Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A close-in giant planet escapes engulfment by its star

Abstract

When main-sequence stars expand into red giants, they are expected to engulf close-in planets1,2,3,4,5. Until now, the absence of planets with short orbital periods around post-expansion, core-helium-burning red giants6,7,8 has been interpreted as evidence that short-period planets around Sun-like stars do not survive the giant expansion phase of their host stars9. Here we present the discovery that the giant planet 8 Ursae Minoris b10 orbits a core-helium-burning red giant. At a distance of only 0.5 au from its host star, the planet would have been engulfed by its host star, which is predicted by standard single-star evolution to have previously expanded to a radius of 0.7 au. Given the brief lifetime of helium-burning giants, the nearly circular orbit of the planet is challenging to reconcile with scenarios in which the planet survives by having a distant orbit initially. Instead, the planet may have avoided engulfment through a stellar merger that either altered the evolution of the host star or produced 8 Ursae Minoris b as a second-generation planet11. This system shows that core-helium-burning red giants can harbour close planets and provides evidence for the role of non-canonical stellar evolution in the extended survival of late-stage exoplanetary systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radial velocity measurements of 8 UMi.
Fig. 2: Identification of the evolutionary state of 8 UMi as a core-helium-burning red giant.
Fig. 3: Canonical single-star evolutionary models for the 8 UMi.
Fig. 4: A possible history of host star 8 UMi in the form of a stellar merger.

Similar content being viewed by others

Data availability

TESS light curves processed by the TESS Science Operations Center pipeline are available from MAST (https://archive.stsci.edu/). The spectra for µ Pegasi are accessible at http://polarbase.irap.omp.eu/. Astrometric measurements for 8 UMi are openly available from the Gaia archive (https://gea.esac.esa.int/archive/). The HIRES radial velocity measurements, ESPaDOnS spectra and spectropolarimetric data products, ASAS-SN time series, traces of the MCMC sampling from the radial velocity fits, MESA binary simulation inlists and SED data are available at https://zenodo.org/record/7668534.

Code availability

The radial velocity fitting was performed using the exoplanet code (https://docs.exoplanet.codes/). The Generalized Lomb–Scargle periodogram implementation is available at https://github.com/mzechmeister/GLS. TESS-SIP for correcting TESS systematics is provided at https://github.com/christinahedges/TESS-SIP. The asteroseismic modelling was performed using BASTA (https://github.com/BASTAcode/BASTA), the PARAM web tool (http://stev.oapd.inaf.it/cgi-bin/param) and MESA (https://docs.mesastar.org). The binary module of MESA was used for binary simulations. Calibrated asteroseismic scaling relations used asfgrid (http://www.physics.usyd.edu.au/k2gap/Asfgrid/). Grids of isochrones publicly available are MIST (https://waps.cfa.harvard.edu/MIST/), PARSEC (https://github.com/philrosenfield/padova_tracks/releases/tag/v2.0), Dartmouth and GARSTEC (https://zenodo.org/record/6597404) and BASTI (http://albione.oa-teramo.inaf.it/).

References

  1. Nordhaus, J. & Spiegel, D. S. On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets. Mon. Not. R. Astron. Soc. 432, 500–505 (2013).

    Article  ADS  Google Scholar 

  2. Madappatt, N., De Marco, O. & Villaver, E. The effect of tides on the population of PN from interacting binaries. Mon. Not. R. Astron. Soc. 463, 1040–1056 (2016).

    Article  ADS  Google Scholar 

  3. Gallet, F., Bolmont, E., Mathis, S., Charbonnel, C. & Amard, L. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity. Astron. Astrophys. 604, A112 (2017).

    Article  ADS  Google Scholar 

  4. Ronco, M. P. et al. How Jupiters save or destroy inner Neptunes around evolved stars. Astrophys. J. Lett. 898, L23 (2020).

    Article  ADS  Google Scholar 

  5. Grunblatt, S. K. et al. TESS giants transiting giants. II. The hottest Jupiters orbiting evolved stars. Astron. J. 163, 120 (2022).

    Article  CAS  ADS  Google Scholar 

  6. Sato, B. et al. Planetary companions around three intermediate-mass G and K giants: 18 Delphini, ξ Aquilae, and HD 81688. Publ. Astron. Soc. Jpn 60, 539–550 (2008).

  7. Kunitomo, M., Ikoma, M., Sato, B., Katsuta, Y. & Ida, S. Planet engulfment by ~1.5–3 M red giants. Astrophys. J. 737, 66 (2011).

    Article  ADS  Google Scholar 

  8. Villaver, E., Livio, M., Mustill, A. J. & Siess, L. Hot Jupiters and cool stars. Astrophys. J. 794, 3 (2014).

    Article  ADS  Google Scholar 

  9. MacLeod, M., Cantiello, M. & Soares-Furtado, M. Planetary engulfment in the Hertzsprung–Russell diagram. Astrophys. J. Lett. 853, L1 (2018).

    Article  ADS  Google Scholar 

  10. Lee, B.-C. et al. Search for exoplanet around northern circumpolar stars. Four planets around HD 11755, HD 12648, HD 24064, and 8 Ursae Minoris. Astron. Astrophys. 584, A79 (2015).

    Article  Google Scholar 

  11. Perets, H. B. Planets in evolved binary systems. In AIP Conf. Proc. Planetary Systems Beyond the Main Sequence (eds Schuh, S. et al.) Vol. 1331, 56–75 (AIP, 2011).

  12. Hatzes, A. P. et al. The radial velocity variability of the K-giant γ Draconis: stellar variability masquerading as a planet. Astron. J. 155, 120 (2018).

    Article  ADS  Google Scholar 

  13. Döllinger, M. P. & Hartmann, M. A sanity check for planets around evolved stars. Astrophys. J. Suppl. Ser. 256, 10 (2021).

    Article  ADS  Google Scholar 

  14. Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m telescope. In Proc. SPIE on Instrumentation in Astronomy VIII (eds Crawford, D. L. & Craine, E. R.) Vol. 2198, 362 (SPIE, 1994).

  15. Bedding, T. R. et al. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471, 608–611 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Vrard, M., Mosser, B. & Samadi, R. Period spacings in red giants. II. Automated measurement. Astron. Astrophys. 588, A87 (2016).

    Article  ADS  Google Scholar 

  17. Maxted, P. F. L., Napiwotzki, R., Dobbie, P. D. & Burleigh, M. R. Survival of a brown dwarf after engulfment by a red giant star. Nature 442, 543–545 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giant stars. Astrophys. J. 705, L81–L85 (2009).

    Article  Google Scholar 

  19. Rasio, F. A. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    Article  ADS  Google Scholar 

  21. Izzard, R. G., Jeffery, C. S. & Lattanzio, J. Origin of the early-type R stars: a binary-merger solution to a century-old problem? Astron. Astrophys. 470, 661–673 (2007).

    Article  CAS  ADS  Google Scholar 

  22. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  23. Maxted, P. F. L. et al. EL CVn-type binaries - discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems. Mon. Not. R. Astron. Soc. 437, 1681–1697 (2014).

    Article  CAS  ADS  Google Scholar 

  24. Tokovinin, A., Thomas, S., Sterzik, M. & Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 450, 681–693 (2006).

    Article  ADS  Google Scholar 

  25. Lagos, F., Schreiber, M. R., Parsons, S. G., Gänsicke, B. T. & Godoy, N. Most EL CVn systems are inner binaries of hierarchical triples. Mon. Not. R. Astron. Soc. 499, L121–L125 (2020).

    Article  ADS  Google Scholar 

  26. Zhang, X. & Jeffery, C. S. White dwarf–red giant mergers, early-type R stars, J stars and lithium. Mon. Not. R. Astron. Soc. 430, 2113–2120 (2013).

    Article  CAS  ADS  Google Scholar 

  27. Zhang, X., Jeffery, C. S., Li, Y. & Bi, S. Population synthesis of helium white dwarf–red giant star mergers and the formation of lithium-rich giants and carbon stars. Astrophys. J. 889, 33 (2020).

    Article  CAS  ADS  Google Scholar 

  28. Kumar, Y. B., Reddy, B. E. & Lambert, D. L. Origin of lithium enrichment in K giants. Astrophys. J. Lett. 730, L12 (2011).

    Article  ADS  Google Scholar 

  29. Charbonnel, C. et al. Lithium in red giant stars: constraining non-standard mixing with large surveys in the Gaia era. Astron. Astrophys. 633, A34 (2020).

    Article  CAS  Google Scholar 

  30. Magrini, L. et al. Gaia-ESO survey: lithium abundances in open cluster red clump stars. Astron. Astrophys. 655, A23 (2021).

    Article  CAS  Google Scholar 

  31. Chanamé, J., Pinsonneault, M. H., Aguilera-Gómez, C. & Zinn, J. C. Mass matters: no evidence for ubiquitous lithium production in low-mass clump giants. Astrophys. J. 933, 58 (2022).

    Article  ADS  Google Scholar 

  32. Kraus, A. L., Ireland, M. J., Huber, D., Mann, A. W. & Dupuy, T. J. The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016).

    Article  ADS  Google Scholar 

  33. Moe, M. & Kratter, K. M. Impact of binary stars on planet statistics – I. Planet occurrence rates and trends with stellar mass. Mon. Not. R. Astron. Soc. 507, 3593–3611 (2021).

    Article  CAS  ADS  Google Scholar 

  34. Kim, K.-M. et al. The BOES spectropolarimeter for Zeeman measurements of stellar magnetic fields. Publ. Astron. Soc. Pac. 119, 1052–1062 (2007).

    Article  ADS  Google Scholar 

  35. Howard, A. W. et al. The California Planet Survey. I. Four new giant exoplanets. Astrophys. J. 721, 1467–1481 (2010).

    Article  CAS  ADS  Google Scholar 

  36. Butler, R. P. et al. Attaining Doppler precision of 3 m s−1. Publ. Astron. Soc. Pac. 108, 500–509 (1996).

    Article  ADS  Google Scholar 

  37. Foreman-Mackey, D. et al. exoplanet: gradient-based probabilistic inference for exoplanet data & other astronomical time series. J. Open Source Softw. 6, 3285 (2021).

    Article  ADS  Google Scholar 

  38. Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

    Article  Google Scholar 

  39. Kipping, D. M. Parametrizing the exoplanet eccentricity distribution with the Beta distribution. Mon. Not. R. Astron. Soc. 434, L51–L55 (2013).

    Article  ADS  Google Scholar 

  40. Hoffman, M. D. & Gelman, A. The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://arxiv.org/abs/1111.4246 (2011).

  41. Yu, J., Huber, D., Bedding, T. R. & Stello, D. Predicting radial-velocity jitter induced by stellar oscillations based on Kepler data. Mon. Not. R. Astron. Soc. 480, L48–L53 (2018).

    Article  CAS  ADS  Google Scholar 

  42. Tayar, J., Stassun, K. G. & Corsaro, E. Predicting granulation “flicker” and radial velocity “jitter” from spectroscopic observables. Astrophys. J. 883, 195 (2019).

    Article  CAS  ADS  Google Scholar 

  43. Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).

    MATH  MathSciNet  Google Scholar 

  44. Lubin, J. et al. TESS-Keck Survey. IX. Masses of three sub-Neptunes orbiting HD 191939 and the discovery of a warm Jovian plus a distant substellar companion. Astrophys. J. 163, 101 (2022).

    CAS  Google Scholar 

  45. Brandt, T. D. The Hipparcos–Gaia catalog of accelerations: Gaia EDR3 edition. Astrophys. J. Suppl. Ser. 254, 42 (2021).

    Article  ADS  Google Scholar 

  46. Isaacson, H. & Fischer, D. Chromospheric activity and jitter measurements for 2630 stars on the California Planet Search. Astrophys. J. 725, 875–885 (2010).

    Article  CAS  ADS  Google Scholar 

  47. Zechmeister, M. & Kürster, M. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).

    Article  ADS  Google Scholar 

  48. Liu, Y. J. et al. The lithium abundances of a large sample of red giants. Astrophys. J. 785, 94 (2014).

    Article  ADS  Google Scholar 

  49. Petit, P. et al. PolarBase: a database of high-resolution spectropolarimetric stellar observations. Publ. Astron. Soc. Pac. 126, 469–475 (2014).

    Article  Google Scholar 

  50. Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Cameron, A. C. Spectropolarimetric observations of active stars. Mon. Not. R. Astron. Soc. 291, 658–682 (1997).

    Article  ADS  Google Scholar 

  51. Kochukhov, O., Makaganiuk, V. & Piskunov, N. Least-squares deconvolution of the stellar intensity and polarization spectra. Astron. Astrophys. 524, A5 (2010).

    Article  ADS  Google Scholar 

  52. Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C. & Weiss, W. W. VALD-2: progress of the Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. Ser. 138, 119–133 (1999).

    Article  CAS  ADS  Google Scholar 

  53. Aurière, M. et al. The magnetic fields at the surface of active single G-K giants. Astron. Astrophys. 574, A90 (2015).

    Article  Google Scholar 

  54. Gaulme, P. et al. Active red giants: close binaries versus single rapid rotators. Astron. Astrophys. 639, A63 (2020).

    Article  CAS  Google Scholar 

  55. Wheeler, A. J., Hogg, D. W. & Ness, M. An unsupervised method for identifying X-enriched stars directly from spectra: Li in LAMOST. Astrophys. J. 908, 247 (2021).

    Article  CAS  ADS  Google Scholar 

  56. Dumusque, X., Boisse, I. & Santos, N. C. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. Astrophys. J. 796, 132 (2014).

    Article  ADS  Google Scholar 

  57. van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

    Article  ADS  Google Scholar 

  58. Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    Article  ADS  Google Scholar 

  59. Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    Article  ADS  Google Scholar 

  60. Hedges, C. et al. Systematics-insensitive periodogram for finding periods in TESS observations of long-period rotators. Res. Not. Am. Astron. Soc. 4, 220 (2020).

    ADS  Google Scholar 

  61. Jenkins, J. M. et al. The TESS science processing operations center. In Proc. SPIE on Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J. C.) Vol. 9913, 99133E (SPIE, 2016).

  62. Themeßl, N., Kuszlewicz, J. S., García Saravia Ortiz de Montellano, A. & Hekker, S. From light-curves to frequencies of oscillation modes using TACO. In Proc. Stars and Their Variability, Observed from Space (eds Neiner, C. et al.) 287–291 (Stars from Space, 2020).

  63. García Saravia Ortiz de Montellano, A., Hekker, S. & Themeßl, N. Automated asteroseismic peak detections. Mon. Not. R. Astron. Soc. 476, 1470–1496 (2018).

    Article  ADS  Google Scholar 

  64. Mosser, B. et al. The universal red-giant oscillation pattern. An automated determination with CoRoT data. Astron. Astrophys. 525, L9 (2011).

    Article  ADS  Google Scholar 

  65. Tassoul, M. Asymptotic approximations for stellar nonradial pulsations. Astrophys. J. Suppl. Ser. 43, 469–490 (1980).

    Article  ADS  Google Scholar 

  66. Mosser, B., Vrard, M., Belkacem, K., Deheuvels, S. & Goupil, M. J. Period spacings in red giants. I. Disentangling rotation and revealing core structure discontinuities. Astron. Astrophys. 584, A50 (2015).

    Article  ADS  Google Scholar 

  67. Mosser, B., Pinçon, C., Belkacem, K., Takata, M. & Vrard, M. Period spacings in red giants. III. Coupling factors of mixed modes. Astron. Astrophys. 600, A1 (2017).

    Article  ADS  Google Scholar 

  68. Rodrigues, T. S. et al. Bayesian distances and extinctions for giants observed by Kepler and APOGEE. Mon. Not. R. Astron. Soc. 445, 2758–2776 (2014).

    Article  ADS  Google Scholar 

  69. Rodrigues, T. S. et al. Determining stellar parameters of asteroseismic targets: going beyond the use of scaling relations. Mon. Not. R. Astron. Soc. 467, 1433–1448 (2017).

    CAS  ADS  Google Scholar 

  70. Yıldız, M., Çelik Orhan, Z. & Kayhan, C. Fundamental properties of Kepler and CoRoT targets - III. Tuning scaling relations using the first adiabatic exponent. Mon. Not. R. Astron. Soc. 462, 1577–1590 (2016).

    Article  ADS  Google Scholar 

  71. Jiang, C. & Gizon, L. BESTP — an automated Bayesian modeling tool for asteroseismology. Res. Astron. Astrophys. 21, 226 (2021).

    Article  CAS  ADS  Google Scholar 

  72. Aguirre Børsen-Koch, V. et al. The BAyesian STellar algorithm (BASTA): a fitting tool for stellar studies, asteroseismology, exoplanets, and Galactic archaeology. Mon. Not. R. Astron. Soc. 509, 4344–4364 (2022).

    Article  ADS  Google Scholar 

  73. Tayar, J., Claytor, Z. R., Huber, D. & van Saders, J. A guide to realistic uncertainties on the fundamental properties of solar-type exoplanet host stars. Astrophys. J. 927, 31 (2022).

    Article  ADS  Google Scholar 

  74. Sharma, S., Stello, D., Bland-Hawthorn, J., Huber, D. & Bedding, T. R. Stellar population synthesis based modeling of the Milky Way using asteroseismology of 13,000 Kepler red giants. Astrophys. J. 822, 15 (2016).

    Article  ADS  Google Scholar 

  75. Stello, D. & Sharma, S. Extension of the Asfgrid for correcting asteroseismic large frequency separations. Res. Not. Am. Astron. Soc. 6, 168 (2022).

    ADS  Google Scholar 

  76. Stassun, K. G. & Torres, G. Eclipsing binary stars as benchmarks for trigonometric parallaxes in the Gaia era. Astron. J. 152, 180 (2016).

    Article  ADS  Google Scholar 

  77. Stassun, K. G., Collins, K. A. & Gaudi, B. S. Accurate empirical radii and masses of planets and their host stars with Gaia parallaxes. Astron. J. 153, 136 (2017).

    Article  ADS  Google Scholar 

  78. Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accurate masses and radii of single stars with TESS and Gaia. Astron. J. 155, 22 (2018).

    Article  ADS  Google Scholar 

  79. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  80. Stassun, K. G. & Torres, G. Parallax systematics and photocenter motions of benchmark eclipsing binaries in Gaia EDR3. Astrophys. J. Lett. 907, L33 (2021).

    Article  ADS  Google Scholar 

  81. Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    Article  ADS  Google Scholar 

  82. Hidalgo, S. L. et al. The updated BaSTI stellar evolution models and isochrones. I. Solar-scaled calculations. Astrophys. J. 856, 125 (2018).

    Article  ADS  Google Scholar 

  83. Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).

    Article  CAS  ADS  Google Scholar 

  84. Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article  CAS  ADS  Google Scholar 

  85. Weiss, A. & Schlattl, H. GARSTEC—the Garching Stellar Evolution Code: the direct descendant of the legendary Kippenhahn code. Astrophys. Space Sci. 316, 99–106 (2008).

    Article  ADS  Google Scholar 

  86. Goldreich, P. & Soter, S. Q in the solar system. Icarus 5, 375–389 (1966).

    Article  ADS  Google Scholar 

  87. Wu, Y. Origin of tidal dissipation in Jupiter: II. The value of Q. Astrophys. J. 635, 688–710 (2005).

    Google Scholar 

  88. Essick, R. & Weinberg, N. N. Orbital decay of hot Jupiters due to nonlinear tidal dissipation within solar-type hosts. Astrophys. J. 816, 18 (2016).

    Article  ADS  Google Scholar 

  89. Fortney, J. J., Dawson, R. I. & Komacek, T. D. Hot Jupiters: origins, structure, atmospheres. J. Geophys. Res. Planets 126, e2020JE006629 (2021).

    Article  ADS  Google Scholar 

  90. Spiegel, D. S., Burrows, A. & Milsom, J. A. The deuterium-burning mass limit for brown dwarfs and giant planets. Astrophys. J. 727, 57 (2011).

    Article  ADS  Google Scholar 

  91. Belokurov, V. et al. Unresolved stellar companions with Gaia DR2 astrometry. Mon. Not. R. Astron. Soc. 496, 1922–1940 (2020).

    Article  CAS  ADS  Google Scholar 

  92. Penoyre, Z., Belokurov, V., Evans, N. W., Everall, A. & Koposov, S. E. Binary deviations from single object astrometry. Mon. Not. R. Astron. Soc. 495, 321–337 (2020).

    Article  ADS  Google Scholar 

  93. Rybizki, J. et al. A classifier for spurious astrometric solutions in Gaia eDR3. Mon. Not. R. Astron. Soc. 510, 2597–2616 (2022).

    Article  ADS  Google Scholar 

  94. Penoyre, Z., Belokurov, V. & Evans, N. W. Astrometric identification of nearby binary stars – I. Predicted astrometric signals. Mon. Not. R. Astron. Soc. 513, 2437–2456 (2022).

    Article  ADS  Google Scholar 

  95. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  96. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    Article  ADS  Google Scholar 

  97. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    Article  ADS  Google Scholar 

  98. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    Article  CAS  ADS  Google Scholar 

  99. Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).

    Article  ADS  Google Scholar 

  100. Rappaport, S., Verbunt, F. & Joss, P. C. A new technique for calculations of binary stellar evolution, with application to magnetic braking. Astrophys. J. 275, 713–731 (1983).

    Article  ADS  Google Scholar 

  101. Tauris, T. M. & van den Heuvel, E. P. J. in Compact Stellar X-ray Sources (eds Lewin, W. & van der Klis, M.) 623–666 (Cambridge Univ. Press, 2006).

  102. Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. 190, 1–42 (2010).

    Article  CAS  Google Scholar 

  103. Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    Article  ADS  Google Scholar 

  104. Chen, X., Maxted, P. F. L., Li, J. & Han, Z. The formation of EL CVn-type binaries. Mon. Not. R. Astron. Soc. 467, 1874–1889 (2017).

    CAS  ADS  Google Scholar 

  105. Miller, G. E. & Scalo, J. M. The initial mass function and stellar birthrate in the solar neighborhood.J. Astophys. Suppl. Ser. 41, 513–547 (1979).

    Article  CAS  ADS  Google Scholar 

  106. Eggleton, P. P., Fitchett, M. J. & Tout, C. A. The distribution of visual binaries with two bright components. Astrophys. J. 347, 998–1011 (1989).

    Article  ADS  Google Scholar 

  107. Sneden, C., Brown, J., Dutchover, E. Jr & Lambert, D. A search for lithium-rich giant stars. Bull. Am. Astron. Soc. 16, 490 (1984).

    Google Scholar 

  108. Yan, H.-L. et al. The nature of the lithium enrichment in the most Li-rich giant star. Nat. Astron. 2, 790–795 (2018).

    Article  ADS  Google Scholar 

  109. Rui, N. Z. & Fuller, J. Asteroseismic fingerprints of stellar mergers. Mon. Not. R. Astron. Soc. 508, 1618–1631 (2021).

    Article  ADS  Google Scholar 

  110. Kochanek, C. S., Adams, S. M. & Belczynski, K. Stellar mergers are common. Mon. Not. R. Astron. Soc. 443, 1319–1328 (2014).

    Article  ADS  Google Scholar 

  111. Price-Whelan, A. M. et al. Close binary companions to APOGEE DR16 stars: 20,000 binary-star systems across the color–magnitude diagram. Astrophys. J. 895, 2 (2020).

    Article  CAS  ADS  Google Scholar 

  112. Reffert, S. Compilation of Discoveries of Substellar Companions around Giant Stars (Heidelberg Univ., accessed 22 February 2023); https://www.lsw.uni-heidelberg.de/users/sreffert/giantplanets/giantplanets.php.

  113. Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    Article  ADS  Google Scholar 

  114. Scherbak, P. & Fuller, J. White dwarf binaries suggest a common envelope efficiency α ~ 1/3. Mon. Not. R. Astron. Soc. 518, 3966–3984 (2023).

    Article  ADS  Google Scholar 

  115. Eggleton, P. P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

We recognize and acknowledge the cultural role and reverence that the summit of Maunakea has within the indigenous Hawaiian community. We are grateful for the opportunity to conduct observations from this mountain. The data in this study were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California and NASA. The observatory was made possible by the financial support of the W. M. Keck Foundation. Additional observations were obtained at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France and the University of Hawaii. M.H. acknowledges support from NASA through the NASA Hubble Fellowship grant HST-HF2-51459.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-26555. D.H. acknowledges support from the Alfred P. Sloan Foundation, NASA (80NSSC21K0652, 80NSSC20K0593) and the Australian Research Council (FT200100871). N.Z.R. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant no. DGE‐1745301. O.K. acknowledges support from the Swedish Research Council under the project grant 2019-03548. A.S. acknowledges support from the European Research Council Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, grant agreement no. 772293). M.V. acknowledges support from NASA grant 80NSSC18K1582. This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through research grants UIDB/04434/2020 and UIDP/04434/2020. T.L.C. is supported by FCT in the form of a work contract (CEECIND/00476/2018). T.R.B. acknowledges support from the Australian Research Council through Discovery Project DP210103119 and Laureate Fellowship FL220100117.

Author information

Authors and Affiliations

Authors

Contributions

M.H. identified the oscillations of 8 UMi, led the observing programme and data analysis and wrote most of the paper. D.H. organized observations, interpreted the asteroseismic and radial velocity data and contributed to writing the paper. N.Z.R. and J.F. conducted binary simulations for the host star, performed numerical calculations for planet survival scenarios and contributed to writing the paper. J.F. and D.V. interpreted formation scenarios for the host star. J.S.K. and M.V. extracted oscillation parameters from the TESS data. O.K. performed the spectropolarimetric analysis of the host star and the control target. A.S., J.L.R., M.Y., Z.Ç.O., S.Ö., C.J. and J.O. conducted grid-based modelling for 8 UMi. D.R.H., D.H. and M.H. fitted the radial velocity data. H.I. measured chromospheric activity indices from the HIRES data. J.Z. constrained the properties of the outer companion. K.G.S. performed the SED analysis for the host star. B.J.S. extracted ASAS-SN photometry for 8 UMi. J.T. and Z.R.C. provided interpolatable grids of isochrones. T.R.B. and D.S. analysed the asteroseismic data and helped to guide the strategy of the paper. B.T.M. identified and analysed the lithium richness of the control target. W.J.C., D.H. and T.L.C. are key architects of TASC working groups on exoplanet hosts, including evolved stars. H.I. and A.W.H. oversaw the California Planet Search observing programme. A.C., S.G., C. Beard, J.L., R.H., J.M.A.M., J.V.Z., D.T., D.P., C. Brinkman, M.M., A.S.P., M.R. and L.W. conducted Keck I/HIRES observations of 8 UMi and the control star. All authors reviewed the paper.

Corresponding author

Correspondence to Marc Hon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Steven Parsons, Andrew Vanderburg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Posterior probability distribution of the fit to the combined BOES/HIRES radial velocity data.

The 16th, 50th, and 84th percentile values of each fitted parameter are indicated with dashed lines.

Extended Data Fig. 2 Constraints to the outer companion in the 8 UMi planetary system.

Contours indicate 67% highest density intervals of permissible mass and separation values of the outer companion as estimated from the residuals of radial velocity measurements in Main Text Fig. 2 (purple), and from measurements of 8 UMi’s Gaia DR3-Hipparcos astrometric acceleration (green). These two measurements jointly constrain the outer companion’s mass and separation, which corresponds to the locus indicated by the shaded region between the contours.

Extended Data Fig. 3 Stellar activity of the host star 8 UMi and active red giant TYC 3542-1885-1.

The chromospheric activity of both stars are estimated using Ca II H and K indices (SHK) computed from Keck/HIRES spectra, with error bars indicating 1σ (standard deviation) uncertainties. (a-b) Variations of SHK with radial velocity from each star. Included for each are the Spearman correlation factors (R) and two-sided p-values (p) for the test whose null hypothesis is that SHK and radial velocity are uncorrelated. (c-d) Generalized Lomb Scargle (GLS) periodograms of radial velocity measurements and SHK. The vertical dashed line indicates 8 UMi b’s orbital period, and the horizontal lines indicate the periodogram’s False Alarm Probability (FAP).

Extended Data Fig. 4 Spectral features of 8 UMi and active red giant TYC 3542-1885-1.

Comparisons are additionally made with the inactive, Li-normal giant µ Pegasi. (a-b) The Ca II H and K absorption lines. (c) The 6707.8 Å Li I absorption line.

Extended Data Fig. 5 ESPaDOnS spectropolarimetry of the host star 8 UMi and active red giant TYC 3542-1885-1.

The least-squares deconvolution profiles in each panel, from top to bottom, are that of Stokes V, null polarisation N, and Stokes I, respectively. Error bars indicate 1σ (standard deviation) uncertainties for the profiles. Included are the Stokes V mean longitudinal magnetic field strength (BZ) and its corresponding 1σ (standard deviation) uncertainty, polarimetric signal-to-noise ratio (SNR), and observation times (t) in BJD - 2459000. Panels (a–d) correspond to observations of 8 UMi, whilst panels (eh) correspond to observations of TYC 3542-1885-1.

Extended Data Fig. 6 Observed photometric variations of 8 UMi.

Time series photometry from (a) Hipparcos, (b) ASAS-SN, and (c) systematics-corrected TESS Simple Aperture Photometry. The standard deviation uncertainty for each photometric measurement is shown with error bars. These are visible for the Hipparcos data, but smaller than the symbol sizes for ASAS-SN and TESS data. The dispersion of the Hipparcos and ASAS-SN time series, σdisp, are quantified as a fraction of the star’s apparent magnitude. Generalized Lomb Scargle (GLS) periodograms for the (d) Hipparcos, (e) ASAS-SN, and (f) systematics-corrected TESS Simple Aperture Photometry light curves. The vertical dashed line indicates 8 UMi b’s orbital period, and the horizontal lines indicate the periodogram’s False Alarm Probability (FAP).

Extended Data Fig. 7 Spectral energy distribution of 8 UMi.

The distribution was estimated using BTVT magnitudes from Tycho-2, the JHKS magnitudes from 2MASS, the W1–W4 magnitudes from WISE, the GGBPGRP magnitudes from Gaia, and the NUV magnitude from GALEX. Red symbols represent the observed photometric measurements, where the horizontal error bars represent the effective width of the passband while the vertical error bars are 1σ (standard deviation) photometric uncertainties. Blue symbols are the model fluxes from the best-fit Kurucz atmosphere model (black), which have a reduced χ2 of 1.3, with extinction Av = 0.06 ± 0.02 mag, Teff = 4,900 ± 75 K, surface gravity log (g) = 2.5 ± 0.5 dex, and [Fe/H] = −0.5 ± 0.3 dex. Integration of the (unreddened) model SED gives the bolometric flux at Earth, Fbol = 6.48 ± 0.22 × 10−8 erg s−1cm−2.

Extended Data Fig. 8 Simulation of a stellar binary history for 8 UMi leading up to a stellar merger.

This fiducial model is simulated using β = 0.6, q = 0.7, and Pinit = 2 d, with the stellar merger occuring at the onset of unstable mass transfer at t ≈ 8.6 Gyr. (a) Binary separation (purple solid line) and orbital period (green dashed line) versus time for the simulated binary model. (b) Primary total and core masses versus time. (c) Secondary total/core mass versus time.

Extended Data Fig. 9 Simulated white dwarf–red giant binaries that successfully merge to produce a core-helium burning giant like 8 UMi.

These models are simulated using β = 0.6 and q = 0.7, with M1 = 1.23 M and M2 = 0.86 M. (a) Final total mass Mtot,f and final helium core mass Mc,f of the merger remnant. (b) Binary separation and orbital period before (ai) and after (af) the common-envelope event. The orange region represents af values that result in a stellar merger.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hon, M., Huber, D., Rui, N.Z. et al. A close-in giant planet escapes engulfment by its star. Nature 618, 917–920 (2023). https://doi.org/10.1038/s41586-023-06029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06029-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing