Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The therapeutic potential of immunoengineering for systemic autoimmunity

Abstract

Disease-modifying drugs have transformed the treatment options for many systemic autoimmune diseases. However, an evolving understanding of disease mechanisms, which might vary between individuals, is paving the way for the development of novel agents that operate in a patient-tailored manner through immunophenotypic regulation of disease-relevant cells and the microenvironment of affected tissue domains. Immunoengineering is a field that is focused on the application of engineering principles to the modulation of the immune system, and it could enable future personalized and immunoregulatory therapies for rheumatic diseases. An important aspect of immunoengineering is the harnessing of material chemistries to design technologies that span immunologically relevant length scales, to enhance or suppress immune responses by re-balancing effector and regulatory mechanisms in innate or adaptive immunity and rescue abnormalities underlying pathogenic inflammation. These materials are endowed with physicochemical properties that enable features such as localization in immune cells and organs, sustained delivery of immunoregulatory agents, and mimicry of key functions of lymphoid tissue. Immunoengineering applications already exist for disease management, and there is potential for this new discipline to improve disease modification in rheumatology.

Key points

  • An unmet need exists for immunoregulatory disease-modifying agents for patients with rheumatological conditions who cannot tolerate immunosuppression and for partial responders and non-responders to current standards of care.

  • Immunoengineering is an emerging research area with a major focus on a systems-based approach to rescue disorders of the immune system by leveraging material chemistries to generate immunoregulators.

  • Immunoengineering advances now offer the possibility of a new class of therapeutics aimed at immunomodulation rather than at immunosuppression, which could synergize with standard-of-care therapies and personalize treatment in systemic autoimmunity.

  • Immunomodulation, tolerization and measurement of disease activity are facilitated by nanoparticles; microparticles enable sustained, localized release of immunomodulatory compounds; and macroscale materials have uses in cell therapy and as immunological niches.

  • To improve the safety, efficacy and specificity of T cell-based therapies, immunoengineering can be leveraged to enrich specific cell subsets, generate transient T cells in vivo and improve target identification.

  • Immunoengineering could aid in the diagnosis of disease, immunophenotyping for patient-stratification purposes and in developing in vitro models to study autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunoregulation and tolerization.
Fig. 2: Enabling immune cell therapy.
Fig. 3: Immunodiagnostics.
Fig. 4: In vitro models of lymphoid organs.

Similar content being viewed by others

References

  1. McInnes, I. B. & Gravallese, E. M. Immune-mediated inflammatory disease therapeutics: past, present and future. Nat. Rev. Immunol. 21, 680–686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fraenkel, L. et al. 2021 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 73, 1108–1123 (2021).

    Article  PubMed  Google Scholar 

  3. Denis, A., Sztejkowski, C., Arnaud, L., Becker, G. & Felten, R. The 2023 pipeline of disease-modifying antirheumatic drugs (DMARDs) in clinical development for spondyloarthritis (including psoriatic arthritis): a systematic review of trials. RMD Open. 9, e003279 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tuttle, J. et al. A phase 2 trial of peresolimab for adults with rheumatoid arthritis. N. Engl. J. Med. 388, 1853–1862 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Gravallese, E. M. & Thomas, R. Reinforcing the checkpoint in rheumatoid arthritis. N. Engl. J. Med. 388, 1905–1907 (2023).

    Article  PubMed  Google Scholar 

  6. Donlin, L. T. et al. Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 1–10 (2018).

    Article  CAS  Google Scholar 

  8. Dolgin, E. Massive NIH-industry project opens portals to target validation. Nat. Rev. Drug. Discov. 18, 240–242 (2019).

    Google Scholar 

  9. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tu, Z. et al. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brannon, E. R. et al. Polymeric particle-based therapies for acute inflammatory diseases. Nat. Rev. Mater. 7, 796–813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Evans, C. H., Kraus, V. B. & Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10, 11 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Arthritis gene therapy is becoming a reality. Nat. Rev. Rheumatol. 14, 381–382 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, S., Shah, S. B., Graney, P. L. & Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater. 4, 355–378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dellacherie, M. O., Seo, B. R. & Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 4, 379–397 (2019).

    Article  Google Scholar 

  19. Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415–428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cifuentes-Rius, A., Desai, A., Yuen, D., Johnston, A. P. R. & Voelcker, N. H. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat. Nanotechnol. 16, 37–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Stabler, C. L., Li, Y., Stewart, J. M. & Keselowsky, B. G. Engineering immunomodulatory biomaterials for type 1 diabetes. Nat. Rev. Mater. 4, 429–450 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gammon, J. M. & Jewell, C. M. Engineering immune tolerance with biomaterials. Adv. Healthc. Mater. 8, 1801419 (2019).

    Article  Google Scholar 

  23. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug. Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article  Google Scholar 

  26. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews. Materials 8, 282–300 (2023).

    CAS  PubMed  Google Scholar 

  27. Boehnke N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Moyer, T. J. et al. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat. Med. 26, 430–440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schudel, A. et al. Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15, 491–499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Irvine, D. J., Aung, A. & Silva, M. Controlling timing and location in vaccines. Adv. Drug. Deliv. Rev. 158, 91–115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilson, D. S. et al. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nat. Biomed. Eng. 3, 817–829 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Wilson, D. S. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18, 175–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartwell, B. L. et al. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med. 14, eabn1413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seenappa, L. M. et al. Amphiphile-CpG vaccination induces potent lymph node activation and COVID-19 immunity in mice and non-human primates. NPJ Vaccines 7, 128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pant, S. et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial. Nat. Med. https://doi.org/10.1038/s41591-023-02760-3 (2023).

  38. Pradal, J. et al. Effect of particle size on the biodistribution of nano-and microparticles following intra-articular injection in mice. Int. J. Pharm. 498, 119–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Horisawa, E. et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res. 19, 132–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. McHugh, K. J. et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science 357, 1138–1142 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Sarmadi, M. et al. Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles. Sci. Adv. 8, eabn5315.

  42. Blasi, P. Poly (lactic acid)/poly (lactic-co-glycolic acid)-based microparticles: an overview. J. Pharm. Invest. 49, 337–346 (2019).

    Article  CAS  Google Scholar 

  43. Mandal, A. et al. Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Sci. Transl. Med. 10, eaar2227 (2018).

    Article  PubMed  Google Scholar 

  44. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Antiochos, B. & Rosen, A. in Clinical Immunology (eds. Rich, R. R. et al.) 2nd edn, 677–684.e1 (Elsevier, 2019).

  47. Moritz, C. P. et al. Autoantigenomics: holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun. Rev. 19, 102450 (2020).

    Article  PubMed  Google Scholar 

  48. Bronge, M. et al. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. Sci. Adv. 8, eabn1823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wythe, S. E. et al. Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide. Ann. Rheum. Dis. 72, 129–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Ferrari, M., Onuoha, S. C. & Pitzalis, C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat. Rev. Rheumatol. 11, 328–337 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Yuba, E. et al. Suppression of rheumatoid arthritis by enhanced lymph node trafficking of engineered interleukin‐10 in murine models. Arthritis Rheumatol. 73, 769–778 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, M., Liu, S., Chatham, W. W., Mountz, J. D. & Hsu, H.-C. IL-4-induced quiescence of resting naive B cells is disrupted in systemic lupus erythematosus. J. Immunol. 209, 1513–1522 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Ishihara, A. et al. Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat. Biomed. Eng. 5, 387–398 (2020).

    Article  PubMed  Google Scholar 

  54. Kishimoto, T. K. et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotech 11, 890–899 (2016).

    Article  CAS  Google Scholar 

  55. Sands, E., Kivitz, A. J., DeHaan, W., Johnston, L. & Kishimoto, T. K. Update of SEL-212 phase 2 clinical data in symptomatic gout patients: Svp-rapamycin combined with pegadricase mitigates immunogenicity and enables sustained reduction of serum uric acid levels, low rate of gout flares and monthly dosing [abstract]. Arthritis Rheum. 70 (suppl. 10), 2487 (2018).

    Google Scholar 

  56. Kishimoto, T. K. Development of ImmTOR tolerogenic nanoparticles for the mitigation of anti-drug antibodies. Front. Immunol. 11, 969 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Allen, R., Chizari, S., Ma, J. A., Raychaudhuri, S. & Lewis, J. S. Combinatorial, microparticle-based delivery of immune modulators reprograms the dendritic cell phenotype and promotes remission of collagen-induced arthritis in mice. ACS Appl. Bio Mater. 2, 2388–2404 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Bassin, E. J., Buckley, A. R., Piganelli, J. D. & Little, S. R. TRI microparticles prevent inflammatory arthritis in a collagen-induced arthritis model. PLOS One 15, e0239396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Galea, R. et al. PD-L1–and calcitriol-dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease. JCI Insight 4, e126025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. McHugh, J. Liposomal targeting of DCs to induce tolerance. Nat. Rev. Rheumatol. 15, 699–699 (2019).

    Article  PubMed  Google Scholar 

  61. Johnson, W. T. et al. Immunomodulatory nanoparticles for modulating arthritis flares. ACS Nano 18, 1892–1906 (2023).

    Article  PubMed  Google Scholar 

  62. Cutolo, M., Smith, V., Paolino, S. & Gotelli, E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat. Rev. Rheumatol. 19, 265–287 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sonigra, A. et al. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. JCI Insight 7, e160964 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Singha, S. et al. Peptide–MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nat. Nanotech 12, 701–710 (2017).

    Article  CAS  Google Scholar 

  67. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Kontos, S., Kourtis, I. C., Dane, K. Y. & Hubbell, J. A. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl Acad. Sci. USA 110, E60–E68 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Watkins, E. A. et al. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci. Immunol. 6, eabe1801 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Hubbell, J. A. & Wilson, D. S. Glycotargeting therapeutics. U.S. Patent No. 10,046,056 (2018).

  71. Casey, L. M. et al. Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials 283, 121457 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Hubbell, J. A., Kontos, S., Lorentz, K. M., Wilson, D. S. & Shuning, G. Glycotargeting therapeutics. U.S. Patent No. 10,821,157 (2020).

  73. Tostanoski, L. H. et al. Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. Cell Rep. 16, 2940–2952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scher, J. U., Nayak, R. R., Ubeda, C., Turnbaugh, P. J. & Abramson, S. B. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat. Rev. Rheumatol. 16, 282–292 (2020).

    Article  PubMed  Google Scholar 

  75. Abdollahi-Roodsaz, S., Abramson, S. B. & Scher, J. U. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions.Nat. Rev. Rheumatol. 12, 446–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Hsieh, W.-C. et al. PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis. JCI Insight 5, e141868 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Choi, S.-C. et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci. Transl. Med. 12, eaax2220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, R. et al. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. Nat. Biomed. Eng. 7, 38–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McBride, D. A. et al. Short-chain fatty acid-mediated epigenetic modulation of inflammatory T cells in vitro. Drug Deliv. Transl. Res. 13, 1912–1924 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, Y. et al. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19, 118–126 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. McBride, D. A. et al. Immunomodulatory microparticles epigenetically modulate T cells and systemically ameliorate autoimmune arthritis. Adv. Sci. 10, e2202720 (2023).

    Article  Google Scholar 

  83. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 41, 1229–1238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article  PubMed  Google Scholar 

  87. Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Pecher, A.-C. et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA 329, 2154–2162 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mueller, F. et al. CD19-targeted CAR-T cells in refractory systemic autoimmune diseases: a monocentric experience from the first fifteen patients. Blood 142, 220–220 (2023).

    Article  Google Scholar 

  90. Rosado-Sánchez, I. & Levings, M. K. Building a CAR-Treg: going from the basic to the luxury model. Cell. Immunol. 358, 104220 (2020).

    Article  PubMed  Google Scholar 

  91. Kisielow, J., Obermair, F.-J. & Kopf, M. Deciphering CD4+ T cell specificity using novel MHC–TCR chimeric receptors. Nat. Immunol. 20, 652–662 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Adu-Berchie, K. et al. Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix. Nat. Biomed. Eng. 7, 1374–1391 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, A. Q. et al. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat. Biomed. Eng. 7, 1113–1128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Eskandari, S. K. et al. Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci. Transl. Med. 12, eaaw4744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hao, L. et al. Microenvironment-triggered multimodal precision diagnostics. Nat. Mater. 20, 1440–1448 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Chan, L. W. et al. Engineering synthetic breath biomarkers for respiratory disease. Nat. Nanotechnol. 15, 792–800 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14, 883–890 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Amini, A. P. et al. Multiscale profiling of protease activity in cancer. Nat. Commun. 13, 5745 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cazanave, S. C. et al. Peptide-based urinary monitoring of fibrotic nonalcoholic steatohepatitis by mass-barcoded activity-based sensors. Sci. Transl. Med. 13, eabe8939.

  104. Subudhi, S. et al. Distinct hepatic gene‐expression patterns of NAFLD in patients with obesity. Hepatol. Commun. 6, 77–89 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 12, eaaw0285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morris, A. H. et al. Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis. Nat. Commun. 11, 3871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zeleniak, A. et al. De novo construction of T cell compartment in humanized mice engrafted with iPSC-derived thymus organoids. Nat. Methods 19, 1306–1319 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Goyal, G. et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv. Sci. 9, e2103241 (2022).

    Article  Google Scholar 

  109. Angum, F., Khan, T., Kaler, J., Siddiqui, L. & Hussain, A. The prevalence of autoimmune disorders in women: a narrative review. Cureus 12, e8094 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussing its content, writing the article and to the reviewing and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Nunzio Bottini or Nisarg J. Shah.

Ethics declarations

Competing interests

N.J.S. and N.B. are academic founders of Tekhona Inc. and have an equity interest in the company. The terms of this arrangement have been reviewed and approved by their institutions in accordance with conflict of interest policies. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Jeffrey Hubbell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McBride, D.A., Jones, R.M., Bottini, N. et al. The therapeutic potential of immunoengineering for systemic autoimmunity. Nat Rev Rheumatol 20, 203–215 (2024). https://doi.org/10.1038/s41584-024-01084-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01084-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research