scholar 

  35. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Del Villar, K. & Miller, C. A. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proc. Natl Acad. Sci. USA 101, 4210–4215 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mann, F., Chauvet, S. & Rougon, G. Semaphorins in development and adult brain: implication for neurological diseases. Prog. Neurobiol. 82, 57–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genom. 2, 100210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Towers, E. et al. The proapoptotic dp5 gene is a direct target of the MLK-JNK-c-Jun pathway in sympathetic neurons. Nucleic Acids Res. 37, 3044–3060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  Google Scholar 

  49. Litterman, N. et al. An OBSL1-Cul7Fbxw8 ubiquitin ligase signaling mechanism regulates Golgi morphology and dendrite patterning. PLoS Biol. 9, e1001060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nishino, J., Kim, I., Chada, K. & Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135, 227–239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patwari, P. et al. Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins. J. Biol. Chem. 284, 24996–25003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, Y. et al. APOE genotype and neuroimaging markers of Alzheimer’s disease: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 86, 127–134 (2015).

    Article  PubMed  Google Scholar 

  59. Belloy, M. E., Napolioni, V. & Greicius, M. D. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron 101, 820–838 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matissek, S. J. & Elsawa, S. F. GLI3: a mediator of genetic diseases, development and cancer. Cell Commun. Signal. 18, 54 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilson, P. M., Fryer, R. H., Fang, Y. & Hatten, M. E. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J. Neurosci. 30, 8529–8540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lionel, A. C. et al. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum. Mol. Genet. 23, 2752–2768 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. O’Brien, H. E. et al. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biol. 19, 194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. O’Brien, H. et al. 55Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Eur. Neuropsychopharmacol. 29, S1098–S1099 (2019).

    Article  Google Scholar 

  66. Takemoto, T. et al. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470, 394–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–w205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jacobs, S. et al. Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc. Natl Acad. Sci. USA 105, 311–316 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Sinning, A., Liebmann, L. & Hübner, C. A. Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity. Front. Cell. Neurosci. 9, 223 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sun, C. et al. Nonenzymatic function of DPP4 in diabetes-associated mitochondrial dysfunction and cognitive impairment. Alzheimers Dement. 18, 966–987 (2021).

    Article  PubMed  Google Scholar 

  71. Hussaini, S. M. et al. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior. Neurosci. Biobehav. Rev. 47, 369–383 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).

    Article  PubMed  Google Scholar 

  75. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Price, A. L. et al. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  80. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Delaneau, O., Zagury, J. F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wu, D. et al. Large-scale whole-genome sequencing of three diverse Asian populations in Singapore. Cell 179, 736–749 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. König, I. R., Loley, C., Erdmann, J. & Ziegler, A. How to include chromosome X in your genome-wide association study. Genet. Epidemiol. 38, 97–103 (2014).

    Article  PubMed  Google Scholar 

  85. Fortin, J. P. et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161, 149–170 (2017).

    Article  PubMed  Google Scholar 

  86. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. GigaScience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Amendola, L. M. et al. Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res. 25, 305–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hinrichs, A. S. The UCSC genome browser database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, N. Nana-Liu-genetics/Protocols: Protocols_Nana. Zenodo https://doi.org/10.5281/zenodo.7847774 (2023).

Download references

Acknowledgements

We are grateful to the UKBB and ENIGMA for providing GWAS summary statistics of hippocampal and subfield volumes. This work was supported by the National Natural Science Foundation of China (82030053 and 81425013 to C.Y.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

C.Y. and N.L. designed the study and wrote the paper. All authors critically reviewed the paper. N.L., L.Z., T.T., J.C., B.Z., S.Q., M.J.L., K.X., X-N.Z., M.W., Z. Ye, W.Q., F.L., M.L., Q.X., J.F., J.X. and C.Y. were the principal investigators. L.Z., T.T., J.C., B.Z., S.Q., Z.G., G.C., Q.Z., W. Liao, Y.Y., H.Z., B.G, X.X., T.H., Z. Yao, W.Z., P.Z., W. Li, D.S., C.W., S.L., Z. Yan, F.C., J.L., J.Z., D.W., W.S., Y.M., J.X., J-H.G., X.Z., K.X., X-N.Z., M.W., Z. Ye and C.Y. acquired the data. C.Y., Z. Ye and M.W. supervised this work. N.L. analyzed the data.

Corresponding authors

Correspondence to Meiyun Wang, Zhaoxiang Ye or Chunshui Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Jason Stein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–21.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Zhang, L., Tian, T. et al. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nat Genet 55, 1126–1137 (2023). https://doi.org/10.1038/s41588-023-01425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01425-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing