Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain network communication: concepts, models and applications

Abstract

Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Core concepts in brain network communication models.
Fig. 2: A taxonomy of brain network communication models and measures.
Fig. 3: Current and emerging applications of communication matrices.
Fig. 4: Interpretable insight from network communication models: a brain stimulation case study.

References

  1. Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17–33 (2018). This Review was one of the first proposals of network communication as a conceptual framework to bridge the gap between brain structure and function.

    Article  CAS  Google Scholar 

  2. Laughlin, S. B. & Sejnowski, T. J. Communication in neuronal networks. Science 301, 1870–1874 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Debanne, D., Bialowas, A. & Rama, S. What are the mechanisms for analogue and digital signalling in the brain? Nat. Rev. Neurosci. 14, 63–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Hahn, G., Ponce-Alvarez, A., Deco, G., Aertsen, A. & Kumar, A. Portraits of communication in neuronal networks. Nat. Rev. Neurosci. 20, 117–127 (2019). This paper reviews putative mechanisms of communication in small networks of neuronal populations.

    Article  CAS  PubMed  Google Scholar 

  5. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  6. Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a communication subspace. Neuron 102, 249–259.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Palmigiano, A., Geisel, T., Wolf, F. & Battaglia, D. Flexible information routing by transient synchrony. Nat. Neurosci. 20, 1014–1022 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Fornito, A., Zalesky, A. & Bullmore, E. T. Fundamentals of Brain Network Analysis (Academic, 2016). This book provides a comprehensive introduction to network neuroscience and connectomics.

  16. Javadzadeh, M. & Hofer, S. B. Dynamic causal communication channels between neocortical areas. Neuron 110, 2470–2483.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park, H.-J. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).

    Article  PubMed  Google Scholar 

  18. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).

    Article  PubMed  Google Scholar 

  19. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meunier, D., Lambiotte, R. & Bullmore, E. T. Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).

    Article  PubMed  Google Scholar 

  23. van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

    Article  PubMed  Google Scholar 

  24. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. van den Heuvel, M. P., Kahn, R. S., Goñi, J. & Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cole, M. W., Ito, T., Bassett, D. S. & Schultz, D. H. Activity flow over resting-state networks shapes cognitive task activations. Nat. Neurosci. 19, 1718–1726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 22, 289–296 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. van den Heuvel, M. P. & Sporns, O. A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zamora-López, G., Zhou, C. & Kurths, J. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 4, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Papo, D., Zanin, M., Martínez, J. H. & Buldú, J. M. Beware of the small-world neuroscientist! Front. Hum. Neurosci. 10, 96 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  37. Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Griffa, A., Baumann, P. S., Thiran, J.-P. & Hagmann, P. Structural connectomics in brain diseases. NeuroImage 80, 515–526 (2013).

    Article  PubMed  Google Scholar 

  39. Goñi, J. et al. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl Acad. Sci. USA 111, 833–838 (2014). This work was one of the first empirical demonstrations that network communication models can be used to infer functional connectivity from brain network structure.

    Article  PubMed  Google Scholar 

  40. Avena-Koenigsberger, A. et al. Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome. Brain Struct. Funct. 222, 603–618 (2016).

    Article  PubMed  Google Scholar 

  41. Seguin, C., van den Heuvel, M. P. & Zalesky, A. Navigation of brain networks. Proc. Natl Acad. Sci. USA 115, 6297–6302 (2018). This study was the first comprehensive exploration of the network navigation model in neuroscience.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kleinberg, J. M. Navigation in a small world. Nature 406, 845 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Boguna, M., Krioukov, D. & Claffy, K. C. Navigability of complex networks. Nat. Phys. 5, 74–80 (2009).

    Article  CAS  Google Scholar 

  44. Goñi, J. et al. Exploring the morphospace of communication efficiency in complex networks. PLoS One 8, e58070 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Travers, J. & Milgram, S. An experimental study of the small world problem. Sociometry 32, 425–443 (1969). A prescient and highly influential account of decentralized communication in complex networks.

    Article  Google Scholar 

  46. Boguñá, M., Papadopoulos, F. & Krioukov, D. Sustaining the Internet with hyperbolic mapping. Nat. Commun. 1, 62 (2010).

    Article  PubMed  Google Scholar 

  47. Grayson, D. S. et al. The rhesus monkey connectome predicts disrupted functional networks resulting from pharmacogenetic inactivation of the amygdala. Neuron 91, 453–466 (2016). This paper shows that network communication models can predict global changes in functional connectivity resulting from the deactivation of targeted regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Betzel, R. F. et al. Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography. Nat. Biomed. Eng. 3, 902–916 (2019).

    Article  PubMed  Google Scholar 

  49. Seguin, C., Tian, Y. & Zalesky, A. Network communication models improve the behavioral and functional predictive utility of the human structural connectome. Netw. Neurosci. 4, 980–1006 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Imms, P. et al. Navigating the link between processing speed and network communication in the human brain. Brain Struct. Funct. 226, 1281–1302 (2021).

    Article  PubMed  Google Scholar 

  51. de Lange, S. C. et al. Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Nat. Hum. Behav. 3, 988–998 (2019). This paper uses a large sample of patients to identify a cross-disorder basis for disrupted brain network communication in neuropsychiatric conditions.

    Article  PubMed  Google Scholar 

  52. Lella, E. & Estrada, E. Communicability distance reveals hidden patterns of Alzheimer’s disease. Netw. Neurosci. 4, 1007–1029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, X. et al. Synchronization lag in post stroke: relation to motor function and structural connectivity. Netw. Neurosci. 3, 1121–1140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hermundstad, A. M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl Acad. Sci. USA 110, 6169–6174 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63–71 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023). This recent paper was the first to investigate polysynaptic streams of information flow in a complete insect connectome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alves, P. N. et al. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun. Biol. 2, 370 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Uddin, L. Q. et al. Residual functional connectivity in the split-brain revealed with resting-state functional MRI. Neuroreport 19, 703–709 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Trebaul, L. et al. Probabilistic functional tractography of the human cortex revisited. Neuroimage 181, 414–429 (2018).

    Article  PubMed  Google Scholar 

  60. Momi, D., Wang, Z. & Griffiths, J. D. TMS-evoked responses are driven by recurrent large-scale network dynamics. eLife 12, e83232 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Avena-Koenigsberger, A. et al. A spectrum of routing strategies for brain networks. PLoS Comput. Biol. 15, e1006833 (2019). This work presents one of the first applications of the biased random walk model in network neuroscience.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Avena-Koenigsberger, A. et al. Using Pareto optimality to explore the topology and dynamics of the human connectome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130530 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Avena-Koenigsberger, A., Goñi, J., Solé, R. & Sporns, O. Network morphospace. J. R. Soc. Interface 12, 20140881 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Serrano, M. A., Krioukov, D. & Boguñá, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008).

    Article  PubMed  Google Scholar 

  66. Kleinberg, J. Complex networks and decentralized search algorithms. Proc. Int. Congr. Math. 3, 1019–1044 (2006).

    Google Scholar 

  67. Cannistraci, C. V. & Muscoloni, A. Geometrical congruence, greedy navigability and myopic transfer in complex networks and brain connectomes. Nat. Commun. 13, 7308 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roberts, J. A. et al. The contribution of geometry to the human connectome. NeuroImage 124, 379–393 (2016).

    Article  PubMed  Google Scholar 

  69. Stiso, J. & Bassett, D. S. Spatial embedding imposes constraints on neuronal network architectures. Trends Cogn. Sci. 22, 1127–1142 (2018).

    Article  PubMed  Google Scholar 

  70. Vézquez-Rodríguez, B., Liu, Z.-Q., Hagmann, P. & Misic, B. Signal propagation via cortical hierarchies. Netw. Neurosci. 4, 1072–1090 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Boguñá, M. et al. Network geometry. Nat. Rev. Phys. 3, 114–135 (2021).

    Article  Google Scholar 

  72. Zheng, M., Allard, A., Hagmann, P., Alemán-Gómez, Y. & Serrano, M. Á. Geometric renormalization unravels self-similarity of the multiscale human connectome. Proc. Natl Acad. Sci. USA 117, 20244–20253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Allard, A. & Serrano, M. Á. Navigable maps of structural brain networks across species. PLoS Comput. Biol. 16, e1007584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duran-Nebreda, S., Johnston, I. G. & Bassel, G. W. Efficient vasculature investment in tissues can be determined without global information. J. R. Soc. Interface 17, 20200137 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Masuda, N., Porter, M. A. & Lambiotte, R. Random walks and diffusion on networks. Phys. Rep. 716, 1–58 (2017). This study is a comprehensive review on random walks dynamics in complex networks.

    Article  Google Scholar 

  76. Noh, J. D. & Rieger, H. Random walks on complex networks. Phys. Rev. Lett. 92, 118701 (2004).

    Article  PubMed  Google Scholar 

  77. Estrada, E. & Hatano, N. Communicability in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 036111 (2008). This seminal work introduced the concept of communicability in complex networks.

    Article  PubMed  Google Scholar 

  78. Estrada, E., Hatano, N. & Benzi, M. The physics of communicability in complex networks. Phys. Rep. 514, 89–119 (2012).

    Article  Google Scholar 

  79. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).

    Article  Google Scholar 

  80. Nematzadeh, A., Ferrara, E., Flammini, A. & Ahn, Y.-Y. Optimal network modularity for information diffusion. Phys. Rev. Lett. 113, 088701 (2014).

    Article  PubMed  Google Scholar 

  81. Mišić, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).

    Article  PubMed  Google Scholar 

  82. Worrell, J. C., Rumschlag, J., Betzel, R. F., Sporns, O. & Mišić, B. Optimized connectome architecture for sensory-motor integration. Netw. Neurosci. 1, 415–430 (2018).

    Article  PubMed  Google Scholar 

  83. Shadi, K., Dyer, E. & Dovrolis, C. Multisensory integration in the mouse cortical connectome using a network diffusion model. Netw. Neurosci. 4, 1030–1054 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gómez-Gardeñes, J. & Latora, V. Entropy rate of diffusion processes on complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 065102 (2008).

    Article  PubMed  Google Scholar 

  85. Lambiotte, R. et al. Flow graphs: interweaving dynamics and structure. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 017102 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Benigni, B., Gallotti, R. & De Domenico, M. Potential-driven random walks on interconnected systems. Phys. Rev. E 104, 024120 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Yin, C.-Y., Wang, B.-H., Wang, W.-X., Zhou, T. & Yang, H.-J. Efficient routing on scale-free networks based on local information. Phys. Lett. A 351, 220–224 (2006).

    Article  CAS  Google Scholar 

  88. Csoma, A. et al. Routes obey hierarchy in complex networks. Sci. Rep. 7, 7243 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Abdelnour, F., Voss, H. U. & Raj, A. Network diffusion accurately models the relationship between structural and functional brain connectivity networks. NeuroImage 90, 335–347 (2014).

    Article  PubMed  Google Scholar 

  91. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022). This recent review discusses current efforts and future directions to map causal interactions in the human brain. Concepts outlined in this work may provide avenues for the testing and validation of network communication models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Medaglia, J. D., Lynall, M.-E. & Bassett, D. S. Cognitive network neuroscience. J. Cogn. Neurosci. 27, 1471–1491 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Smith, S. M. et al. A positive–negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fornito, A., Zalesky, A. & Breakspear, M. Graph analysis of the human connectome: promise, progress, and pitfalls. NeuroImage 80, 426–444 (2013).

    Article  PubMed  Google Scholar 

  96. Popp, J. L. et al. Structural–functional brain network coupling predicts human cognitive ability. Preprint at bioRxiv https://doi.org/10.1101/2023.02.09.527639 (2023).

  97. Zorlu, N. et al. Abnormal structural network communication reflects cognitive deficits in schizophrenia. Brain Topogr. 36, 294–304 (2023).

    Article  PubMed  Google Scholar 

  98. Imms, P. et al. The structural connectome in traumatic brain injury: a meta-analysis of graph metrics. Neurosci. Biobehav. Rev. 99, 128–137 (2019).

    Article  PubMed  Google Scholar 

  99. Imms, P. et al. Exploring personalized structural connectomics for moderate to severe traumatic brain injury. Netw. Neurosci. 7, 160–183 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kuceyeski, A. et al. The application of a mathematical model linking structural and functional connectomes in severe brain injury. NeuroImage Clin. 11, 635–647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuceyeski, A. F., Jamison, K. W., Owen, J. P., Raj, A. & Mukherjee, P. Longitudinal increases in structural connectome segregation and functional connectome integration are associated with better recovery after mild TBI. Hum. Brain Mapp. 40, 4441–4456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Palop, J. J. & Mucke, L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meier, J. M. et al. Connectome-based propagation model in amyotrophic lateral sclerosis. Ann. Neurol. 87, 725–738 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vogel, J. W. et al. Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat. Commun. 11, 2612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zheng, Y.-Q. et al. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation. PLoS Biol. 17, e3000495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wannan, C. M. J. et al. Evidence for network-based cortical thickness reductions in schizophrenia. Am. J. Psychiatry 176, 552–563 (2019).

    Article  PubMed  Google Scholar 

  109. Shafiei, G. et al. Spatial patterning of tissue volume loss in schizophrenia reflects brain network architecture. Biol. Psychiatry 87, 727–735 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sina Mansour, L., Di Biase, M. A., Smith, R. E., Zalesky, A. & Seguin, C. Connectomes for 40,000 UK Biobank participants: a multi-modal, multi-scale brain network resource. Preprint at bioRxiv https://doi.org/10.1101/2023.03.10.532036 (2023).

  112. Keller, C. J. et al. Mapping human brain networks with cortico-cortical evoked potentials. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130528 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sydnor, V. J. et al. Cortical–subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala. Sci. Adv. 8, eabn5803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ozdemir, R. A. et al. Individualized perturbation of the human connectome reveals reproducible biomarkers of network dynamics relevant to cognition. Proc. Natl Acad. Sci. USA 117, 8115–8125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Veit, M. J. et al. Temporal order of signal propagation within and across intrinsic brain networks. Proc. Natl Acad. Sci. USA 118, e2105031118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seguin, C. et al. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 111, 1391–1401.e5 (2023). The first paper to show that network communication models can predict the propagation of direct electrical stimulation through the human brain.

    Article  CAS  PubMed  Google Scholar 

  117. Siddiqi, S. H., Taylor, J. J., Horn, A. & Fox, M. D. Bringing human brain connectomics to clinical practice in psychiatry. Biol. Psychiatry 93, 386–387 (2023).

    Article  PubMed  Google Scholar 

  118. Horn, A. & Fox, M. D. Opportunities of connectomic neuromodulation. NeuroImage 221, 117180 (2020).

    Article  PubMed  Google Scholar 

  119. Horn, A. et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82, 67–78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cash, R. F. H. et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. Biol. Psychiatry 86, e5–e7 (2019).

    Article  PubMed  Google Scholar 

  121. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Schelling, T. C. Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971).

    Article  Google Scholar 

  123. Helbing, D., Farkas, I. & Vicsek, T. Simulating dynamical features of escape panic. Nature 407, 487–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Zamani Esfahlani, F., Faskowitz, J., Slack, J., Mišić, B. & Betzel, R. F. Local structure–function relationships in human brain networks across the lifespan. Nat. Commun. 13, 2053 (2022). This paper carries out a comprehensive comparison of the extent to which different network communication models can explain patterns of functional connectivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mišic, B. et al. Network-based asymmetry of the human auditory system. Cereb. Cortex 28, 2655–2664 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Seguin, C., Mansour, C. S., Sporns, O., Zalesky, A. & Calamante, F. Network communication models narrow the gap between the modular organization of structural and functional brain networks. NeuroImage 257, 119323 (2022).

    Article  PubMed  Google Scholar 

  127. Amico, E. et al. Toward an information theoretical description of communication in brain networks. Netw. Neurosci. 5, 646–665 (2021).

    PubMed  PubMed Central  Google Scholar 

  128. Hao, Y. & Graham, D. Creative destruction: sparse activity emerges on the mammal connectome under a simulated communication strategy with collisions and redundancy. Netw. Neurosci. 4, 1055–1071 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hillary, F. G. & Grafman, J. H. Injured brains and adaptive networks: the benefits and costs of hyperconnectivity. Trends Cogn. Sci. 21, 385–401 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Park, B.-Y. et al. Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function. NeuroImage 224, 117429 (2021).

    Article  PubMed  Google Scholar 

  131. Bazinet, V., Vos de Wael, R., Hagmann, P., Bernhardt, B. C. & Misic, B. Multiscale communication in cortico-cortical networks. NeuroImage 243, 118546 (2021).

    Article  PubMed  Google Scholar 

  132. Betzel, R. F., Faskowitz, J., Mišić, B., Sporns, O. & Seguin, C. Multi-policy models of interregional communication in the human connectome. Preprint at bioRxiv https://doi.org/10.1101/2022.05.08.490752 (2022).

  133. Mišić, B., Sporns, O. & McIntosh, A. R. Communication efficiency and congestion of signal traffic in large-scale brain networks. PLoS Comput. Biol. 10, e1003427 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Griffa, A. et al. Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems. NeuroImage 155, 490–502 (2017). This work uses an innovative multilayer framework to track the time-resolved propagation of functional activity and relates it to communication via structural connectivity.

    Article  PubMed  Google Scholar 

  135. Liu, Z.-Q. et al. Time-resolved structure–function coupling in brain networks. Commun. Biol. 5, 532 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. de Lange, S. C., de Reus, M. A. & van den Heuvel, M. P. The Laplacian spectrum of neural networks. Front. Comput. Neurosci. 7, 189 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Becker, C. O. et al. Spectral mapping of brain functional connectivity from diffusion imaging. Sci. Rep. 8, 1411 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Abdelnour, F., Dayan, M., Devinsky, O., Thesen, T. & Raj, A. Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure. NeuroImage 172, 728–739 (2018).

    Article  PubMed  Google Scholar 

  139. Deslauriers-Gauthier, S., Zucchelli, M., Frigo, M. & Deriche, R. A unified framework for multimodal structure–function mapping based on eigenmodes. Med. Image Anal. 66, 101799 (2020).

    Article  PubMed  Google Scholar 

  140. Tewarie, P. et al. Mapping functional brain networks from the structural connectome: relating the series expansion and eigenmode approaches. NeuroImage 216, 116805 (2020).

    Article  PubMed  Google Scholar 

  141. Meier, J. et al. The epidemic spreading model and the direction of information flow in brain networks. NeuroImage 152, 639–646 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Benigni, B., Ghavasieh, A., Corso, A., d’Andrea, V. & De Domenico, M. Persistence of information flow: a multiscale characterization of human brain. Netw. Neurosci. 5, 831–850 (2021).

    PubMed  PubMed Central  Google Scholar 

  143. Graham, D. & Rockmore, D. The packet switching brain. J. Cogn. Neurosci. 23, 267–276 (2011).

    Article  PubMed  Google Scholar 

  144. Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F. & Bassett, D. S. Optimally controlling the human connectome: the role of network topology. Sci. Rep. 6, 30770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Deco, G. et al. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239–11252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Muldoon, S. F. et al. Stimulation-based control of dynamic brain networks. PLoS Comput. Biol. 12, e1005076 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gollo, L. L., Roberts, J. A. & Cocchi, L. Mapping how local perturbations influence systems-level brain dynamics. NeuroImage 160, 97–112 (2017).

    Article  PubMed  Google Scholar 

  149. Stiso, J. et al. White matter network architecture guides direct electrical stimulation through optimal state transitions. 2018 Conference on Cognitive Computational Neuroscience. https://doi.org/10.32470/ccn.2018.1028-0 (2018).

  150. Aerts, H., Fias, W., Caeyenberghs, K. & Marinazzo, D. Brain networks under attack: robustness properties and the impact of lesions. Brain 139, 3063–3083 (2016).

    Article  PubMed  Google Scholar 

  151. Srivastava, P. et al. Models of communication and control for brain networks: distinctions, convergence, and future outlook. Netw. Neurosci. 4, 1122–1159 (2020). A recent review highlighting opportunities for synergy between different computational avenues to model brain function, including network communication, dynamical systems and control theory.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Finger, H., Gast, R., Gerloff, C., Engel, A. K. & König, P. Probing neural networks for dynamic switches of communication pathways. PLOS Comput. Biol. 15, e1007551 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pope, M., Seguin, C., Varley, T. F., Faskowitz, J. & Sporns, O. Co-evolving dynamics and topology in a coupled oscillator model of resting brain function. Preprint at bioRxiv https://doi.org/10.1101/2023.01.31.526514 (2023).

  154. Osmanlıoğlu, Y. et al. System-level matching of structural and functional connectomes in the human brain. Neuroimage 199, 93–104 (2019).

    Article  PubMed  Google Scholar 

  155. Seguin, C., Razi, A. & Zalesky, A. Inferring neural signalling directionality from undirected structural connectomes. Nat. Commun. 10, 4289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Tewarie, P. et al. Predicting time‐resolved electrophysiological brain networks from structural eigenmodes. Hum. Brain Mapp. 43, 4475–4491 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Nakuci, J., McGuire, M., Schweser, F., Poulsen, D. & Muldoon, S. F. Differential patterns of change in brain connectivity resulting from severe traumatic brain injury. Brain Connect. 12, 799–811 (2022).

    Article  PubMed  Google Scholar 

  159. Li, Y. et al. Diffusion tensor imaging based network analysis detects alterations of neuroconnectivity in patients with clinically early relapsing-remitting multiple sclerosis. Hum. Brain Mapp. 34, 3376–3391 (2013).

    Article  PubMed  Google Scholar 

  160. Crofts, J. J. et al. Network analysis detects changes in the contralesional hemisphere following stroke. NeuroImage 54, 161–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Andreotti, J. et al. Validation of network communicability metrics for the analysis of brain structural networks. PLoS One 9, e115503 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G. & Cannistraci, C. V. Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rosvall, M., Grönlund, A., Minnhagen, P. & Sneppen, K. Searchability of networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046117 (2005). This paper first proposed the concept of search information and applied it to complex networks.

    Article  CAS  PubMed  Google Scholar 

  165. Sneppen, K., Trusina, A. & Rosvall, M. Hide-and-seek on complex networks. Europhys. Lett. 69, 853–859 (2005).

    Article  CAS  Google Scholar 

  166. Kaiser, M., Görner, M. & Hilgetag, C. C. Criticality of spreading dynamics in hierarchical cluster networks without inhibition. N. J. Phys. 9, 110 (2007).

    Article  Google Scholar 

  167. Pei, S. & Makse, H. A. Spreading dynamics in complex networks. J. Stat. Mech. Theory Exp. 2013, P12002 (2013).

    Article  Google Scholar 

  168. Wook Yoo, S. et al. A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer’s disease. Sci. Rep. 5, 10057 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kaiser, M., Martin, R., Andras, P. & Young, M. P. Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 25, 3185–3192 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

C.S. acknowledges support from the Australian Research Council (grant number DP170101815). O.S. acknowledges support from the National Institute of Health (R01 122957). A.Z. acknowledges support from the National Health and Medical Research Council of Australia (APP1118153).

Author information

Authors and Affiliations

Authors

Contributions

The authors all researched data for the article, provided substantial contributions to discussion of its content and reviewed and edited the manuscript before submission. C.S. wrote the manuscript.

Corresponding author

Correspondence to Caio Seguin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks M. Cole; A. Kuceyeski; and J. Medaglia, who co-reviewed with H. Stoll, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Complex networks

Networks with non-trivial topology, with features such as modular structure, hub nodes or small-world architecture.

Connectomes

Networks of structural connections between neural elements. Connections may vary from single synapses to large-scale white matter tracts, depending on the spatial scale of neural elements.

Decentralized systems

Systems in which individual elements possess only local knowledge of network organization. They stand in contrast to centralized systems, in which elements or a global controller has access to a bird’s eye view of the network.

Delay cost

Efficiency of signal transmission through the network.

Diffusion processes

Network communication via broadcasting or random walks dynamics.

Dimensions of network communication cost

Putative evolutionary pressures that may have shaped connectome architecture and neural signalling mechanisms.

Energetic cost

Metabolic expenditure from signal transmission through the network.

Informational cost

Amount of knowledge about network topology required to communicate signals.

Network communication measure

A measure that quantifies specific properties of communication under a given model.

Network communication models

Signalling conceptualizations or propagation algorithms to guide communication between nodes.

Network topology

The organizational features of a network of interconnected elements.

Neural elements

A neural element could be a neuron, neuronal population or macroscale brain region and is represented by a node in a neural network.

Parametric models

Network communication via hybrid strategies that combine routing and diffusion.

Polysynaptic communication

A communication process mediated by one or more intermediate neural elements.

Routing protocols

Network communication via selective and efficient paths.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seguin, C., Sporns, O. & Zalesky, A. Brain network communication: concepts, models and applications. Nat. Rev. Neurosci. 24, 557–574 (2023). https://doi.org/10.1038/s41583-023-00718-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00718-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing