Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-compact quasi-true time delay for boosting wireless channel capacity

Abstract

Massive-data connectivity has driven the need for efficient, directed communications through beamforming arrays1,2,3,4,5,6,7,8,9,10. Delay elements are critical in any beamforming signal chain. However, these elements impose fundamental limits on size, channel capacity, power efficiency and effective isotropic radiated power11. Although passive phase shifters do not consume DC power, they suffer from narrow bandwidth, poor phase resolution and low power-handling capacity. They introduce a beam squint, in which different frequency components experience different time delays, blurring signals so that they cannot be resolved. This severely limits the data rate of the wireless link, that is, its channel capacity. Although true time delay (TTD) elements12 solve this problem and service a broad bandwidth, they comprise wavelength-scale transmission lines, making them prohibitively area-inefficient for modern semiconductor processes. Here we address this long-standing problem by introducing a quasi-true time delay (Q-TTD) that miniaturizes TTD elements and breaks fundamental channel-capacity limits of these wireless links. We demonstrate this mechanism for a microwave device implemented in a complementary metal–oxide–semiconductor (CMOS) technology. Key to shrinking the footprint is a reflective-type phase-shifting structure with 3D variable TTD reflectors within a sub-wavelength footprint. This achieves ultra-broadband phase tuning by using them to vary the length of the waveguide’s path to ground. They produce a delay-to-area ratio that yields a substantially higher on-chip channel capacity compared with existing state-of-the-art methods. This component, when integrated in arrays, enables high-resolution imaging and low-squint beamforming for wideband communication, on-chip radar and other applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introducing the Q-TTD element.
Fig. 2: Mechanism of Q-TTD element with dynamically programmable return path.
Fig. 3: Measured broadband phase shift and time-delay performance for 150 representative Q-TTD states.
Fig. 4: Enhanced resolution and channel capacity through Q-TTD.
Fig. 5: Measured insertion loss, return loss and RF power compression-point characteristics.

Similar content being viewed by others

Data availability

The data needed to evaluate the conclusions of this study are in the manuscript and supplementary materials. Source data can be found at https://zenodo.org/records/10234620.

Code availability

The Methods section analyses the channel capacities of arrays composed of phase shifters, TTD elements and the Q-TTD elements, using parameters from the measurements and from refs. 16,22. It also analyses the array factors of the arrays across frequency and their directivity for a target angle. The code to simulate these and reproduce the results in Fig. 4 and Supplementary Fig. 12 is available at Zenodo (https://zenodo.org/records/10234620).

References

  1. Jornet, J. M., Knightly, E. W. & Mittleman, D. M. Wireless communications sensing and security above 100 GHz. Nat. Commun. 14, 841 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Taravati, S. & Eleftheriades, G. V. Full-duplex reflective beamsteering metasurface featuring magnetless nonreciprocal amplification. Nat. Commun. 12, 4414 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Wu, X., Lu, H. & Sengupta, K. Programmable terahertz chip-scale sensing interface with direct digital reconfiguration at sub-wavelength scales. Nat. Commun. 10, 2722 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Nooshabadi, S., Khial, P. P., Fikes, A. & Hajimiri, A. A 28-GHz, multi-beam, decentralized relay array. IEEE J. Solid-State Circuits 58, 1212–1227 (2023).

    Article  ADS  Google Scholar 

  5. Venkatesh, S. et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron. 3, 785–793 (2020).

    Article  CAS  Google Scholar 

  6. Jiang, C. et al. A fully integrated 320 GHz coherent imaging transceiver in 130 nm SiGe BiCMOS. IEEE J. Solid-State Circuits 51, 2596–2609 (2016).

    Article  ADS  Google Scholar 

  7. Li, Y. et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhu, Y. et al. Janus acoustic metascreen with nonreciprocal and reconfigurable phase modulations. Nat. Commun. 12, 7089 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Duarte, V. C. et al. Modular coherent photonic-aided payload receiver for communications satellites. Nat. Commun. 10, 1984 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  11. Gültepe, G., Kanar, T., Zihir, S. & Rebeiz, G. M. A 1024-element Ku-band SATCOM phased-array transmitter with 45-dBW single-polarization EIRP. IEEE Trans. Microw. Theory Tech. 69, 4157–4168 (2021).

    Article  ADS  Google Scholar 

  12. Chu, T.-S. & Hashemi, H. A true time-delay-based bandpass multi-beam array at mm-waves supporting instantaneously wide bandwidths. In Proc. 2010 IEEE International Solid-State Circuits Conference (ISSCC) 38–39 (IEEE, 2010).

  13. Roderick, J. D., Krishnaswamy, H., Newton, K. & Hashemi, H. A 4-bit ultra-wideband beamformer with 4ps true time delay resolution. In Proc. IEEE 2005 Custom Integrated Circuits Conference 805–808 (IEEE, 2005).

  14. Chu, T.-S., Roderick, J. & Hashemi, H. An integrated ultra-wideband timed array receiver in 0.13 μm CMOS using a path-sharing true time delay architecture. IEEE J. Solid-State Circuits 42, 2834–2850 (2007).

    Article  ADS  Google Scholar 

  15. Gong, Y., Cho, M.-K. & Cressler, J. D. A bi-directional, X-band 6-Bit phase shifter for phased array antennas using an active DPDT switch. In Proc. 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 288–291 (IEEE, 2017).

  16. Koh, K.-J. & Rebeiz, G. M. 0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays. IEEE J. Solid-State Circuits 42, 2535–2546 (2007).

    Article  ADS  Google Scholar 

  17. Li, T.-W. & Wang, H. A millimeter-wave fully integrated passive reflection-type phase shifter with transformer-based multi-resonance loads for 360° phase shifting. IEEE Trans. Circuits Syst. I Regul. Pap. 65, 1406–1419 (2018).

  18. Chang, Y. & Floyd, B. A. A broadband reflection-type phase shifter achieving uniform phase and amplitude response across 27 to 31 GHz. In Proc. 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS) 1–4 (IEEE, 2019).

  19. Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photonics 16, 59–65 (2022).

    Article  CAS  ADS  Google Scholar 

  20. Baltimas, D. & Rebeiz, G. M. A 25–50 GHz phase change material (PCM) 5-bit true time delay phase shifter in a production SiGe BiCMOS process. In Proc. 2021 IEEE MTT-S International Microwave Symposium (IMS) 435–437 (IEEE, 2021).

  21. Barker, S. & Rebeiz, G. M. Distributed MEMS true-time delay phase shifters and wide-band switches. IEEE Trans. Microw. Theory Tech. 46, 1881–1890 (1998).

    Article  CAS  ADS  Google Scholar 

  22. Jung, M. & Min, B.-W. A compact 3–30-GHz 68.5-ps CMOS true-time delay for wideband phased array systems. IEEE Trans. Microw. Theory Tech. 68, 5371–5380 (2020).

    Article  ADS  Google Scholar 

  23. Dinc, T. et al. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity. Nat. Commun. 8, 795 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  24. Reiskarimian, N. & Krishnaswamy, H. Magnetic-free non-reciprocity based on staggered commutation. Nat. Commun. 7, 11217 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Li, T.-W., Park, J. S. & Wang, H. A 2–24-GHz 360° full-span differential vector modulator phase rotator with transformer-based poly-phase quadrature network. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28, 2623–2635 (2020).

    Article  Google Scholar 

  26. Li, S. & Rebeiz, G. M. A 140 GHz CMOS RFSOI transmit-receive phased-array wireless link with 11–12 Gbps and 16 and 64-QAM operation. In Proc. 2022 IEEE/MTT-S International Microwave Symposium (IMS 2022) 542–544 (IEEE, 2022).

  27. Andricos C., Yueh S. H., Krimskiy V. A. & Rahmat-Samii Y. Compact Ku-band T/R module for high-resolution radar imaging of cold land processes. NASA Tech Briefs https://www.techbriefs.com/component/content/article/7619-npo-46428 (2010).

  28. Nosrati, M., Shahsavari, S., Lee, S., Wang, H. & Tavassolian, A. A concurrent dual-beam phased-array Doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring. IEEE Trans. Antennas Propag. 67, 2390–2404 (2019).

    Article  ADS  Google Scholar 

  29. Inac, O., Uzunkol, M. & Rebeiz, G. M. 45-nm CMOS SOI technology characterization for millimeter-wave applications. IEEE Trans. Microw. Theory Tech. 62, 1301–1311 (2014).

    Article  CAS  ADS  Google Scholar 

  30. Atwater, H. A. Circuit design of the loaded-line phase shifter. IEEE Trans. Microw. Theory Tech. 33, 626–634 (1985).

    Article  ADS  Google Scholar 

  31. Woods, W. H., Valdes-Garcia, A., Ding, H. & Rascoe, J. CMOS millimeter wave phase shifter based on tunable transmission lines. In Proc. IEEE 2013 Custom Integrated Circuits Conference 1–4 (IEEE, 2013).

  32. Elkholy, M., Shakib, S., Dunworth, J., Aparin, V. & Entesar, K. Low-loss highly linear integrated passive phase shifters for 5G front ends on bulk CMOS. IEEE Trans. Microw. Theory Tech. 66, 4563–4575 (2018).

    Article  ADS  Google Scholar 

  33. Anjos, E. V. P., Schreur, D. M. M.-P., Vandenbosch, G. A. E. & Geurts, M. A 14–50-GHz phase shifter with all-pass networks for 5G mobile applications. IEEE Trans. Microw. Theory Tech. 68, 762–774 (2020).

    Article  ADS  Google Scholar 

  34. Lange, J. Interdigitated stripline quadrature hybrid (correspondence). IEEE Trans. Microwave Theory Tech. 17, 1150–1151 (1969).

    Article  ADS  Google Scholar 

  35. Tapen, T. & Apsel, A. Ultrawideband frequency synthesis using the compact tunable transmission line (CTTL). IEEE Trans. Microw. Theory Tech. 70, 3374–3384 (2022).

    Article  ADS  Google Scholar 

  36. Wang, C.-W., Wu, H.-S. & Tzuang, C.-K. C. CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band. IEEE Trans. Microw. Theory Tech. 59, 1778–1786 (2011).

    Article  ADS  Google Scholar 

  37. Balanis, C. A. Antenna Theory: Analysis and Design 4th edn (Wiley, 2016).

  38. Mailloux, R. Phased Array Antenna Handbook 3rd edn (Artech, 2017).

  39. Sounas, D. L., Soric, J. & Alù, A. Broadband passive isolators based on coupled nonlinear resonances. Nat. Electron. 1, 113–119 (2018).

    Article  Google Scholar 

  40. Cao, W. et al. Fully integrated parity–time-symmetric electronics. Nat. Nanotechnol. 17, 262–268 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Cai, M. et al. Effect of wideband beam squint on codebook design in phased-array wireless systems. In Proc. IEEE Global Communications Conference (GLOBECOM) 1–6 (IEEE, 2016).

  42. Cai, M., Laneman, J. N. & Hochwald, B. Beamforming codebook compensation for beam squint with channel capacity constraint. In Proc. 2017 IEEE International Symposium on Information Theory (ISIT) 76–80 (IEEE, 2017).

  43. Ma, Q., Leenaerts, D. & Mahmoudi, R. A 12ps true-time-delay phase shifter with 6.6% delay variation at 20–40GHz. In Proc. 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 61–64 (IEEE, 2013).

  44. Garakoui, S. K., Klumperink, E. A. M., Nauta, B. & van Vliet, F. E. Compact cascadable g m -C all-pass true time delay cell with reduced delay variation over frequency. IEEE J. Solid-State Circuits 50, 693–703 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (grant NNCI-2025233) and where the work was done in part. The authors thank GlobalFoundries for providing silicon fabrication through the 45RFSOI university programme. B.G. thanks E. Kim, E. Ye and S. Cole for assistance with the experimental calibration.

Author information

Authors and Affiliations

Authors

Contributions

B.G., T.T. and A.A. conceived the concept of the Q-TTD scheme. B.G. performed the circuit simulations and layout design of the delay element and tested the CMOS chip. T.T. designed the coupler. A.A. supervised the experiments and development of theory. All authors analysed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Bala Govind.

Ethics declarations

Competing interests

The authors have filed a US provisional patent (63/588,555) based on this design.

Peer review

Peer review information

Nature thanks Khushboo Singh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–4; Supplementary Figures 1–12 and Supplementary Table 1.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govind, B., Tapen, T. & Apsel, A. Ultra-compact quasi-true time delay for boosting wireless channel capacity. Nature 627, 88–94 (2024). https://doi.org/10.1038/s41586-024-07075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07075-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing