Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational drug development for membrane protein targets

Abstract

The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of virtual ligand screening for membrane proteins with a GPCR as a prototypical example.
Fig. 2: An integrated structural biology approach.

Similar content being viewed by others

References

  1. Fagerberg, L., Jonasson, K., von Heijne, G., Uhlen, M. & Berglund, L. Prediction of the human membrane proteome. Proteomics 10, 1141–1149 (2010).

    CAS  PubMed  Google Scholar 

  2. Gong, J. et al. Understanding membrane protein drug targets in computational perspective. Curr. Drug Targets 20, 551–564 (2019).

    CAS  PubMed  Google Scholar 

  3. Schlander, M., Hernandez-Villafuerte, K., Cheng, C. Y., Mestre-Ferrandiz, J. & Baumann, M. How much does it cost to research and develop a new drug? A systematic review and assessment. Pharmacoeconomics 39, 1243–1269 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Vemula, D., Jayasurya, P., Sushmitha, V., Kumar, Y. N. & Bhandari, V. CADD, AI and ML in drug discovery: a comprehensive review. Eur. J. Pharm. Sci. 181, 106324 (2022).

    PubMed  Google Scholar 

  5. Burley, S. K. et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49, D437–D451 (2021).

    CAS  PubMed  Google Scholar 

  6. Purslow, J. A., Khatiwada, B., Bayro, M. J. & Venditti, V. NMR methods for structural characterization of protein–protein complexes. Front. Mol. Biosci. 7, 9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, F. et al. Highlighting membrane protein structure and function: a celebration of the Protein Data Bank. J. Biol. Chem. 296, 100557 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Garcia-Nafria, J. & Tate, C. G. Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development. Annu. Rev. Pharmacol. Toxicol. 60, 51–71 (2020).

    CAS  PubMed  Google Scholar 

  9. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  11. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Hegedus, T., Geisler, M., Lukacs, G. L. & Farkas, B. Ins and outs of AlphaFold2 transmembrane protein structure predictions. Cell. Mol. Life Sci. 79, 73 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Lupas, A. N. et al. The breakthrough in protein structure prediction. Biochem. J. 478, 1885–1890 (2021).

    CAS  PubMed  Google Scholar 

  15. Pakhrin, S. C., Shrestha, B., Adhikari, B. & Kc, D. B. Deep learning-based advances in protein structure prediction. Int. J. Mol. Sci. 22, 5553 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

    CAS  PubMed  ADS  Google Scholar 

  17. Yang, J. et al. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl Acad. Sci. USA 117, 1496–1503 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Ju, F. et al. CopulaNet: learning residue co-evolution directly from multiple sequence alignment for protein structure prediction. Nat. Commun. 12, 2535 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Zheng, W. et al. Deep-learning contact-map guided protein structure prediction in CASP13. Proteins Struct. Funct. Bioinf. 87, 1149–1164 (2019).

    CAS  Google Scholar 

  20. Xu, J., Mcpartlon, M. & Li, J. Improved protein structure prediction by deep learning irrespective of co-evolution information. Nat. Mach. Intell. 3, 601–609 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Lupo, U., Sgarbossa, D. & Bitbol, A.-F. Protein language models trained on multiple sequence alignments learn phylogenetic relationships. Nat. Commun. 13, 6298 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Seo, S., Oh, M., Park, Y. & Kim, S. DeepFam: deep learning based alignment-free method for protein family modeling and prediction. Bioinformatics 34, i254–i262 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chowdhury, R. et al. Single-sequence protein structure prediction using a language model and deep learning. Nat. Biotechnol. 40, 1617–1623 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  25. Weissenow, K., Heinzinger, M. & Rost, B. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction. Structure 30, 1169–1177 (2022).

    CAS  PubMed  Google Scholar 

  26. Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).

  27. Liu, Z. et al. TMPSS: a deep learning-based predictor for secondary structure and topology structure prediction of α-helical transmembrane proteins. Front. Bioeng. Biotechnol. 8, 629937 (2020).

    PubMed  Google Scholar 

  28. Wang, S. et al. PredMP: a web server for de novo prediction and visualization of membrane proteins. Bioinformatics 35, 691–693 (2019).

    CAS  PubMed  Google Scholar 

  29. Robson, B. Testing machine learning techniques for general application by using protein secondary structure prediction. A brief survey with studies of pitfalls and benefits using a simple progressive learning approach. Comput. Biol. Med. 138, 104883 (2021).

    PubMed  Google Scholar 

  30. Ismi, D. P., Pulungan, R. & Afiahayati Deep learning for protein secondary structure prediction: pre and post-AlphaFold. Comput. Struct. Biotechnol. J. 20, 6271–6286 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. David, A., Islam, S., Tankhilevich, E. & Sternberg, M. J. E. The AlphaFold database of protein structures: a biologist’s guide. J. Mol. Biol. 434, 167336 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, C., Su, B. H. & Tseng, Y. J. Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors. Brief. Bioinform. 23, bbac308 (2022).

    PubMed  PubMed Central  Google Scholar 

  33. He, X. H. et al. AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors. Acta Pharmacol. Sin. 44, 1–7 (2023).

    CAS  PubMed  Google Scholar 

  34. Sala, D., Hildebrand, P. W. & Meiler, J. Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties. Front. Mol. Biosci. 10, 1121962 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Del Alamo, D., Sala, D., McHaourab, H. S. & Meiler, J. Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife 11, e75751 (2022).

    PubMed  PubMed Central  Google Scholar 

  36. Tikhonov, D. B. & Zhorov, B. S. P-loop channels: experimental structures, and physics-based and neural networks-based models. Membranes 12, 229 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu, Z. et al. Simulation and machine learning methods for ion-channel structure determination, mechanistic studies and drug design. Front. Pharm. 13, 939555 (2022).

    CAS  Google Scholar 

  38. Wayment-Steele, H. K., Ovchinnikov, S., Colwell, L. & Kern, D. Prediction of multiple conformational states by combining sequence clustering with AlphaFold2. Preprint at BioRxiv https://doi.org/10.1101/2022.10.17.512570 (2022).

  39. Jeppesen, M. & André, I. Accurate prediction of protein assembly structure by combining AlphaFold and symmetrical docking. Preprint at bioRxiv https://doi.org/10.1101/2023.06.22.546069 (2023).

  40. Stein, R. A. & Mchaourab, H. S. SPEACH_AF: sampling protein ensembles and conformational heterogeneity with Alphafold2. PLoS Comput. Biol. 18, e1010483 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Heo, L. & Feig, M. Multi-state modeling of G-protein coupled receptors at experimental accuracy. Proteins 90, 1873–1885 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, S. Y. & Zou, X. MDockPP: a hierarchical approach for protein–protein docking and its application to CAPRI rounds 15–19. Proteins 78, 3096–3103 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Zundert, G. et al. The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    PubMed  Google Scholar 

  45. Quadir, F., Roy, R. S., Soltanikazemi, E. & Cheng, J. DeepComplex: a web server of predicting protein complex structures by deep learning inter-chain contact prediction and distance-based modelling. Front. Mol. Biosci. 827, 716973 (2021).

    Google Scholar 

  46. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein–protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Burke, D. F. et al. Towards a structurally resolved human protein interaction network. Nat. Struct. Mol. Biol. 30, 216–225 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ganea, O.-E. et al. Independent SE(3)-equivariant models for end-to-end rigid protein docking. Preprint at arXiv https://doi.org/10.48550/arXiv.2111.07786 (2021).

  49. Gulsevin, A. et al. Template-free prediction of a new monotopic membrane protein fold and assembly by AlphaFold2. Biophys. J. 122, 2041–2052 (2023).

    CAS  PubMed  ADS  Google Scholar 

  50. Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat. Commun. 13, 1744 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Birch, J. et al. Changes in membrane protein structural biology. Biology 9, 401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Puthenveetil, R., Christenson, E. T. & Vinogradova, O. New horizons in structural biology of membrane proteins: experimental evaluation of the role of conformational dynamics and intrinsic flexibility. Membranes 12, 227 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. García-Nafría, J. & Tate, C. G. Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem. Soc. Trans. 49, 2345–2355 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Robertson, M. J. et al. Structure determination of inactive-state GPCRs with a universal nanobody. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-022-00859-8 (2022).

  55. Danev, R. et al. Routine sub-2.5 Å cryo-EM structure determination of GPCRs. Nat. Commun. 12, 4333 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Zhang, K., Wu, H., Hoppe, N., Manglik, A. & Cheng, Y. Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat. Commun. 13, 4366 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Cheng, Y. Membrane protein structural biology in the era of single particle cryo-EM. Curr. Opin. Struct. Biol. 52, 58–63 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Latorraca, N. R., Venkatakrishnan, A. J. & Dror, R. O. GPCR dynamics: structures in motion. Chem. Rev. 117, 139–155 (2017).

    CAS  PubMed  Google Scholar 

  59. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Knight, K. M. et al. A universal allosteric mechanism for G protein activation. Mol. Cell 81, 1384–1396 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, Q. & Tesmer, J. J. G. G protein-coupled receptor interactions with arrestins and GPCR kinases: the unresolved issue of signal bias. J. Biol. Chem. 298, 102279 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kankanamge, D., Tennakoon, M., Karunarathne, A. & Gautam, N. G protein γ subunit, a hidden master regulator of GPCR signaling. J. Biol. Chem. 298, 102618 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pándy-Szekeres, G. et al. GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 51, D395–D402 (2023).

  64. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Newport, T. D., Sansom, M. S. P. & Stansfeld, P. J. The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res. 47, D390–D397 (2019).

    CAS  PubMed  Google Scholar 

  66. Zhang, K., Julius, D. & Cheng, Y. A step-by-step protocol for capturing conformational snapshots of ligand gated ion channels by single-particle cryo-EM. STAR Protoc. 3, 101732 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Matthies, D. et al. Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164, 747–756 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Y. et al. Asymmetric opening of the homopentameric 5-HT3A serotonin receptor in lipid bilayers. Nat. Commun. 12, 1074 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Basak, S., Gicheru, Y., Rao, S., Sansom, M. S. P. & Chakrapani, S. Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT3A receptor. Nature 563, 270–274 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Polovinkin, L. et al. Conformational transitions of the serotonin 5-HT3 receptor. Nature 563, 275–279 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Zhang, K., Julius, D. & Cheng, Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 184, 5138–5150 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, X. et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature 604, 377–383 (2022).

    CAS  PubMed  ADS  Google Scholar 

  74. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  Google Scholar 

  75. Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Punjani, A. & Fleet, D. 3D flexible refinement: structure and motion of flexible proteins from cryo-EM. Microsc. Microanal. 28, 1218 (2022).

    ADS  Google Scholar 

  77. Marino, J. & Schertler, G. F. X. A set of common movements within GPCR–G-protein complexes from variability analysis of cryo-EM datasets. J. Struct. Biol. 213, 107699 (2021).

    CAS  PubMed  Google Scholar 

  78. Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. in 2021 IEEE/CVF International Conference on Computer Vision (ICCV) 4046–4055 (IEEE, 2021).

  79. MacKerell, A. D. Jr. Ions everywhere? Mg2+ in the µ-opioid GPCR and atomic details of their impact on function. Biophys. J. 118, 783–784 (2020).

    CAS  PubMed  ADS  Google Scholar 

  80. Ngo, V. et al. Polarization effects in water-mediated selective cation transport across a narrow transmembrane channel. J. Chem. Theory Comput. 17, 1726–1741 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hollingsworth, S. A. & Dror, R. O. Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Voss, J. M., Harder, O. F., Olshin, P. K., Drabbels, M. & Lorenz, U. J. Rapid melting and revitrification as an approach to microsecond time-resolved cryo-electron microscopy. Chem. Phys. Lett. 778, 138812 (2021).

    CAS  Google Scholar 

  83. Frank, J. Time-resolved cryo-electron microscopy: recent progress. J. Struct. Biol. 200, 303–306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rodríguez-Espigares, I. et al. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat. Methods 17, 777–787 (2020).

    PubMed  Google Scholar 

  85. Milligan, G., Ward, R. J. & Marsango, S. GPCR homo-oligomerization. Curr. Opin. Cell Biol. 57, 40–47 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gahbauer, S. & Böckmann, R. A. Membrane-mediated oligomerization of G protein coupled receptors and its implications for GPCR function. Front. Physiol. 7, 494 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Joseph, M. D., Tomas Bort, E., Grose, R. P., McCormick, P. J. & Simoncelli, S. Quantitative super-resolution imaging for the analysis of GPCR oligomerization. Biomolecules 11, 1503 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Møller, T. C. et al. Oligomerization of a G protein-coupled receptor in neurons controlled by its structural dynamics. Sci. Rep. 8, 10414 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  89. Sanchez, R. M., Zhang, Y., Chen, W., Dietrich, L. & Kudryashev, M. Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging—single particle cryo-EM. Nat. Commun. 11, 3709 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Floris, D. & Kühlbrandt, W. Molecular landscape of etioplast inner membranes in higher plants. Nat. Plants 7, 514–523 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu, Y. et al. Structure and activity of particulate methane monooxygenase arrays in methanotrophs. Nat. Commun. 13, 5221 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  92. Tao, X., Zhao, C. & MacKinnon, R. Membrane protein isolation and structure determination in cell-derived membrane vesicles. Proc. Natl Acad. Sci. USA 120, e2302325120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeng, X. & Xu, M. AITom: open-source AI platform for cryo-electron tomography data analysis. Preprint at arXiv https://doi.org/10.48550/arXiv.1911.03044 (2019).

  94. McCoy, A. J., Sammito, M. D. & Read, R. J. Implications of AlphaFold2 for crystallographic phasing by molecular replacement. Acta Crystallogr. D Struct. Biol. 78, 1–13 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  95. Gulezian, E. et al. Membrane protein production and formulation for drug discovery. Trends Pharmacol. Sci. 42, 657–674 (2021).

    CAS  PubMed  Google Scholar 

  96. Hosseini, M., Chen, W., Xiao, D. & Wang, C. Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precis. Clin. Med. 4, 1–16 (2021).

    PubMed  PubMed Central  Google Scholar 

  97. Zhao, S. et al. Ligand-based pharmacophore modeling, virtual screening and biological evaluation to identify novel TGR5 agonists. RSC Adv. 11, 9403–9409 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Halperin, I., Ma, B., Wolfson, H. & Nussinov, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47, 409–443 (2002).

    CAS  PubMed  Google Scholar 

  99. Sabe, V. T. et al. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: a review. Eur. J. Med. Chem. 224, 113705 (2021).

    CAS  PubMed  Google Scholar 

  100. Cavalli, A. et al. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 51, 347–372 (2008).

    CAS  PubMed  Google Scholar 

  101. Gentile, F. et al. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nat. Protoc. 17, 672–697 (2022).

    CAS  PubMed  Google Scholar 

  102. Crunkhorn, S. Screening ultra-large virtual libraries. Nat. Rev. Drug Discov. 21, 95 (2022).

    CAS  PubMed  Google Scholar 

  103. Kampen, S. et al. Structure-guided design of G-protein-coupled receptor polypharmacology. Angew. Chem. Int. Ed. 60, 18022–18030 (2021).

    CAS  Google Scholar 

  104. Fink, E. A. et al. Structure-based discovery of nonopioid analgesics acting through the α2A-adrenergic receptor. Science 377, eabn7065 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579, 609–614 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Cole, B. A. et al. Structure-based identification and characterization of inhibitors of the epilepsy-associated KNa1.1 (KCNT1) potassium channel. iScience 23, 101100 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Valdes-Jimenez, A. et al. A new strategy for multitarget drug discovery/repositioning through the identification of similar 3D amino acid patterns among proteins structures: the case of tafluprost and its effects on cardiac ion channels. Front. Pharm. 13, 855792 (2022).

    CAS  Google Scholar 

  108. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Gorgulla, C. et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 580, 663–668 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  110. Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601, 452–459 (2022).

    CAS  PubMed  ADS  Google Scholar 

  111. Ballante, F., Kooistra, A. J., Kampen, S., de Graaf, C. & Carlsson, J. Structure-based virtual screening for ligands of G protein–coupled receptors: what can molecular docking do for you? Pharmacol. Rev. 73, 1698 (2021).

    Google Scholar 

  112. Pagadala, N. S., Syed, K. & Tuszynski, J. Software for molecular docking: a review. Biophys. Rev. 9, 91–102 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: diffusion steps, twists, and turns for molecular docking. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.01776(2022).

  114. McNutt, A. T. et al. GNINA 1.0: molecular docking with deep learning. J. Cheminform. 13, 43 (2021).

    PubMed  PubMed Central  Google Scholar 

  115. Amendola, G. & Cosconati, S. PyRMD: a new fully automated AI-powered ligand-based virtual screening tool. J. Chem. Inf. Model. 61, 3835–3845 (2021).

    CAS  PubMed  Google Scholar 

  116. Alves, L. A. et al. Graph neural networks as a potential tool in improving virtual screening programs. Front. Chem. 9, 787194 (2021).

    PubMed  Google Scholar 

  117. Liu, Z. et al. DeepScreening: a deep learning-based screening web server for accelerating drug discovery. Database 2019, baz104 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. Crampon, K., Giorkallos, A., Deldossi, M., Baud, S. & Steffenel, L. A. Machine-learning methods for ligand–protein molecular docking. Drug Discov. Today 27, 151–164 (2022).

    CAS  PubMed  Google Scholar 

  119. Yu, Y., Lu, S., Gao, Z., Zheng, H. & Ke, G. Do deep learning models really outperform traditional approaches in molecular docking? Preprint at arXiv https://doi.org/10.48550/arXiv.2302.07134 (2023).

  120. Molga, K., Dittwald, P. & Grzybowski, B. A. Navigating around patented routes by preserving specific motifs along computer-planned retrosynthetic pathways. Chem 5, 460–473 (2019).

    CAS  Google Scholar 

  121. de Almeida, A. F., Moreira, R. & Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem. 3, 589–604 (2019).

    Google Scholar 

  122. Struble, T. J. et al. Current and future roles of artificial intelligence in medicinal chemistry synthesis. J. Med. Chem. 63, 8667–8682 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10, 370–377 (2019).

    CAS  PubMed  ADS  Google Scholar 

  124. Chen, S. & Jung, Y. S. A generalized-template-based graph neural network for accurate organic reactivity prediction. Nat. Mach. Intell. 4, 772–780 (2022).

    Google Scholar 

  125. Schreck, J. S., Coley, C. W. & Bishop, K. J. M. Learning retrosynthetic planning through simulated experience. ACS Cent. Sci. 5, 970–981 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mo, Y. M. et al. Evaluating and clustering retrosynthesis pathways with learned strategy. Chem. Sci. 12, 1469–1478 (2021).

    CAS  Google Scholar 

  127. Liu, B. W. et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent. Sci. 3, 1103–1113 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lin, K. J., Xu, Y. J., Pei, J. F. & Lai, L. H. Automatic retrosynthetic route planning using template-free models. Chem. Sci. 11, 3355–3364 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Segler, M. H. S. & Waller, M. P. Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry 23, 5966–5971 (2017).

    CAS  PubMed  Google Scholar 

  130. Jin, W. G., Coley, C. W., Barzilay, R. & Jaakkola, T. Predicting organic reaction outcomes with Weisfeiler–Lehman network. Proc. 31st Int. Conf. Neural Information Processing Systems 2604–2613 (2017); https://doi.org/10.5555/3294996.3295021

  131. Gao, H. Y. et al. Using machine learning to predict suitable conditions for organic reactions. ACS Cent. Sci. 4, 1465–1476 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhou, Z. P., Li, X. C. & Zare, R. N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Coley, C. W., Barzilay, R., Jaakkola, T. S., Green, W. H. & Jensen, K. F. Prediction of organic reaction outcomes using machine learning. ACA Cent. Sci. 3, 434–443 (2017).

    CAS  Google Scholar 

  134. Klucznik, T. et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 4, 522–532 (2018).

    CAS  Google Scholar 

  135. Padmaja, R. D. & Chanda, K. A short review on synthetic advances toward the synthesis of rufinamide, an antiepileptic drug. Org. Process Res. Dev. 22, 457–466 (2018).

    CAS  Google Scholar 

  136. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    CAS  PubMed  ADS  Google Scholar 

  137. Yuan, S. et al. Computational modeling of the olfactory receptor Olfr73 suggests a molecular basis for low potency of olfactory receptor-activating compounds. Commun. Biol. 2, 141 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Schardt, J. S. et al. Agonist antibody discovery: experimental, computational, and rational engineering approaches. Drug Discov. Today 27, 31–48 (2022).

    CAS  PubMed  Google Scholar 

  139. El Daibani, A. et al. Molecular mechanism of biased signaling at the κ opioid receptor. Nat. Commun. 14, 1338 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  140. Roth, B. L. & Kroeze, W. K. Integrated approaches for genome-wide interrogation of the druggable non-olfactory G protein-coupled receptor superfamily. J. Biol. Chem. 290, 19471–19477 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

    CAS  PubMed  Google Scholar 

  142. Sriram, K. & Insel, P. A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93, 251–258 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Avet, C. et al. Effector membrane translocation biosensors reveal G protein and betaarrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife 11, e74101 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hauser, A. S. et al. Common coupling map advances GPCR–G protein selectivity. eLife 11, e74107 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Low, V., Li, Z. & Blenis, J. Metabolite activation of tumorigenic signaling pathways in the tumor microenvironment. Sci. Signal. 15, eabj4220 (2022).

    CAS  PubMed  Google Scholar 

  146. Drew, L. Olfactory receptors are not unique to the nose. Nature 606, S14–S17 (2022).

    CAS  PubMed  ADS  Google Scholar 

  147. Orecchioni, M. et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science 375, 214–221 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  148. Hofmann, K. P. & Lamb, T. D. Rhodopsin, light-sensor of vision. Prog. Retin. Eye Res. 93, 101116 (2023).

  149. Marullo, S. et al. Mechanical GPCR activation by traction forces exerted on receptor N-glycans. ACS Pharm. Transl. Sci. 3, 171–178 (2020).

    CAS  Google Scholar 

  150. Erdogmus, S. et al. Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nat. Commun. 10, 5784 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  151. Zhang, R. & Xie, X. Tools for GPCR drug discovery. Acta Pharmacol. Sin. 33, 372–384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Nielsen, C. D., Dhasmana, D., Floresta, G., Wohland, T. & Cilibrizzi, A. Illuminating the path to target GPCR structures and functions. Biochemistry 59, 3783–3795 (2020).

    CAS  PubMed  Google Scholar 

  153. Zhou, Y., Meng, J., Xu, C. & Liu, J. Multiple GPCR functional assays based on resonance energy transfer sensors. Front. Cell Dev. Biol. 9, 611443 (2021).

    PubMed  PubMed Central  Google Scholar 

  154. Tian, H., Furstenberg, A. & Huber, T. Labeling and single-molecule methods to monitor G protein-coupled receptor dynamics. Chem. Rev. 117, 186–245 (2017).

    CAS  PubMed  Google Scholar 

  155. Serfling, R. et al. Quantitative single-residue bioorthogonal labeling of G protein-coupled receptors in live cells. ACS Chem. Biol. 14, 1141–1149 (2019).

    CAS  PubMed  Google Scholar 

  156. Meral, D. et al. Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations. Sci. Rep. 8, 7705 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  157. Schihada, H. et al. A universal bioluminescence resonance energy transfer sensor design enables high-sensitivity screening of GPCR activation dynamics. Commun. Biol. 1, 105 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Schihada, H. et al. Development of a conformational histamine H3 receptor biosensor for the synchronous screening of agonists and inverse agonists. ACS Sens. 5, 1734–1742 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Maziarz, M. et al. Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell 182, 770–785 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Olsen, R. H. J. & English, J. G. Advancements in G protein-coupled receptor biosensors to study GPCR–G protein coupling. Br. J. Pharmacol. 180, 1433–1443 (2023).

  161. Liu, J. et al. Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor. Nat. Commun. 13, 6365 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  162. Nuber, S. et al. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531, 661–664 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  163. Janetzko, J. et al. Membrane phosphoinositides regulate GPCR–β-arrestin complex assembly and dynamics. Cell 185, 4560–4573 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Momboisse, F. et al. Tracking receptor motions at the plasma membrane reveals distinct effects of ligands on CCR5 dynamics depending on its dimerization status. eLife 11, e76281 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Moller, J. et al. Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nat. Chem. Biol. 16, 946–954 (2020).

    PubMed  Google Scholar 

  166. Sungkaworn, T. et al. Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. Nature 550, 543–547 (2017).

    CAS  PubMed  ADS  Google Scholar 

  167. Kasai, R. S. & Kusumi, A. Single-molecule imaging revealed dynamic GPCR dimerization. Curr. Opin. Cell Biol. 27, 78–86 (2014).

    CAS  PubMed  Google Scholar 

  168. Lamichhane, R. et al. Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR. Proc. Natl Acad. Sci. USA 112, 14254–14259 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  169. Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547, 68–73 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  170. Walsh, S. M. et al. Single proteoliposome high-content analysis reveals differences in the homo-oligomerization of GPCRs. Biophys. J. 115, 300–312 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  171. Milstein, J. N., Nino, D. F., Zhou, X. & Gradinaru, C. C. Single-molecule counting applied to the study of GPCR oligomerization. Biophys. J. 121, 3175–3187 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  172. Asher, W. B. et al. Single-molecule FRET imaging of GPCR dimers in living cells. Nat. Methods 18, 397–405 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kondratskyi, A. Classification of ion channels. Ion Channel Library https://www.ionchannellibrary.com/classification-of-ion-channels/ (2019).

  174. Kondratskyi, A. Drugs on the market. Ion Channel Library https://www.ionchannellibrary.com/ion-channel-drugs/ (2019).

  175. Sakmann, B. & Neher, E. Single-Channel Recording (Plenum Press, 1983).

  176. Seibertz, F. et al. A modern automated patch-clamp approach for high throughput electrophysiology recordings in native cardiomyocytes. Commun. Biol. 5, 969 (2022).

    PubMed  PubMed Central  Google Scholar 

  177. Obergrussberger, A., Friis, S., Bruggemann, A. & Fertig, N. Automated patch clamp in drug discovery: major breakthroughs and innovation in the last decade. Expert Opin. Drug Discov. 16, 1–5 (2021).

    PubMed  Google Scholar 

  178. Gutsmann, T., Heimburg, T., Keyser, U., Mahendran, K. R. & Winterhalter, M. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat. Protoc. 10, 188–198 (2015).

    PubMed  Google Scholar 

  179. Talwar, S. & Lynch, J. W. Investigating ion channel conformational changes using voltage clamp fluorometry. Neuropharmacology 98, 3–12 (2015).

    CAS  PubMed  Google Scholar 

  180. Andriani, R. T. & Kubo, Y. Voltage-clamp fluorometry analysis of structural rearrangements of ATP-gated channel P2X2 upon hyperpolarization. eLife 10, e65822 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Patel, V. R. et al. Single-molecule imaging with cell-derived nanovesicles reveals early binding dynamics at a cyclic nucleotide-gated ion channel. Nat. Commun. 12, 6459 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  182. Menegon, A. et al. A new electro-optical approach for conductance measurement: an assay for the study of drugs acting on ligand-gated ion channels. Sci. Rep. 7, 44843 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  183. Zhang, X. M., Yokoyama, T. & Sakamoto, M. Imaging voltage with microbial rhodopsins. Front. Mol. Biosci. 8, 738829 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Sankaran, J. & Wohland, T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng. 4, 020901 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Monnier, N. et al. Bayesian approach to MSD-based analysis of particle motion in live cells. Biophys. J. 103, 616–626 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  186. Monnier, N. et al. Inferring transient particle transport dynamics in live cells. Nat. Methods 12, 838–840 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Dosset, P. et al. Automatic detection of diffusion modes within biological membranes using back-propagation neural network. BMC Bioinformatics 17, 197 (2016).

    PubMed  PubMed Central  Google Scholar 

  188. Granik, N. et al. Single-particle diffusion characterization by deep learning. Biophys. J. 117, 185–192 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  189. Kowalek, P., Loch-Olszewska, H. & Szwabinski, J. Classification of diffusion modes in single-particle tracking data: feature-based versus deep-learning approach. Phys. Rev. E 100, 032410 (2019).

    CAS  PubMed  ADS  Google Scholar 

  190. Veya, L., Piguet, J. & Vogel, H. Single molecule imaging deciphers the relation between mobility and signaling of a prototypical G protein-coupled receptor in living cells. J. Biol. Chem. 290, 27723–27735 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Duncan, A. L., Song, W. & Sansom, M. S. P. Lipid-dependent regulation of ion channels and G protein-coupled receptors: insights from structures and simulations. Annu. Rev. Pharmacol. Toxicol. 60, 31–50 (2020).

    CAS  PubMed  Google Scholar 

  192. Kozlovskii, I. & Popov, P. Spatiotemporal identification of druggable binding sites using deep learning. Commun. Biol. 3, 618 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Verkhivker, G., Alshahrani, M., Gupta, G., Xiao, S. & Tao, P. From deep mutational mapping of allosteric protein landscapes to deep learning of allostery and hidden allosteric sites: zooming in on “allosteric intersection” of biochemical and big data approaches. Int. J. Mol. Sci. 24, 7747 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36, 460–468 (2018).

    CAS  PubMed  Google Scholar 

  195. Kim, T., Moon, S. & Xu, K. Information-rich localization microscopy through machine learning. Nat. Commun. 10, 1996 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  196. Qiao, C. et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat. Biotechnol. 41, 367–377 (2023).

    CAS  PubMed  Google Scholar 

  197. Mahecic, D. et al. Event-driven acquisition for content-enriched microscopy. Nat. Methods 19, 1262–1267 (2022).

    CAS  PubMed  Google Scholar 

  198. Scheefhals, N., Westra, M. & MacGillavry, H. D. mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function. Nat. Commun. 14, 244 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  199. Marrink, S. J. et al. Computational modeling of realistic cell membranes. Chem. Rev. 119, 6184–6226 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  200. Callaway, E. What’s next for AlphaFold and the AI protein-folding revolution. Nature 604, 234–238 (2022).

    CAS  PubMed  ADS  Google Scholar 

  201. Savage, N. Tapping into the drug discovery potential of AI. Biopharma Dealmakers https://doi.org/10.1038/d43747-021-00045-7(2021).

  202. Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun. 11, 5208 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  203. Bhat, B., Ganai, N. A., Andrabi, S. M., Shah, R. A. & Singh, A. TM-Aligner: multiple sequence alignment tool for transmembrane proteins with reduced time and improved accuracy. Sci. Rep. 7, 12543 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  204. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Feng, S. H., Zhang, W. X., Yang, J., Yang, Y. & Shen, H. B. Topology prediction improvement of α-helical transmembrane proteins through helix-tail modeling and multiscale deep learning fusion. J. Mol. Biol. 432, 1279–1296 (2020).

    CAS  PubMed  Google Scholar 

  206. Bender, B. J., Marlow, B. & Meiler, J. Improving homology modeling from low-sequence identity templates in Rosetta: a case study in GPCRs PLOS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1007597 (2020).

  207. Gutierrez, S., Tyczynski, W. G., Boomsma, W., Teufel, F. & Winther, O. MembraneFold: visualising transmembrane protein structure and topology. Preprint at bioRxiv https://doi.org/10.1101/2022.12.06.518085 (2022).

  208. Tovchigrechko, A. & Vakser, I. A. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 34, W310–W314 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Lyskov, S. & Gray, J. J. The RosettaDock server for local protein–protein docking. Nucleic Acids Res. 36, W233–W238 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. White, S. Membrane proteins of known 3D structure. https://blanco.biomol.uci.edu/mpstruc/ (2023).

  211. Katritch, V. et al. Structure-based discovery of novel chemotypes for adenosine A2A receptor antagonists. J. Med. Chem. 53, 1799–1809 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Scharf, M. M., Bünemann, M., Baker, J. G. & Kolb, P. Comparative docking to distinct G protein–coupled receptor conformations exclusively yields ligands with agonist efficacy. Mol. Pharmacol. 96, 851 (2019).

    CAS  PubMed  Google Scholar 

  213. Schmidt, D., Bernat, V., Brox, R., Tschammer, N. & Kolb, P. Identifying modulators of CXC receptors 3 and 4 with tailored selectivity using multi-target docking. ACS Chem. Biol. 10, 715–724 (2015).

    CAS  PubMed  Google Scholar 

  214. Lane, J. R. et al. Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors. Mol. Pharmacol. 84, 794–807 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Kooistra, A. J. et al. Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci. Rep. 6, 28288 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  216. Zheng, Z. et al. Structure-based discovery of new antagonist and biased agonist chemotypes for the κ opioid receptor. J. Med. Chem. 60, 3070–3081 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Ranganathan, A. et al. Ligand discovery for a peptide-binding GPCR by structure-based screening of fragment- and lead-like chemical libraries. ACS Chem. Biol. 12, 735–745 (2017).

    CAS  PubMed  Google Scholar 

  218. Gunera, J., Baker, J. G., van Hilten, N., Rosenbaum, D. M. & Kolb, P. Structure-based discovery of novel ligands for the orexin 2 receptor. J. Med. Chem. 63, 11045–11053 (2020).

    CAS  PubMed  Google Scholar 

  219. Caseley, E. A., Muench, S. P., Fishwick, C. W. & Jiang, L. H. Structure-based identification and characterisation of structurally novel human P2X7 receptor antagonists. Biochem. Pharmacol. 116, 130–139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Lacroix, C. et al. Identification of novel Smoothened ligands using structure-based docking. PLoS ONE 11, e0160365 (2016).

    PubMed  PubMed Central  Google Scholar 

  221. Iwata, H. et al. Discovery of natural TRPA1 activators through pharmacophore-based virtual screening and a biological assay. Bioorg. Med. Chem. Lett. 31, 127639 (2021).

    CAS  PubMed  Google Scholar 

  222. Rodriguez, D., Brea, J., Loza, M. I. & Carlsson, J. Structure-based discovery of selective serotonin 5-HT1B receptor ligands. Structure 22, 1140–1151 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from the following sources is acknowledged: the National Natural Science Foundation of China and Swiss National Science Foundation (NSFC-SNF 32161133022 to H.V. and H.S.); the Shenzhen Key Laboratory of Computer-Aided Drug Discovery, Advanced Technology, Chinese Academy of Sciences, Shenzhen (funding no. ZDSYS20201230165400001 to S.Y. and H.V.); the Chinese Academy of Science President’s International Fellowship Initiative (PIFI) (no. 2020FSB0003 to H.V.); Guangdong Retired Expert to H.V. (granted by Guangdong Province); Shenzhen Pengcheng Scientist to H.V; the AlphaMol and SIAT Joint Laboratory to S.Y. and H.V; and Shenzhen Government Top-Talent Working Funding and Guangdong Province Academician Work Funding to H.V.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henning Stahlberg, Shuguang Yuan or Horst Vogel.

Ethics declarations

Competing interests

S.Y. and H.V. are cofounders of AlphaMol Science Ltd. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Sun, X., Cui, W. et al. Computational drug development for membrane protein targets. Nat Biotechnol 42, 229–242 (2024). https://doi.org/10.1038/s41587-023-01987-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-023-01987-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research