Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bipolar outflows out to 10 kpc for massive galaxies at redshift z ≈ 1

Abstract

Galactic outflows are believed to play a critical role in the evolution of galaxies by regulating their mass build-up and star formation1. Theoretical models assume bipolar shapes for the outflows that extend well into the circumgalactic medium (CGM), up to tens of kiloparsecs (kpc) perpendicular to the galaxies. They have been directly observed in the local Universe in several individual galaxies, for example, around the Milky Way and M82 (refs. 2,3). At higher redshifts, cosmological simulations of galaxy formation predict an increase in the frequency and efficiency of galactic outflows owing to the increasing star-formation activity4. Galactic outflows are usually of low gas density and low surface brightness and therefore difficult to observe in emission towards high redshifts. Here we present an ultra-deep Multi-Unit Spectroscopic Explorer (MUSE) image of the mean Mg II emission surrounding a sample of galaxies at z ≈ 1 that strongly suggests the presence of outflowing gas on physical scales of more than 10 kpc. We find a strong dependence of the detected signal on the inclination of the central galaxy, with edge-on galaxies clearly showing enhanced Mg II emission along the minor axis, whereas face-on galaxies show much weaker and more isotropic emission. We interpret these findings as supporting the idea that outflows typically have a bipolar cone geometry perpendicular to the galactic disk. We demonstrate that this CGM-scale outflow is prevalent among galaxies with stellar mass M* 109.5M.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The stacked stellar continuum and Mg II emission.
Fig. 2: Pseudo-NB images for different velocity bins.
Fig. 3: Comparison of the high-mass and low-mass subsamples. The subsamples are bisected at the median stellar mass of 109.5M.
Fig. 4: Continuum-subtracted mean spectra of the high-mass galaxies.

Similar content being viewed by others

Data availability

This work is mainly based on data release 2 (DR2) of the MUSE Hubble Ultra Deep Field surveys. The reduced MUSE datacubes are available in ref. 22.

References

  1. Tumlinson, J., Peeples, M. S. & Werk, J. K. The circumgalactic medium. Annu. Rev. Astron. Astrophys. 55, 389–432 (2017).

    Article  ADS  Google Scholar 

  2. Predehl, P. et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bland, J. & Tully, B. Large-scale bipolar wind in M82. Nature 334, 43–45 (1988).

    Article  ADS  Google Scholar 

  4. Muratov, A. L. et al. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 454, 2691–2713 (2015).

    Article  ADS  CAS  Google Scholar 

  5. Bacon, R. et al. The MUSE second-generation VLT instrument. Proc. SPIE 7735, 773508 (2010).

    Article  Google Scholar 

  6. Morrissey, P. et al. The Keck Cosmic Web Imager integral field spectrograph. Astrophys. J. 864, 93 (2018).

    Article  ADS  Google Scholar 

  7. Wisotzki, L. et al. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE. Astron. Astrophys. 587, A98 (2016).

    Article  Google Scholar 

  8. Wisotzki, L. et al. Nearly all the sky is covered by Lyman-α emission around high-redshift galaxies. Nature 562, 229–232 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Leclercq, F. et al. The MUSE Hubble Ultra Deep Field Survey. VIII. Extended Lyman-α haloes around high-z star-forming galaxies. Astron. Astrophys. 608, A8 (2017).

    Article  Google Scholar 

  10. Cai, Z. et al. Evolution of the cool gas in the circumgalactic medium of massive halos: a Keck Cosmic Web Imager survey of Lyα emission around QSOs at z ≈ 2. Astrophys. J. Suppl. Ser. 245, 23 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Kusakabe, H. et al. The MUSE eXtremely Deep Field: individual detections of Lyα haloes around rest-frame UV-selected galaxies at z 2.9–4.4. Astron. Astrophys. 660, A44 (2022).

    Article  CAS  Google Scholar 

  12. Bacon, R. et al. The MUSE Extremely Deep Field: the cosmic web in emission at high redshift. Astron. Astrophys. 647, A107 (2021).

    Article  CAS  Google Scholar 

  13. Guo, Y. et al. Metal enrichment in the circumgalactic medium and Lyα halos around quasars at z ~ 3. Astrophys. J. 898, 26 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Johnson, S. D. et al. Directly tracing cool filamentary accretion over >100 kpc into the interstellar medium of a quasar host at z = 1. Astrophys. J. Lett. 940, L40 (2022).

    Article  ADS  Google Scholar 

  15. Herenz, E. C. et al. A ~15 kpc outflow cone piercing through the halo of the blue compact metal-poor galaxy SBS0335–052E. Astron. Astrophys. 670, A121 (2023).

    Article  CAS  Google Scholar 

  16. Kacprzak, G. G., Cooke, J., Churchill, C. W., Ryan-Weber, E. V. & Nielsen, N. M. The smooth Mg II gas distribution through the interstellar/extra-planar/halo interface. Astrophys. J. Lett. 777, L11 (2013).

    Article  ADS  Google Scholar 

  17. Rubin, K. H. R. et al. Low-ionization line emission from a starburst galaxy: a new probe of a galactic-scale outflow. Astrophys. J. 728, 55 (2011).

    Article  ADS  Google Scholar 

  18. Martin, C. L. et al. Scattered emission from z ~ 1 galactic outflows. Astrophys. J. 770, 41 (2013).

    Article  ADS  Google Scholar 

  19. Burchett, J. N. et al. Circumgalactic Mg II emission from an isotropic starburst galaxy outflow mapped by KCWI. Astrophys. J. 909, 151 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Zabl, J. et al. MusE GAs FLOw and Wind (MEGAFLOW) VIII. Discovery of a MgII emission halo probed by a quasar sightline. Mon. Not. R. Astron. Soc. 507, 4294–4315 (2021).

    Article  ADS  CAS  Google Scholar 

  21. Leclercq, F. et al. The MUSE eXtremely deep field: first panoramic view of an Mg II emitting intragroup medium. Astron. Astrophys. 663, A11 (2022).

    Article  CAS  Google Scholar 

  22. Bacon, R. et al. The MUSE Hubble Ultra Deep Field surveys: data release II. Astron. Astrophys. 670, A4 (2023).

    Article  CAS  Google Scholar 

  23. Kornei, K. A. et al. The properties and prevalence of galactic outflows at z ~ 1 in the Extended Groth Strip. Astrophys. J. 758, 135 (2012).

    Article  ADS  Google Scholar 

  24. Feltre, A. et al. The MUSE Hubble Ultra Deep Field Survey. XII. Mg II emission and absorption in star-forming galaxies. Astron. Astrophys. 617, A62 (2018).

    Article  Google Scholar 

  25. Bouché, N. et al. Physical properties of galactic winds using background quasars. Mon. Not. R. Astron. Soc. 426, 801–815 (2012).

    Article  ADS  Google Scholar 

  26. Zabl, J. et al. MusE GAs FLOw and Wind (MEGAFLOW) II. A study of gas accretion around z ≈ 1 star-forming galaxies with background quasars. Mon. Not. R. Astron. Soc. 485, 1961–1980 (2019).

    Article  ADS  CAS  Google Scholar 

  27. Martin, C. L., Ho, S. H., Kacprzak, G. G. & Churchill, C. W. Kinematics of circumgalactic gas: feeding galaxies and feedback. Astrophys. J. 878, 84 (2019).

    Article  ADS  CAS  Google Scholar 

  28. Schroetter, I. et al. MusE GAs FLOw and Wind (MEGAFLOW) – III. Galactic wind properties using background quasars. Mon. Not. R. Astron. Soc. 490, 4368–4381 (2019).

    Article  ADS  CAS  Google Scholar 

  29. Muratov, A. L. et al. Metal flows of the circumgalactic medium, and the metal budget in galactic haloes. Mon. Not. R. Astron. Soc. 468, 4170–4188 (2017).

    Article  ADS  CAS  Google Scholar 

  30. Péroux, C. et al. Predictions for the angular dependence of gas mass flow rate and metallicity in the circumgalactic medium. Mon. Not. R. Astron. Soc. 499, 2462–2473 (2020).

    Article  ADS  Google Scholar 

  31. Claeyssens, A. et al. Spectral variations of Lyman α emission within strongly lensed sources observed with MUSE. Mon. Not. R. Astron. Soc. 489, 5022–5029 (2019).

    Article  ADS  Google Scholar 

  32. Leclercq, F. et al. The MUSE Hubble Ultra Deep Field Survey. XIII. Spatially resolved spectral properties of Lyman α haloes around star-forming galaxies at z > 3. Astron. Astrophys. 635, A82 (2020).

    Article  CAS  Google Scholar 

  33. Erb, D. K. et al. The circumgalactic medium of extreme emission line galaxies at z~2: resolved spectroscopy and radiative transfer modeling of spatially extended Lyα emission in the KBSS-KCWI survey. Astrophys. J. 953, 118 (2023).

    Article  ADS  Google Scholar 

  34. Bacon, R. et al. The MUSE Hubble Ultra Deep Field Survey. I. Survey description, data reduction, and source detection. Astron. Astrophys. 608, A1 (2017).

    Article  Google Scholar 

  35. Bouché, N. F. et al. The MUSE Hubble Ultra Deep Field Survey. XVI. The angular momentum of low-mass star-forming galaxies: A cautionary tale and insights from TNG50. Astron. Astrophys. 654, A49 (2021).

    Article  Google Scholar 

  36. Rubin, K. H. R. et al. Evidence for ubiquitous collimated galactic-scale outflows along the star-forming sequence at z ~ 0.5. Astrophys. J. 794, 156 (2014).

    Article  ADS  Google Scholar 

  37. Walter, F., Weiss, A. & Scoville, N. Molecular gas in M82: resolving the outflow and streamers. Astrophys. J. 580, L21 (2002).

    Article  ADS  CAS  Google Scholar 

  38. Chisholm, J., Prochaska, J. X., Schaerer, D., Gazagnes, S. & Henry, A. Optically thin spatially resolved Mg II emission maps the escape of ionizing photons. Mon. Not. R. Astron. Soc. 498, 2554–2574 (2020).

    Article  ADS  CAS  Google Scholar 

  39. Katz, H. et al. Mg II in the JWST era: a probe of Lyman continuum escape?. Mon. Not. R. Astron. Soc. 515, 4265–4286 (2022).

    Article  ADS  CAS  Google Scholar 

  40. Bordoloi, R. et al. The radial and azimuthal profiles of Mg II absorption around 0.5 < z < 0.9 zCOSMOS galaxies of different colors, masses, and environments. Astrophys. J. 743, 10 (2011).

    Article  ADS  Google Scholar 

  41. Kacprzak, G. G., Churchill, C. W. & Nielsen, N. M. Tracing outflows and accretion: a bimodal azimuthal dependence of Mg II absorption. Astrophys. J. Lett. 760, L7 (2012).

    Article  ADS  Google Scholar 

  42. Bordoloi, R., Lilly, S. J., Kacprzak, G. G. & Churchill, C. W. Modeling the distribution of Mg II absorbers around galaxies using background galaxies and quasars. Astrophys. J. 784, 108 (2014).

    Article  ADS  Google Scholar 

  43. Lan, T.-W. & Mo, H. The circumgalactic medium of eBOSS emission line galaxies: signatures of galactic outflows in gas distribution and kinematics. Astrophys. J. 866, 36 (2018).

    Article  ADS  Google Scholar 

  44. Lundgren, B. F. et al. The geometry of cold, metal-enriched gas around galaxies at z ~ 1.2. Astrophys. J. 913, 50 (2021).

    Article  ADS  CAS  Google Scholar 

  45. Chen, Y.-M. et al. Absorption-line probes of the prevalence and properties of outflows in present-day star-forming galaxies. Astrophys. J. 140, 445 (2010).

    CAS  Google Scholar 

  46. Bordoloi, R. et al. The dependence of galactic outflows on the properties and orientation of zCOSMOS galaxies at z ~ 1. Astrophys. J. 794, 130 (2014).

    Article  ADS  Google Scholar 

  47. Shaban, A. et al. A 30 kpc spatially extended clumpy and asymmetric galactic outflow at z ~ 1.7. Astrophys. J. 936, 77 (2022).

    Article  ADS  Google Scholar 

  48. Rupke, D. S. N. et al. A 100-kiloparsec wind feeding the circumgalactic medium of a massive compact galaxy. Nature 574, 643–646 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Sobolev, V. V. Moving Envelopes of Stars (Harvard University Press, 1960) [transl.].

  50. Carr, C., Scarlata, C., Panagia, N. & Henry, A. A Semi-analytical Line Transfer (SALT) Model. II: the effects of a bi-conical geometry. Astrophys. J. 860, 143 (2018).

    Article  ADS  Google Scholar 

  51. Zahid, H. J., Kewley, L. J. & Bresolin, F. The mass–metallicity and luminosity–metallicity relations from DEEP2 at z ~ 0.8. Astrophys. J. 730, 137 (2011).

    Article  ADS  Google Scholar 

  52. Kennicutt, R. C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–231 (1998).

    Article  ADS  CAS  Google Scholar 

  53. Mitchell, P. D. & Schaye, J. How gas flows shape the stellar–halo mass relation in the EAGLE simulation. Mon. Not. R. Astron. Soc. 511, 2948–2967 (2022).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Y.G. thanks Z. Xu for helpful discussions. Y.G., R.B. and L.W. acknowledge support from the ANR/DFG grant L-INTENSE (ANR-20-CE92-0015, DFG Wi 1369/31-1). L.W. acknowledges support by the European Research Council (ERC) Advanced Grant SPECMAG-CGM (GA101020943). A.V. and H.K. acknowledge support from the Swiss National Foundation grant PP00P2_211023. S.C. gratefully acknowledges support from the ERC under the European Union’s Horizon 2020 Research and Innovation programme grant agreement no. 864361. L.B. acknowledges support by ERC AdG grant 740246 (Cosmic-Gas). J.Brinchmann acknowledges financial support from the Fundação para a Ciência e a Tecnologia (FCT) through research grants UIDB/04434/2020 and UIDP/04434/2020, national funds PTDC/FIS-AST/4862/2020 and work contract 2020.03379.CEECIND. N.F.B. acknowledges support from the ANR grant 3DGasFlows (ANR-17-CE31-0017).

Author information

Authors and Affiliations

Authors

Contributions

Y.G. conceived the project. R.B. led the MUSE data acquisition and data reduction. All authors participated in the observation and/or data reduction of the MUSE Hubble Ultra Deep Field surveys. Y.G. performed the sample selection and analysed the data. Y.G., R.B., N.F.B., L.W., J.S., J.Blaizot and S.C. worked on the interpretation of the results. Y.G. wrote the manuscript and produced the figures, with R.B., N.F.B., L.W. and J.Blaizot contributing to their design. All co-authors provided critical feedback on the text and helped shape the manuscript.

Corresponding author

Correspondence to Yucheng Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Anshu Gupta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Distribution of the redshifts and stellar masses in the MUSE sample.

The parent sample is shown by grey bars and the edge-on and face-on subsamples are shown in black and red, respectively.

Extended Data Fig. 2 HST images of all the face-on galaxies.

Each thumbnail has the same size as in Fig. 1.

Extended Data Fig. 3 HST images of all the edge-on galaxies.

Each thumbnail has the same size as in Fig. 1. The dashed and dotted lines show the major and minor axes of the galaxies, respectively.

Extended Data Fig. 4 The surface brightness of the Mg II outflow from each edge-on galaxy.

The distributions of surface brightness (a) and S/N (b). The signals are extracted in 1″-diameter apertures above and below the edge-on galaxies, at a distance to the galactic plane of 1″. The distribution of surface-brightness signals skews towards positive values, despite most of the signals being of low S/N. The negative S/N values correspond to the negative signals in the left panel.

Extended Data Fig. 5 The spectra of the extended Mg II emission.

The spectra in each panel are extracted from the grid cell at the corresponding position in Fig. 1. The black and red spectra denote the edge-on and face-on galaxy samples, respectively. In each panel, the coloured shading represents the 1σ error range of the corresponding spectra. The panels for which the peak of the Mg II 2,796 Å line in the black spectra falls below the 2σ threshold are marked with a lighter colour.

Extended Data Fig. 6 The continuum-subtracted spectrum of the ‘ring’ in face-on galaxies.

The red line denotes the spectrum extracted from the ‘ring’ region of the stacked face-on galaxy sample. For comparison, we also show the continuum-subtracted spectrum from the ‘outflow’ region of the edge-on galaxy. The coloured shadings represent the 1σ error range of the corresponding spectra. The two vertical dashed lines indicate the wavelength of Mg II doublets. The horizontal shadow shows the noise level. The EWs of the Mg II 2,796 Å line for the red and black spectra are −21 ± 15 Å and −56 ± 22 Å, respectively.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Bacon, R., Bouché, N.F. et al. Bipolar outflows out to 10 kpc for massive galaxies at redshift z ≈ 1. Nature 624, 53–56 (2023). https://doi.org/10.1038/s41586-023-06718-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06718-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing