Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural signalling of gut mechanosensation in ingestive and digestive processes

Abstract

Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes — ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation — that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanosensory signalling pathways from the digestive tract to the brain.
Fig. 2: Neural circuits for mechanosensory control of digestive processes in the oral cavity.
Fig. 3: Neural circuits for mechanosensory control of the digestive processes in the oesophagus, stomach and intestines.

Similar content being viewed by others

References

  1. Bayliss, W. M. & Starling, E. H. The movements and innervation of the small intestine. J. Physiol. 24, 99–143 (1899). This historical study shows that small intestinal distension evokes muscle contraction above and relaxation below the distended site and this can be intrinsically mediated by enteric neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Langley, J. N. On inhibitory fibres in the vagus for the end of the œsophagus and the stomach. J. Physiol. 23, 407–414 (1898).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller, F. R. & Sherrington, C. S. Some observations on the bucco-pharyngeal stage of reflex deglutition in the cat. Q. J. Exp. Physiol. 9, 147–186 (1915).

    Google Scholar 

  4. Lashley, K. S. Reflex secretion of the human parotid gland. J. Exp. Psychol. 1, 461–493 (1916).

    Google Scholar 

  5. Cannon, W. B. The nature of gastric peristalsis. Am. J. Physiol. Legacy Content 29, 250–266 (1911).

    Google Scholar 

  6. Cannon, W. B. & Lieb, C. W. The receptive relaxation of the stomach. Am. J. Physiol. Legacy Content 29, 267–273 (1911).

    Google Scholar 

  7. Meltzer, S. J. Secondary peristalsis of the esophagus — a demonstration on a dog with a permanent esophageal fistula. Proc. Soc. Exp. Biol. Med. 4, 35–37 (1906).

    Google Scholar 

  8. Veach, H. O. Studies on the innervation of smooth muscle. Am. J. Physiol. Legacy Content 76, 532–537 (1926).

    Google Scholar 

  9. Page, A. J. & Li, H. in Mechanobiology in Health and Disease (ed. Verbruggen, S. W.) 377–414 (Academic, 2018).

  10. Alcaino, C., Farrugia, G. & Beyder, A. in Current Topics in Membranes Vol. 79 (ed. Gottlieb, P. A.) 219–244 (Academic, 2017).

  11. Umans, B. D. & Liberles, S. D. Neural sensing of organ volume. Trends Neurosci. 41, 911–924 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Berthoud, H. R., Blackshaw, L. A., Brookes, S. J. H. & Grundy, D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol. Motil. 16, 28–33 (2004).

    PubMed  Google Scholar 

  13. Schwartz, G. J. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16, 866–873 (2000).

    CAS  PubMed  Google Scholar 

  14. Ritter, R. C. Gastrointestinal mechanisms of satiation for food. Physiol. Behav. 81, 249–273 (2004).

    CAS  PubMed  Google Scholar 

  15. Cummings, D. E. & Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Invest. 117, 13–23 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Andermann, M. L. & Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, D.-Y. et al. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580, 376–380 (2020). This article identifies a genetically defined neural population in the mammalian brain (parabrachial Pdyn+ neurons) that links gut mechanosensation and appetite regulation.

    CAS  PubMed  Google Scholar 

  18. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016). This pioneering study reports the identification of genetically defined vagal sensory neurons (Glp1r+ neurons) that detect gastric and intestinal distension.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143.e23 (2019). This elegant work uses target-specific scRNA-seq approaches to generate an atlas of the vagal cell types innervating the digestive tract and finds the appetite-suppressing effect of gastric and intestinal IGLE-forming vagal sensory neurons (Glp1r+ and Oxtr+ neurons).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brookes, S. J. H., Spencer, N. J., Costa, M. & Zagorodnyuk, V. P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10, 286–296 (2013). This seminal review categorizes endings of gut-innervating vagal and spinal afferents into five anatomically and morphologically distinct types.

    CAS  PubMed  Google Scholar 

  21. Zagorodnyuk, V. P. & Brookes, S. J. H. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J. Neurosci. 20, 6249–6255 (2000). This study uses nerve recording in combination with anterograde tracing to first provide correlative evidence that IGLEs serve as mechanoreceptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zagorodnyuk, V. P., Chen, B. N. & Brookes, S. J. H. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J. Physiol. 534, 255–268 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lynn, P. A., Olsson, C., Zagorodnyuk, V., Costa, M. & Brookes, S. J. H. Rectal intraganglionic laminar endings are transduction sites of extrinsic mechanoreceptors in the guinea pig rectum. Gastroenterology 125, 786–794 (2003).

    PubMed  Google Scholar 

  24. Capra, N. F. Mechanisms of oral sensation. Dysphagia 10, 235–247 (1995).

    CAS  PubMed  Google Scholar 

  25. Moayedi, Y., Duenas-Bianchi, L. F. & Lumpkin, E. A. Somatosensory innervation of the oral mucosa of adult and aging mice. Sci. Rep. 8, 9975 (2018). This paper systematically describes the distribution of morphologically characterized putative mechanoreceptors in the oral cavity.

    PubMed  PubMed Central  Google Scholar 

  26. Moayedi, Y., Michlig, S., Park, M., Koch, A. & Lumpkin, E. A. Somatosensory innervation of healthy human oral tissues. J. Comp. Neurol. 529, 3046–3061 (2021).

    CAS  PubMed  Google Scholar 

  27. Carlos, F. de et al. The sensory innervation of the human pharynx: searching for mechanoreceptors. Anat. Rec. 296, 1735–1746 (2013).

    Google Scholar 

  28. Abe, S.-I. et al. Nerve terminal distribution in the human tongue intrinsic muscles: an immunohistochemical study using midterm fetuses. Clin. Anat. 25, 189–197 (2012).

    PubMed  Google Scholar 

  29. Page, A. J. & Blackshaw, L. A. An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. J. Physiol. 512, 907–916 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sengupta, J. N. Esophageal sensory physiology. GI Motil. Online https://doi.org/10.1038/gimo16 (2006).

    Article  Google Scholar 

  31. Page, A. J., O’Donnell, T. A. & Blackshaw, L. A. Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels. Neuroscience 137, 627–636 (2006).

    CAS  PubMed  Google Scholar 

  32. Raab, M. & Neuhuber, W. L. Number and distribution of intraganglionic laminar endings in the mouse esophagus as demonstrated with two different immunohistochemical markers. J. Histochem. Cytochem. 53, 1023–1031 (2005).

    CAS  PubMed  Google Scholar 

  33. Neuhuber, W. L., Kressel, M., Stark, A. & Berthoud, H.-R. Vagal efferent and afferent innervation of the rat esophagus as demonstrated by anterograde DiI and DiA tracing: focus on myenteric ganglia. J. Auton. Nerv. Syst. 70, 92–102 (1998).

    CAS  PubMed  Google Scholar 

  34. Wang, F. B. & Powley, T. L. Topographic inventories of vagal afferents in gastrointestinal muscle. J. Comp. Neurol. 421, 302–324 (2000).

    CAS  PubMed  Google Scholar 

  35. Wank, M. & Neuhuber, W. L. Local differences in vagal afferent innervation of the rat esophagus are reflected by neurochemical differences at the level of the sensory ganglia and by different brainstem projections. J. Comp. Neurol. 435, 41–59 (2001).

    CAS  PubMed  Google Scholar 

  36. Zagorodnyuk, V. P., Chen, B. N., Costa, M. & Brookes, S. J. H. Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J. Physiol. 553, 575–587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Clerc, N. & Mei, N. Thoracic esophageal mechanoreceptors connected with fibers following sympathetic pathways. Brain Res. Bull. 10, 1–7 (1983).

    CAS  PubMed  Google Scholar 

  38. Sengupta, J. N., Saha, J. K. & Goyal, R. K. Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J. Neurophysiol. 64, 796–812 (1990).

    CAS  PubMed  Google Scholar 

  39. Clerc, N. & Mazzia, C. Morphological relationships of choleragenoid horseradish peroxidase-labeled spinal primary afferents with myenteric ganglia and mucosal associated lymphoid tissue in the cat esophagogastric junction. J. Comp. Neurol. 347, 171–186 (1994).

    CAS  PubMed  Google Scholar 

  40. Spencer, N. J., Kyloh, M., Beckett, E. A., Brookes, S. & Hibberd, T. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia. J. Comp. Neurol. 524, 3064–3083 (2016).

    CAS  PubMed  Google Scholar 

  41. Dong, H., Jiang, Y., Dong, J. & Mittal, R. K. Inhibitory motor neurons of the esophageal myenteric plexus are mechanosensitive. Am. J. Physiol. Cell Physiol. 308, C405–C413 (2014).

    PubMed  Google Scholar 

  42. Paintal, A. S. Impulses in vagal afferent fibres from stretch receptors in the stomach and their role in the peripheral mechanism of hunger. Nature 172, 1194–1195 (1953). This classic paper uses single-fibre recordings to first identify vagal stretch receptors that respond to stomach distension, but not contraction.

    CAS  PubMed  Google Scholar 

  43. Iggo, A. Tension receptors in the stomach and the urinary bladder. J. Physiol. 128, 593–607 (1955). Another classic single-fibre recording paper that reports the presence of vagal tension receptors that respond to both distension and contraction of the stomach.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Iggo, A. Gastric Mucosal chemoreceptors with vagal afferent fibres in the cat. Q. J. Exp. Physiol. Cogn. Med. Sci. 42, 398–409 (1957).

    CAS  PubMed  Google Scholar 

  45. Andrews, P. L., Grundy, D. & Scratcherd, T. Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. J. Physiol. 298, 513–524 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Takeshima, T. in Vagotomy: Latest Advances with Special Reference to Gastric and Duodenal Ulcers Disease (eds. Holle, F. & Andersson, S.) 106–108 (Springer, 1974).

  47. Powley, T. et al. Spatial distribution and morphometric characterization of vagal efferents associated with the myenteric plexus of the rat stomach. SPARC Consortium https://doi.org/10.26275/UKZ3-0FAO (2019).

  48. Phillips, R. J. & Powley, T. L. Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res. Rev. 34, 1–26 (2000). This review provides an in-depth discussion on tension and stretch receptors in the digestive tract, highlighting the necessity to distinguish between the two.

    CAS  PubMed  Google Scholar 

  49. Fox, E. A., Phillips, R. J., Martinson, F. A., Baronowsky, E. A. & Powley, T. L. C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anat. Embryol. 204, 11–26 (2001).

    CAS  Google Scholar 

  50. Fox, E. A. et al. Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand. Anat. Embryol. 205, 325–342 (2002).

    Google Scholar 

  51. Kim, W. S. et al. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways. Nat. Commun. 12, 157 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ozaki, N. & Gebhart, G. F. Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1449–G1459 (2001).

    CAS  PubMed  Google Scholar 

  53. Mazzuoli-Weber, G. & Schemann, M. Mechanosensitive enteric neurons in the guinea pig gastric corpus. Front. Cell. Neurosci. 9, 430 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Grundy, D. & Scratcherd, T. Sensory afferents from the gastrointestinal tract. Compr. Physiol. https://doi.org/10.1002/cphy.cp060116 (2011).

    Article  Google Scholar 

  55. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53, 159–227 (1973).

    CAS  PubMed  Google Scholar 

  56. Iggo, A. Gastro-intestinal tension receptors with unmyelinated afferent fibres in the vagus of the cat. Q. J. Exp. Physiol. Cogn. Med. Sci. 42, 130–143 (1957).

    CAS  PubMed  Google Scholar 

  57. Fox, E. A. et al. Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. J. Neurosci. 21, 8602–8615 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brierley, S. M., Jones, R. C. W., Gebhart, G. F. & Blackshaw, L. A. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127, 166–178 (2004).

    PubMed  Google Scholar 

  59. Feng, B., Brumovsky, P. R. & Gebhart, G. F. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G402–G409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Song, X. et al. Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 137, 274–284, 284.e1 (2009).

    PubMed  Google Scholar 

  61. Cottrell, D. F. Mechanoreceptors of the rabbit duodenum. Q. J. Exp. Physiol. 69, 677–684 (1984).

    CAS  PubMed  Google Scholar 

  62. Booth, C. E. et al. Influence of the pattern of jejunal distension on mesenteric afferent sensitivity in the anaesthetized rat. Neurogastroenterol. Motil. 20, 149–158 (2008).

    CAS  PubMed  Google Scholar 

  63. Ng, C., Malcolm, A., Hansen, R. & Kellow, J. E. Distension technique influences the relationship between colonic and rectal hypersensitivity in irritable bowel syndrome. Neurogastroenterol. Motil. 18, 206–210 (2006).

    CAS  PubMed  Google Scholar 

  64. Spencer, N. J., Kyloh, M. & Duffield, M. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique. PLoS ONE 9, e112466 (2014). This study uses anterograde tracing from the DRG to selectively label spinal afferents and comprehensively characterizes the ending types in the large intestine.

    PubMed  PubMed Central  Google Scholar 

  65. Lynn, P., Zagorodnyuk, V., Hennig, G., Costa, M. & Brookes, S. Mechanical activation of rectal intraganglionic laminar endings in the guinea pig distal gut. J. Physiol. 564, 589–601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Spencer, N. J. & Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 17, 338–351 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Mazzuoli-Weber, G. & Schemann, M. Mechanosensitivity in the enteric nervous system. Front. Cell. Neurosci. 9, 408 (2015). This article systematically reviews the literature on mechanosensitive enteric neurons and classifies these based on the optimal stimulus and response pattern.

    PubMed  PubMed Central  Google Scholar 

  68. Spencer, N. J. & Smith, T. K. Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J. Physiol. 558, 577–596 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kunze, W. A. A., Clerc, N., Bertrand, P. P. & Furness, J. B. Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J. Physiol. 517, 547–561 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mao, Y., Wang, B. & Kunze, W. Characterization of myenteric sensory neurons in the mouse small intestine. J. Neurophysiol. 96, 998–1010 (2006).

    PubMed  Google Scholar 

  71. Stebbing, M. J. & Bornstein, J. C. Electrophysiological analysis of the convergence of peripheral inputs onto neurons of the coeliac ganglion in the guinea pig. J. Auton. Nerv. Syst. 46, 93–105 (1994).

    CAS  PubMed  Google Scholar 

  72. Bywater, R. A. R. Activity following colonic distension in enteric sensory fibres projecting to the inferior mesenteric ganglion in the guinea pig. J. Auton. Nerv. Syst. 46, 19–26 (1994).

    CAS  PubMed  Google Scholar 

  73. Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. & Brookes, S. J. H. Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 225, 118–129 (2012).

    CAS  PubMed  Google Scholar 

  74. Miller, S. M. & Szurszewski, J. H. Circumferential, not longitudinal, colonic stretch increases synaptic input to mouse prevertebral ganglion neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1129–G1138 (2003).

    CAS  PubMed  Google Scholar 

  75. Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. & Brookes, S. J. H. Viscerofugal neurons recorded from guinea-pig colonic nerves after organ culture. Neurogastroenterol. Motil. 24, 1041–e548 (2012).

    CAS  PubMed  Google Scholar 

  76. Miller, S. M. & Szurszewski, J. H. Relationship between colonic motility and cholinergic mechanosensory afferent synaptic input to mouse superior mesenteric ganglion. Neurogastroenterol. Motil. 14, 339–348 (2002).

    CAS  PubMed  Google Scholar 

  77. Alcaino, C. et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl Acad. Sci. USA 115, E7632–E7641 (2018). This article shows that some enterochromaffin cells are directly mechanosensitive, and they use PIEZO2 to convert mechanical force into ionic current, which ultimately leads to serotonin release.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kentish, S. J. & Page, A. J. Plasticity of gastro-intestinal vagal afferent endings. Physiol. Behav. 136, 170–178 (2014).

    CAS  PubMed  Google Scholar 

  80. Kentish, S. J., Frisby, C. L., Kennaway, D. J., Wittert, G. A. & Page, A. J. Circadian variation in gastric vagal afferent mechanosensitivity. J. Neurosci. 33, 19238–19242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kentish, S. J. et al. Time-restricted feeding prevents ablation of diurnal rhythms in gastric vagal afferent mechanosensitivity observed in high-fat diet-induced obese mice. J. Neurosci. 38, 5088–5095 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kentish, S. et al. Diet-induced adaptation of vagal afferent function. J. Physiol. 590, 209–221 (2012). This study illustrates remarkable plasticity of mechanosensitivity of vagal afferents in response to nutrient deficit or surfeit.

    CAS  PubMed  Google Scholar 

  83. Li, H. et al. Pregnancy-related plasticity of gastric vagal afferent signals in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G183–G192 (2020).

    PubMed  Google Scholar 

  84. Kentish, S. J. et al. Gastric vagal afferent modulation by leptin is influenced by food intake status. J. Physiol. 591, 1921–1934 (2013).

    CAS  PubMed  Google Scholar 

  85. Brierley, S. M. Molecular basis of mechanosensitivity. Auton. Neurosci. 153, 58–68 (2010).

    CAS  PubMed  Google Scholar 

  86. Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).

    CAS  PubMed  Google Scholar 

  87. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020). This recent review is an excellent summary of the structure and physiology of mechanically gated ion channels and mechanisms for mechanical force detection.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Won, J. et al. Piezo2 expression in mechanosensitive dental primary afferent neurons. J. Dent. Res. 96, 931–937 (2017).

    CAS  PubMed  Google Scholar 

  89. Prescott, S. L., Umans, B. D., Williams, E. K., Brust, R. D. & Liberles, S. D. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181, 574–589.e14 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nguyen, M. Q., Wu, Y., Bonilla, L. S., von Buchholtz, L. J. & Ryba, N. J. Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing. PLoS ONE 12, e0185543 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Zhang, J. et al. Sour sensing from the tongue to the brain. Cell 179, 392–402.e15 (2019).

    CAS  PubMed  Google Scholar 

  92. Page, A. J. et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54, 1408–1415 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bielefeldt, K. & Davis, B. M. Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G130–G138 (2008).

    CAS  PubMed  Google Scholar 

  94. Brierley, S. M. et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137, 2084–2095.e3 (2009).

    CAS  PubMed  Google Scholar 

  95. Ru, F., Banovcin, P. & Kollarik, M. Acid sensitivity of the spinal dorsal root ganglia C-fiber nociceptors innervating the guinea pig esophagus. Neurogastroenterol. Motil. 27, 865–874 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Page, A. J., Brierley, S. M., Martin, C. M., Hughes, P. A. & Blackshaw, A. L. Acid sensing ion channels 2 and 3 are required for inhibition of visceral nociceptors by benzamil. Pain 133, 150–160 (2007).

    CAS  PubMed  Google Scholar 

  97. Kentish, S. J. et al. TRPV1 channels and gastric vagal afferent signalling in lean and high fat diet induced obese mice. PLoS ONE 10, e0135892 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Lee, K.-J., Vos, R. & Tack, J. Effects of capsaicin on the sensorimotor function of the proximal stomach in humans. Aliment. Pharmacol. Ther. 19, 415–425 (2004).

    CAS  PubMed  Google Scholar 

  99. Blackshaw, L. A., Page, A. J. & Partosoedarso, E. R. Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience 96, 407–416 (2000).

    CAS  PubMed  Google Scholar 

  100. Bielefeldt, K., Zhong, F., Koerber, H. R. & Davis, B. M. Phenotypic characterization of gastric sensory neurons in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G987–G997 (2006).

    CAS  PubMed  Google Scholar 

  101. Kondo, T. et al. Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats. Gut 58, 1342–1352 (2009).

    CAS  PubMed  Google Scholar 

  102. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, P., Jia, Y., Liu, T., Jan, Y.-N. & Zhang, W. Visceral mechano-sensing neurons control Drosophila feeding by using piezo as a sensor. Neuron 108, 640–650.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Min, S. et al. Control of feeding by Piezo-mediated gut mechanosensation in Drosophila. eLife 10, e63049 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Oh, Y. et al. Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. Neuron 109, 1979–1995.e6 (2021). Together with Wang et al. (2020) and Min et al. (2021), this recent Drosophila study shows a critical role of Piezo and Piezo-expressing neurons innervating the crop (the mammalian stomach equivalent) in crop distension-induced appetite regulation.

    CAS  PubMed  Google Scholar 

  106. Jones, R. C. W., Xu, L. & Gebhart, G. F. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 25, 10981–10989 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rong, W. et al. Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J. Physiol. 560, 867–881 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, F. et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 595, 79–91 (2017).

    CAS  PubMed  Google Scholar 

  109. Cordes, S. P. Molecular genetics of cranial nerve development in mouse. Nat. Rev. Neurosci. 2, 611–623 (2001).

    CAS  PubMed  Google Scholar 

  110. Massey, B. T. Physiology of oral cavity, pharynx and upper esophageal sphincter. GI Motil. Online https://doi.org/10.1038/gimo2 (2006).

    Article  Google Scholar 

  111. Johansson, R. S. & Olsson, K. Å. Microelectrode recordings from human oral mechanoreceptors. Brain Res. 118, 307–311 (1976).

    CAS  PubMed  Google Scholar 

  112. Johansson, R. S., Trulsson, M., Olsson, K. Å. & Westberg, K.-G. Mechanoreceptor activity from the human face and oral mucosa. Exp. Brain Res. 72, 204–208 (1988).

    CAS  PubMed  Google Scholar 

  113. Trulsson, M. & Essick, G. K. Low-threshold mechanoreceptive afferents in the human lingual nerve. J. Neurophysiol. 77, 737–748 (1997).

    CAS  PubMed  Google Scholar 

  114. Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005).

    CAS  PubMed  Google Scholar 

  115. Matsuo, R. et al. Neural activity of chorda tympani mechanosensitive fibers during licking behavior in rats. Brain Res. 689, 289–298 (1995).

    CAS  PubMed  Google Scholar 

  116. Fisch, A. in Nerves and Nerve Injuries (eds Tubbs, R. S. et al.) 195–225 (Elsevier, 2015).

  117. Furusawa, K., Yamaoka, M. & Kumai, T. Properties of the lingual and LVP branches of the glossopharyngeal nerve. Brain Res. Bull. 28, 1–7 (1992).

    CAS  PubMed  Google Scholar 

  118. Takagi, S., Umezaki, T. & Shin, T. Convergence of laryngeal afferents with different natures upon cat NTS neurons. Brain Res. Bull. 38, 261–268 (1995).

    CAS  PubMed  Google Scholar 

  119. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  120. Contreras, R. J., Beckstead, R. M. & Norgren, R. The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J. Auton. Nerv. Syst. 6, 303–322 (1982). This article provides a useful, detailed description of the distribution of trigeminal, facial, glossopharyngeal and vagal afferent endings in the hindbrain areas, particularly in the NTS.

    CAS  PubMed  Google Scholar 

  121. Altschuler, S. M., Bao, X. M., Bieger, D., Hopkins, D. A. & Miselis, R. R. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J. Comp. Neurol. 283, 248–268 (1989).

    CAS  PubMed  Google Scholar 

  122. Travers, S. P. & Norgren, R. Organization of orosensory responses in the nucleus of the solitary tract of rat. J. Neurophysiol. 73, 2144–2162 (1995).

    CAS  PubMed  Google Scholar 

  123. Azerad, J., Woda, A. & Albe-Fessard, D. Physiological properties of neurons in different parts of the cat trigeminal sensory complex. Brain Res. 246, 7–21 (1982).

    CAS  PubMed  Google Scholar 

  124. Linden, R. W. Properties of intraoral mechanoreceptors represented in the mesencephalic nucleus of the fifth nerve in the cat. J. Physiol. 279, 395–408 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Herbert, H., Moga, M. M. & Saper, C. B. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J. Comp. Neurol. 293, 540–580 (1990).

    CAS  PubMed  Google Scholar 

  126. Halsell, C. B. & Travers, S. P. Anterior and posterior oral cavity responsive neurons are differentially distributed among parabrachial subnuclei in rat. J. Neurophysiol. 78, 920–938 (1997).

    CAS  PubMed  Google Scholar 

  127. Fryscak, T., Zenker, W. & Kantner, D. Afferent and efferent innervation of the rat esophagus. A tracing study with horseradish peroxidase and nuclear yellow. Anat. Embryol. 170, 63–70 (1984).

    CAS  Google Scholar 

  128. Rogers, R. C., Travagli, R. A. & Hermann, G. E. Noradrenergic neurons in the rat solitary nucleus participate in the esophageal–gastric relaxation reflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R479–R489 (2003).

    CAS  PubMed  Google Scholar 

  129. Rogers, R. C., Hermann, G. E. & Travagli, R. A. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J. Physiol. 514, 369–383 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Barrett, R. T., Bao, X., Miselis, R. R. & Altschuler, S. M. Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology 107, 728–737 (1994).

    CAS  PubMed  Google Scholar 

  131. Lang, I. M., Medda, B. K. & Shaker, R. Differential activation of medullary vagal nuclei caused by stimulation of different esophageal mechanoreceptors. Brain Res. 1368, 119–133 (2011).

    CAS  PubMed  Google Scholar 

  132. Collman, P. I., Tremblay, L. & Diamant, N. E. The distribution of spinal and vagal sensory neurons that innervate the esophagus of the cat. Gastroenterology 103, 817–822 (1992).

    CAS  PubMed  Google Scholar 

  133. Euchner-Wamser, I., Sengupta, J. N., Gebhart, G. F. & Meller, S. T. Characterization of responses of T2–T4 spinal cord neurons to esophageal distension in the rat. J. Neurophysiol. 69, 868–883 (1993).

    CAS  PubMed  Google Scholar 

  134. Qin, C., Chandler, M. J., Jou, C. J. & Foreman, R. D. Responses and afferent pathways of C1–C2 spinal neurons to cervical and thoracic esophageal stimulation in rats. J. Neurophysiol. 91, 2227–2235 (2004).

    PubMed  Google Scholar 

  135. Young, R. L., Cooper, N. J. & Blackshaw, L. A. Chemical coding and central projections of gastric vagal afferent neurons. Neurogastroenterol. Motil. 20, 708–718 (2008).

    CAS  PubMed  Google Scholar 

  136. Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665–678.e23 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mazda, T., Yamamoto, H., Fujimura, M. & Fujimiya, M. Gastric distension-induced release of 5-HT stimulates c-fos expression in specific brain nuclei via 5-HT3 receptors in conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G228–G235 (2004).

    CAS  PubMed  Google Scholar 

  138. Willing, A. E. & Berthoud, H. R. Gastric distension-induced c-fos expression in catecholaminergic neurons of rat dorsal vagal complex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 272, R59–R67 (1997).

    CAS  Google Scholar 

  139. Borgmann, D. et al. Gut–brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab. 33, 1466–1482.e7 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Brierley, D. I. et al. Central and peripheral GLP-1 systems independently suppress eating. Nat. Metab. 3, 258–273 (2021).

    PubMed  PubMed Central  Google Scholar 

  141. Rinaman, L., Card, J. P., Schwaber, J. S. & Miselis, R. R. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J. Neurosci. 9, 1985–1996 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Tao, J. et al. Highly selective brain-to-gut communication via genetically defined vagus neurons. Neuron 109, 2106–2115.e4 (2021). This recent study uses single-nucleus RNA sequencing to uncover molecularly distinct subpopulations of DMV neurons and finds that two subpopulations (Cck+ and Pdyn+ DMV neurons) preferentially innervate cholinergic and nitrergic enteric neurons in the distal stomach, respectively.

    CAS  PubMed  Google Scholar 

  143. Palmiter, R. D. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 41, 280–293 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Qin, C., Chen, J. D. Z., Zhang, J. & Foreman, R. D. Modulatory effects and afferent pathways of gastric electrical stimulation on rat thoracic spinal neurons receiving input from the stomach. Neurosci. Res. 57, 29–39 (2007).

    PubMed  Google Scholar 

  145. Zhong, F., Christianson, J. A., Davis, B. M. & Bielefeldt, K. Dichotomizing axons in spinal and vagal afferents of the mouse stomach. Dig. Dis. Sci. 53, 194–203 (2008).

    PubMed  Google Scholar 

  146. Zhang, X., Fogel, R. & Renehan, W. E. Physiology and morphology of neurons in the dorsal motor nucleus of the vagus and the nucleus of the solitary tract that are sensitive to distension of the small intestine. J. Comp. Neurol. 323, 432–448 (1992).

    CAS  PubMed  Google Scholar 

  147. Wang, L., Martínez, V., Larauche, M. & Taché, Y. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain. Brain Res. 1247, 79–91 (2009).

    CAS  PubMed  Google Scholar 

  148. Harrington, A. M., Castro, J., Erickson, A., Grundy, L. & Brierley, S. M. in Physiology of the Gastrointestinal Tract 6th edn (ed. Said, H. M.) 387–418 (Academic, 2018).

  149. Qin, C., Chen, J. D. Z., Zhang, J. & Foreman, R. D. Characterization of T9–T10 spinal neurons with duodenal input and modulation by gastric electrical stimulation in rats. Brain Res. 1152, 75–86 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Traub, R. J., Herdegen, T. & Gebhart, G. F. Differential expression of c-fos and c-jun in two regions of the rat spinal cord following noxious colorectal distention. Neurosci. Lett. 160, 121–125 (1993).

    CAS  PubMed  Google Scholar 

  151. Trulsson, M. & Johansson, R. S. Orofacial mechanoreceptors in humans: encoding characteristics and responses during natural orofacial behaviors. Behav. Brain Res. 135, 27–33 (2002).

    PubMed  Google Scholar 

  152. Dessem, D., Iyadurai, O. D. & Taylor, A. The role of periodontal receptors in the jaw-opening reflex in the cat. J. Physiol. 406, 315–330 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Collier, T. G. & Lund, J. P. The effect of sectioning the trigeminal sensory root on the periodontally-induced jaw-opening reflex. J. Dent. Res. 66, 1533–1537 (1987).

    CAS  PubMed  Google Scholar 

  154. Tsuboi, A., Kolta, A., Chen, C. C. & Lund, J. P. Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur. J. Neurosci. 17, 229–238 (2003).

    CAS  PubMed  Google Scholar 

  155. Matsuo, R., Yamamoto, T., Yoshitaka, K. & Morimoto, T. Neural substrates for reflex salivation induced by taste, mechanical, and thermal stimulation of the oral region in decerebrate rats. Jpn. J. Physiol. 39, 349–357 (1989).

    CAS  PubMed  Google Scholar 

  156. Anderson, D. J. & Hector, M. P. Periodontal mechanoreceptors and parotid secretion in animals and man. J. Dent. Res. 66, 518–523 (1987).

    CAS  PubMed  Google Scholar 

  157. Inenaga, K., Inangaki, T., Hosokawa, R. & Ono, K. Parotid salivary secretion induced by stimulation of periodontal regions with toothbrush in humans. J. Med. Invest. 56 (Suppl), 277 (2009).

    PubMed  Google Scholar 

  158. Proctor, G. B. The physiology of salivary secretion. Periodontology 70, 11–25 (2016).

    Google Scholar 

  159. Silverthorn, D. U., Ober, W. C., Garrison, C. W., Silverthorn, A. C. & Johnson, B. R. Human Physiology: an Integrated Approach (Pearson/Benjamin Cummings, 2010).

  160. Kitagawa, J.-I., Shingai, T., Takahashi, Y. & Yamada, Y. Pharyngeal branch of the glossopharyngeal nerve plays a major role in reflex swallowing from the pharynx. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1342–R1347 (2002).

    CAS  PubMed  Google Scholar 

  161. Thexton, A. J. & Crompton, A. W. in The Scientific Basis of Eating Vol. 9 (ed. Linden, R. W. A.) 168–222 (Karger, 1998).

  162. Perlman, A. L. Neuroanatomy and neurophysiology: implications for swallowing. Top. Stroke Rehabil. 3, 1–13 (1996).

    PubMed  Google Scholar 

  163. Bassi, G. S., Humphris, G. M. & Longman, L. P. The etiology and management of gagging: a review of the literature. J. Prosthet. Dent. 91, 459–467 (2004).

    CAS  PubMed  Google Scholar 

  164. Torii, H. Studies on neurophysiological mechanisms of gagging in cats. Jpn. J. Oral. Biol. 24, 169–181 (1982).

    Google Scholar 

  165. Miller, A. J. Oral and pharyngeal reflexes in the mammalian nervous system: their diverse range in complexity and the pivotal role of the tongue. Crit. Rev. Oral. Biol. Med. 13, 409–425 (2002).

    CAS  PubMed  Google Scholar 

  166. Leder, S. B. Gag reflex and dysphagia. Head Neck 18, 138–141 (1996).

    CAS  PubMed  Google Scholar 

  167. Spence, C. Multisensory flavor perception. Cell 161, 24–35 (2015).

    CAS  PubMed  Google Scholar 

  168. Koç, H., Vinyard, C. J., Essick, G. K. & Foegeding, E. A. Food oral processing: conversion of food structure to textural perception. Annu. Rev. Food Sci. Technol. 4, 237–266 (2013).

    PubMed  Google Scholar 

  169. Zhang, Y. V., Aikin, T. J., Li, Z. & Montell, C. The basis of food texture sensation in Drosophila. Neuron 91, 863–877 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Jeong, Y. T. et al. Mechanosensory neurons control sweet sensing in Drosophila. Nat Commun 7, 12872 (2016).

    PubMed  PubMed Central  Google Scholar 

  171. Sánchez-Alcañiz, J. A., Zappia, G., Marion-Poll, F. & Benton, R. A mechanosensory receptor required for food texture detection in Drosophila. Nat. Commun. 8, 14192 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Zhou, Y., Cao, L.-H., Sui, X.-W., Guo, X.-Q. & Luo, D.-G. Mechanosensory circuits coordinate two opposing motor actions in Drosophila feeding. Sci. Adv. 5, eaaw5141 (2019). Together with Zhang et al. (2016), Jeong et al. (2016) and Sánchez-Alcañiz et al. (2017), this important Drosophila study finds that several mechanosensitive ion channels (transmembrane channel-like protein, Nanchung and No mechanoreceptor potential C) expressed in the labella (the mammalian tongue equivalent) are essential for food texture detection and discrimination.

    PubMed  PubMed Central  Google Scholar 

  173. Ikeda, A., Miyamoto, J. J., Usui, N., Taira, M. & Moriyama, K. Chewing stimulation reduces appetite ratings and attentional bias toward visual food stimuli in healthy-weight individuals. Front. Psychol. 9, 99 (2018).

    PubMed  PubMed Central  Google Scholar 

  174. Xu, J. et al. The effect of gum chewing on blood GLP-1 concentration in fasted, healthy, non-obese men. Endocrine 50, 93–98 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Goyal, R. K. & Chaudhury, A. Physiology of normal esophageal motility. J. Clin. Gastroenterol. 42, 610–619 (2008).

    PubMed  PubMed Central  Google Scholar 

  176. Abrahamsson, H. & Jansson, G. Elicitation of reflex vagal relaxation of the stomach from pharynx and esophagus in the cat. Acta Physiol. Scand. 77, 172–178 (1969).

    CAS  PubMed  Google Scholar 

  177. Mittal, R. K. & Goyal, R. K. Sphincter mechanisms at the lower end of the esophagus. GI Motil. Online https://doi.org/10.1038/gimo14 (2006).

    Article  Google Scholar 

  178. Lang, I. M., Medda, B. K. & Shaker, R. Mechanisms of reflexes induced by esophageal distension. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1246–G1263 (2001).

    CAS  PubMed  Google Scholar 

  179. Hwang, K. Mechanism of transportation of the content of the esophagus. J. Appl. Physiol. 6, 781–796 (1954).

    CAS  PubMed  Google Scholar 

  180. Christensen, J. & Lund, G. F. Esophageal responses to distension and electrical stimulation. J. Clin. Invest. 48, 408–419 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Paterson, W. G. Esophageal peristalsis. GI Motil. Online https://doi.org/10.1038/gimo13 (2006).

    Article  Google Scholar 

  182. Lang, I. M., Medda, B. K., Jadcherla, S. & Shaker, R. The role of the superior laryngeal nerve in esophageal reflexes. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1445–G1457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Blank, E. L., Greenwood, B. & Dodds, W. J. Cholinergic control of smooth muscle peristalsis in the cat esophagus. Am. J. Physiol. 257, G517–G523 (1989).

    CAS  PubMed  Google Scholar 

  184. Cunningham, E. T. & Sawchenko, P. E. Central neural control of esophageal motility: a review. Dysphagia 5, 35–51 (1990).

    CAS  PubMed  Google Scholar 

  185. Paterson, W. G., Rattan, S. & Goyal, R. K. Experimental induction of isolated lower esophageal sphincter relaxation in anesthetized opossums. J. Clin. Invest. 77, 1187–1193 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Rossiter, C. D. et al. Control of lower esophageal sphincter pressure by two sites in dorsal motor nucleus of the vagus. Am. J. Physiol. 259, G899–G906 (1990).

    CAS  PubMed  Google Scholar 

  187. Barone, F. C., Lombardi, D. M. & Ormsbee, H. S. Effects of hindbrain stimulation on lower esophageal sphincter pressure in the cat. Am. J. Physiol. 247, G70–G78 (1984).

    CAS  PubMed  Google Scholar 

  188. Jiang, Y., Bhargava, V. & Mittal, R. K. Mechanism of stretch-activated excitatory and inhibitory responses in the lower esophageal sphincter. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G397–G405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Yamato, S., Saha, J. K. & Goyal, R. K. Role of nitric oxide in lower esophageal sphincter relaxation to swallowing. Life Sci. 50, 1263–1272 (1992).

    CAS  PubMed  Google Scholar 

  190. Sivarao, D. V., Mashimo, H. L., Thatte, H. S. & Goyal, R. K. Lower esophageal sphincter is achalasic in nNOS−/− and hypotensive in W/Wv mutant mice. Gastroenterology 121, 34–42 (2001).

    CAS  PubMed  Google Scholar 

  191. Arakawa, T. et al. New aspects of gastric adaptive relaxation, reflex after food intake for more food: involvement of capsaicin-sensitive sensory nerves and nitric oxide. J. Smooth Muscle Res. 33, 81–88 (1997).

    CAS  PubMed  Google Scholar 

  192. Uno, H. & Higuchi, K. in Trends in Gastroenterology and Hepatology (eds. Asakura, H., Aoyagi, Y. & Nakazawa, S.) 95–98 (Springer, 2001).

  193. Powley, T. L. & Phillips, R. J. Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol. Behav. 82, 69–74 (2004).

    CAS  PubMed  Google Scholar 

  194. Towbin, E. J. Gastric distention as a factor in the satiation of thirst in esophagostomized dogs. Am. J. Physiol. 159, 533–541 (1949).

    CAS  PubMed  Google Scholar 

  195. Miller, N. E. Experiments on motivation: studies combining psychological, physiological, and pharmacological techniques. Science 126, 1271–1278 (1957). This seminal study uses a gastric balloon to distend the stomach in behaving rats and finds that gastric distension reduces appetite and is avoided.

    CAS  PubMed  Google Scholar 

  196. Geliebter, A. Gastric distension and gastric capacity in relation to food intake in humans. Physiol. Behav. 44, 665–668 (1988). This is an early influential study showing that gastric distension using intragastric balloon inflation suppresses food intake in patients with obesity, laying the foundation for the development of gastric balloon therapy.

    CAS  PubMed  Google Scholar 

  197. Phillips, R. J. & Powley, T. L. Gastric volume detection after selective vagotomies in rats. Am. J. Physiol. 274, R1626–R1638 (1998).

    CAS  PubMed  Google Scholar 

  198. Gonzalez, M. F. & Deutsch, J. A. Vagotomy abolishes cues of satiety produced by gastric distension. Science 212, 1283–1284 (1981). This pioneering study shows that the vagus nerve is required for the appetite-suppressing effect of gastric distension.

    CAS  PubMed  Google Scholar 

  199. Johnson, R. L. & Wilson, C. G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 11, 203–213 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. D’Agostino, G. et al. Nucleus of the solitary tract serotonin 5-HT2C receptors modulate food intake. Cell Metab. 28, 619–630.e5 (2018).

    PubMed  PubMed Central  Google Scholar 

  201. Chen, J. et al. A vagal–NTS neural pathway that stimulates feeding. Curr. Biol. 30, 3986–3998.e5 (2020).

    CAS  PubMed  Google Scholar 

  202. Aklan, I. et al. NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metab. 31, 313–326.e5 (2020).

    CAS  PubMed  Google Scholar 

  203. Roman, C. W., Derkach, V. A. & Palmiter, R. D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 7, 11905 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Gaykema, R. P. et al. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. J. Clin. Invest. 127, 1031–1045 (2017).

    PubMed  PubMed Central  Google Scholar 

  205. Mollet, A., Gilg, S., Riediger, T. & Lutz, T. A. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol. Behav. 81, 149–155 (2004).

    CAS  PubMed  Google Scholar 

  206. van der Kooy, D. Area postrema: site where cholecystokinin acts to decrease food intake. Brain Res. 295, 345–347 (1984).

    PubMed  Google Scholar 

  207. Anand, B. K. & Pillai, R. V. Activity of single neurones in the hypothalamic feeding centres: effect of gastric distension. J. Physiol. 192, 63–77 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Sharma, K. N., Anand, B. K., Dua, S. & Singh, B. Role of stomach in regulation of activities of hypothalamic feeding centers. Am. J. Physiol. 201, 593–598 (1961).

    CAS  PubMed  Google Scholar 

  209. Xu, L., Gao, S., Guo, F. & Sun, X. Effect of motilin on gastric distension sensitive neurons in arcuate nucleus and gastric motility in rat. Neurogastroenterol. Motil. 23, 265.e121 (2011).

    Google Scholar 

  210. Wang, G.-J. et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage 39, 1824–1831 (2008).

    PubMed  Google Scholar 

  211. Stephan, E. et al. Functional neuroimaging of gastric distention. J. Gastrointest. Surg. 7, 740–749 (2003).

    PubMed  Google Scholar 

  212. Ladabaum, U. et al. Gastric distention correlates with activation of multiple cortical and subcortical regions. Gastroenterology 120, 369–376 (2001).

    CAS  PubMed  Google Scholar 

  213. Vandenbergh, J. et al. Regional brain activation during proximal stomach distention in humans: a positron emission tomography study. Gastroenterology 128, 564–573 (2005).

    PubMed  Google Scholar 

  214. Luskin, A. T. et al. Extended amygdala–parabrachial circuits alter threat assessment and regulate feeding. Sci. Adv. 7, eabd3666 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Yang, W. Z. et al. Parabrachial neuron types categorically encode thermoregulation variables during heat defense. Sci. Adv. 6, eabb9414 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Li, C. et al. Defined paraventricular hypothalamic populations exhibit differential responses to food contingent on caloric state. Cell Metab. 29, 681–694.e5 (2019).

    CAS  PubMed  Google Scholar 

  217. Li, M. M. et al. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. Neuron 102, 653–667.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Kim, J. et al. Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nat. Neurosci. 22, 576–585 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Noto, T., Nagasaki, M. & Endo, T. Role of vagus nerves and gastrin in the gastric phase of acid secretion in male anesthetized rats. Am. J. Physiol. 272, G335–G339 (1997).

    CAS  PubMed  Google Scholar 

  220. Gharib Naseri, M. K., Hutson, D. & Grundy, D. Vagal influences on gastric acid secretion in response to gastric distension in the ferret. J. Auton. Nerv. Syst. 36, 25–31 (1991).

    Google Scholar 

  221. Shafik, A., El Sibai, O., Shafik, A. A. & Shafik, I. A. Mechanism of gastric emptying through the pyloric sphincter: a human study. Med. Sci. Monit. 13, CR24–CR29 (2007).

    PubMed  Google Scholar 

  222. Wiley, J., Tatum, D., Keinath, R. & Owyang, C. Participation of gastric mechanoreceptors and intestinal chemoreceptors in the gastrocolonic response. Gastroenterology 94, 1144–1149 (1988).

    CAS  PubMed  Google Scholar 

  223. Björnsson, E. S. et al. Impaired gastrocolonic response and peristaltic reflex in slow-transit constipation: role of 5-HT3 pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G400–G407 (2002).

    PubMed  Google Scholar 

  224. Feher, J. in Quantitative Human Physiology 2nd edn (ed. Feher, J.) 796–809 (Academic, 2017).

  225. Goldberg, S. L. The afferent paths of nerves involved in the vomiting reflex induced by distention of an isolated pyloric pouch. Am. J. Physiol. Legacy Content 99, 156–159 (1931).

    Google Scholar 

  226. Andrews, P., Torii, Y., Saito, H. & Matsuki, N. The pharmacology of the emetic response to upper gastrointestinal tract stimulation in Suncus murinus. Eur. J. Pharmacol. 307, 305–313 (1996).

    CAS  PubMed  Google Scholar 

  227. Takahashi, T. & Owyang, C. Characterization of vagal pathways mediating gastric accommodation reflex in rats. J. Physiol. 504, 479–488 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Andrews, P. L., Grundy, D. & Scratcherd, T. Reflex excitation of antral motility induced by gastric distension in the ferret. J. Physiol. 298, 79–84 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Ishiguchi, T. et al. Gastric distension-induced pyloric relaxation: central nervous system regulation and effects of acute hyperglycaemia in the rat. J. Physiol. 533, 801–813 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Desai, K. M., Sessa, W. C. & Vane, J. R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature 351, 477–479 (1991).

    CAS  PubMed  Google Scholar 

  231. Lim, R. K. S., Ivy, A. C. & McCarthy, J. E. Contributions to the physiology of gastric secretion. I: gastric secretion by local (mechanical and chemical) stimulation. Q. J. Exp. Physiol. 15, 13–53 (1925).

    CAS  Google Scholar 

  232. Hennig, G. W., Brookes, S. J. H. & Costa, M. Excitatory and inhibitory motor reflexes in the isolated guinea-pig stomach. J. Physiol. 501, 197–212 (1997).

    PubMed  PubMed Central  Google Scholar 

  233. Wyrwicka, W. & Garcia, R. Effect of electrical stimulation of the dorsal nucleus of the vagus nerve on gastric acid secretion in cats. Exp. Neurol. 65, 315–325 (1979).

    CAS  PubMed  Google Scholar 

  234. Berthoud, H. R., Laughton, W. B. & Powley, T. L. Vagal stimulation-induced gastric acid secretion in the anesthetized rat. J. Auton. Nerv. Syst. 16, 193–204 (1986).

    CAS  PubMed  Google Scholar 

  235. Engevik, A. C., Kaji, I. & Goldenring, J. R. The physiology of the gastric parietal cell. Physiol. Rev. 100, 573–602 (2019).

    PubMed  PubMed Central  Google Scholar 

  236. Davison, J. S. & Najafi-Farashah, A. The distension stimulus to gastric acid secretion in the isolated mouse stomach. Can. J. Physiol. Pharmacol. 63, 1533–1536 (1985).

    CAS  PubMed  Google Scholar 

  237. Youmans, W. B. Neural regulation of gastric and intestinal motility. Am. J. Med. 13, 209–226 (1952).

    CAS  PubMed  Google Scholar 

  238. Gourevitch, D. in Upper Gastrointestinal Surgery (eds. Fielding, J. W. L. & Hallissey, M. T.) 39–44 (Springer, 2005).

  239. Tansy, M. F. & Kendall, F. M. Experimental and clinical aspects of gastrocolic reflexes. Dig. Dis. Sci. 18, 521–531 (1973).

    CAS  Google Scholar 

  240. Koga, T. & Fukuda, H. Neurons in the nucleus of the solitary tract mediating inputs from emetic vagal afferents and the area postrema to the pattern generator for the emetic act in dogs. Neurosci. Res. 14, 166–179 (1992).

    CAS  PubMed  Google Scholar 

  241. Miller, A. D. & Nonaka, S. Mechanisms of vomiting induced by serotonin-3 receptor agonists in the cat: effect of vagotomy, splanchnicectomy or area postrema lesion. J. Pharmacol. Exp. Ther. 260, 509–517 (1992).

    CAS  PubMed  Google Scholar 

  242. Babic, T. & Browning, K. N. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur. J. Pharmacol. 722, 38–47 (2014).

    CAS  PubMed  Google Scholar 

  243. Bayliss, W. M. & Starling, E. H. The movements and the innervation of the large intestine. J. Physiol. 26, 107–118 (1900).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Spencer, N. J., Dinning, P. G., Brookes, S. J. & Costa, M. Insights into the mechanisms underlying colonic motor patterns. J. Physiol. 594, 4099–4116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Grider, J. R. Interplay of VIP and nitric oxide in regulation of the descending relaxation phase of peristalsis. Am. J. Physiol. 264, G334–G340 (1993).

    CAS  PubMed  Google Scholar 

  246. Grider, J. R. Identification of neurotransmitters regulating intestinal peristaltic reflex in humans. Gastroenterology 97, 1414–1419 (1989).

    CAS  PubMed  Google Scholar 

  247. Del Colle, A., Israelyan, N. & Gross Margolis, K. Novel aspects of enteric serotonergic signaling in health and brain–gut disease. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G130–G143 (2019).

    PubMed  PubMed Central  Google Scholar 

  248. Smith, T. K. & Gershon, M. D. CrossTalk proposal: 5-HT is necessary for peristalsis. J. Physiol. 593, 3225–3227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Spencer, N. J., Sia, T. C., Brookes, S. J., Costa, M. & Keating, D. J. CrossTalk opposing view: 5-HT is not necessary for peristalsis. J. Physiol. 593, 3229–3231 (2015). Smith and Gershon (2015) and this article provide opposing views on the requirement of serotonin in intestinal peristalsis and describe experimental evidence supporting each view.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Kanazawa, M. et al. Site-specific differences in central processing of visceral stimuli from the rectum and the descending colon in men. Neurogastroenterol. Motil. 22, 173–80.e53 (2010).

    CAS  PubMed  Google Scholar 

  251. Vilensky, J. A., Bell, D. R. & Gilman, S. ‘An investigation of the nervous control of defecation’ by Denny-Brown and Robertson: a classic paper revisited. Colorectal Dis. 6, 376–383 (2004).

    Google Scholar 

  252. Remes-Troche, J. M., De-Ocampo, S., Paulson, J. & Rao, S. S. C. Recto-anal reflexes and sensori-motor rectal hyposensitivity. Dis. Colon. Rectum 53, 1047–1054 (2010).

    PubMed  PubMed Central  Google Scholar 

  253. Brading, A. F. & Ramalingam, T. in Progress in Brain Research Vol. 152 (eds Weaver, L. C. & Polosa, C.) 345–358 (Elsevier, 2006).

  254. Gunterberg, B., Kewenter, J., Petersén, I. & Stener, B. Anorectal function after major resections of the sacrum with bilateral or unilateral sacrifice of sacral nerves. Br. J. Surg. 63, 546–554 (1976).

    CAS  PubMed  Google Scholar 

  255. Sangwan, Y. P. & Solla, J. A. Internal anal sphincter: advances and insights. Dis. Colon. Rectum 41, 1297–1311 (1998).

    CAS  PubMed  Google Scholar 

  256. Nagano, M., Ishimizu, Y., Saitoh, S., Okada, H. & Fukuda, H. The defecation reflex in rats: fundamental properties and the reflex center. Auton. Neurosci. 111, 48–56 (2004).

    PubMed  Google Scholar 

  257. Rouzade‐Dominguez, M.-L., Pernar, L., Beck, S. & Valentino, R. J. Convergent responses of Barrington’s nucleus neurons to pelvic visceral stimuli in the rat: a juxtacellular labelling study. Eur. J. Neurosci. 18, 3325–3334 (2003).

    PubMed  Google Scholar 

  258. Pavcovich, L. A., Yang, M., Miselis, R. R. & Valentino, R. J. Novel role for the pontine micturition center, Barrington’s nucleus: evidence for coordination of colonic and forebrain activity. Brain Res. 784, 355–361 (1998).

    CAS  PubMed  Google Scholar 

  259. Vizzard, M. A., Brisson, M. & de Groat, W. C. Transneuronal labeling of neurons in the adult rat central nervous system following inoculation of pseudorabies virus into the colon. Cell Tissue Res. 299, 9–26 (2000).

    CAS  PubMed  Google Scholar 

  260. Kuzuhara, S., Kanazawa, I. & Nakanishi, T. Topographical localization of the Onuf’s nuclear neurons innervating the rectal and vesical striated sphincter muscles: a retrograde fluorescent double labeling in cat and dog. Neurosci. Lett. 16, 125–130 (1980).

    CAS  PubMed  Google Scholar 

  261. Callaghan, B., Furness, J. B. & Pustovit, R. V. Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review. Spinal Cord 56, 199–205 (2018).

    PubMed  Google Scholar 

  262. Zhang, W., Yan, Z., Li, B., Jan, L. Y. & Jan, Y. N. Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae. eLife 3, e03293 (2014). This remarkable study identifies a sensory neuron that can detect anus opening using No mechanoreceptor potential C and two groups of motor neurons that are involved in defecation behaviour in Drosophila larvae.

    PubMed Central  Google Scholar 

  263. Ponti, F. D., Azpiroz, F. & Malagelada, J. R. Reflex gastric relaxation in response to distention of the duodenum. Am. J. Physiol. 252, G595–601 (1987).

    PubMed  Google Scholar 

  264. Holzer, H. H. & Raybould, H. E. Vagal and splanchnic sensory pathways mediate inhibition of gastric motility induced by duodenal distension. Am. J. Physiol. 262, G603–G608 (1992).

    CAS  PubMed  Google Scholar 

  265. Shafik, A. Effect of duodenal distension on the pyloric sphincter and antrum and the gastric corpus: duodenopyloric reflex. World J. Surg. 22, 1061–1064 (1998).

    CAS  PubMed  Google Scholar 

  266. Sum, P. T., Schipper, H. L. & Preshaw, R. M. Canine gastric and pancreatic secretion during intestinal distension and intestinal perfusion with choline derivatives. Can. J. Physiol. Pharmacol. 47, 115–118 (2011).

    Google Scholar 

  267. Bojö, L. & Cassuto, J. Gastric reflex relaxation by colonic distension. J. Auton. Nerv. Syst. 38, 57–64 (1992).

    PubMed  Google Scholar 

  268. Loew, E. R. & Patterson, T. L. The reflex influence of the lower portion of the large intestine on the tonus and movements of the empty stomach in dogs. Q. J. Exp. Physiol. Cogn. Med. Sci. 28, 305–314 (1938).

    Google Scholar 

  269. Shafik, A. Effect of rectal distension on the small intestine with evidence of a recto-enteric reflex. Hepatogastroenterology 47, 1030–1033 (2000).

    CAS  PubMed  Google Scholar 

  270. Kellow, J. E., Gill, R. C. & Wingate, D. L. Modulation of human upper gastrointestinal motility by rectal distension. Gut 28, 864–868 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Youle, M. S. & Read, N. W. Effect of painless rectal distension on gastrointestinal transit of solid meal. Dig. Dis. Sci. 29, 902–906 (1984).

    CAS  PubMed  Google Scholar 

  272. Phillips, R. J. & Powley, T. L. Gastric volume rather than nutrient content inhibits food intake. Am. J. Physiol. 271, R766–R769 (1996). This study uses pyloric cuff and intragastric infusion to establish that in the stomach, the distension volume, rather than the type of nutrient or its concentration, determines the degree of food intake inhibition.

    CAS  PubMed  Google Scholar 

  273. Greenberg, D., Smith, G. P. & Gibbs, J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am. J. Physiol. 259, R110–R118 (1990).

    CAS  PubMed  Google Scholar 

  274. Goldstein, N. et al. Hypothalamic detection of macronutrients via multiple gut–brain pathways. Cell Metab. 33, 676–687.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Olds, W. H. & Xu, T. Regulation of food intake by mechanosensory ion channels in enteric neurons. eLife 3, e04402 (2014). This Drosophila study is the first to identify a mechanosensitive channel (Ppk1) expressed in the enteric neurons that is required for food intake control.

    PubMed Central  Google Scholar 

  276. Aviv, J. E., Liu, H., Kaplan, S. T., Parides, M. & Close, L. G. Laryngopharyngeal sensory deficits in patients with laryngopharyngeal reflux and dysphagia. Ann. Otol. Rhinol. Laryngol. 109, 1000–1006 (2000).

    CAS  PubMed  Google Scholar 

  277. Brackbill, S., Shi, G. & Hirano, I. Diminished mechanosensitivity and chemosensitivity in patients with achalasia. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1198–G1203 (2003).

    CAS  PubMed  Google Scholar 

  278. Gladman, M. A., Lunniss, P. J., Scott, S. M. & Swash, M. Rectal hyposensitivity. Am. Coll. Gastroenterol. 101, 1140–1151 (2006).

    Google Scholar 

  279. Singh, S., Heady, S., Coss‐Adame, E. & Rao, S. S. C. Clinical utility of colonic manometry in slow transit constipation. Neurogastroenterol. Motil. 25, 487–e367 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Kentish, S. J. et al. Altered gastric vagal mechanosensitivity in diet-induced obesity persists on return to normal chow and is accompanied by increased food intake. Int. J. Obes. 38, 636–642 (2014).

    CAS  Google Scholar 

  281. Fass, R. & Achem, S. R. Noncardiac chest pain: epidemiology, natural course and pathogenesis. J. Neurogastroenterol. Motil. 17, 110–123 (2011).

    PubMed  PubMed Central  Google Scholar 

  282. Rodriguez-Stanley, S., Robinson, M., Earnest, D. L., Greenwood-Van Meerveld, B. & Miner, P. B. J. Esophageal hypersensitivity may be a major cause of heartburn. Am. J. Gastroenterol. 94, 628–631 (1999).

    CAS  PubMed  Google Scholar 

  283. Lee, R. & Mittal, R. Heartburn and esophageal pain. GI Motil. Online https://doi.org/10.1038/gimo75 (2006).

    Article  Google Scholar 

  284. Enck, P. et al. Functional dyspepsia. Nat. Rev. Dis. Primers 3, 1–20 (2017).

    Google Scholar 

  285. Mertz, H., Fullerton, S., Naliboff, B. & Mayer, E. A. Symptoms and visceral perception in severe functional and organic dyspepsia. Gut 42, 814–822 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Hammer, J., Führer, M., Pipal, L. & Matiasek, J. Hypersensitivity for capsaicin in patients with functional dyspepsia. Neurogastroenterol. Motil. 20, 125–133 (2008).

    CAS  PubMed  Google Scholar 

  287. Choi, Y. J. et al. Upregulation of vanilloid receptor-1 in functional dyspepsia with or without Helicobacter pylori infection. Medicine 95, e3410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Akbar, A. et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923–929 (2008).

    CAS  PubMed  Google Scholar 

  289. Bai, T. et al. Piezo2: a candidate biomarker for visceral hypersensitivity in irritable bowel syndrome? J. Neurogastroenterol. Motil. 23, 453–463 (2017).

    PubMed  PubMed Central  Google Scholar 

  290. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256–281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Kupari, J., Häring, M., Agirre, E., Castelo-Branco, G. & Ernfors, P. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep. 27, 2508–2523.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Dvoryanchikov, G. et al. Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat. Commun. 8, 1–16 (2017).

    CAS  Google Scholar 

  294. Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. McGuire, C. et al. Ex vivo study of human visceral nociceptors. Gut 67, 86–96 (2018).

    CAS  PubMed  Google Scholar 

  296. Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e23 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Meerschaert, K. A. et al. Unique molecular characteristics of visceral afferents arising from different levels of the neuraxis: location of afferent somata predicts function and stimulus detection modalities. J. Neurosci. 40, 7216–7228 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Murthy, S. E. et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 7, e41844 (2018).

    PubMed  PubMed Central  Google Scholar 

  299. Beaulieu-Laroche, L. et al. TACAN is an ion channel involved in sensing mechanical pain. Cell 180, 956–967.e17 (2020).

    CAS  PubMed  Google Scholar 

  300. Patkunarajah, A. et al. TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration. eLife 9, e53308 (2020).

    PubMed  PubMed Central  Google Scholar 

  301. Xu, J. et al. GPR68 senses flow and is essential for vascular physiology. Cell 173, 762–775.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Mehta, V. et al. The guidance receptor plexin D1 is a mechanosensor in endothelial cells. Nature 578, 290–295 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Ludwig, M. Q. et al. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat. Metab. 3, 530–545 (2021).

    CAS  PubMed  Google Scholar 

  304. Hermann, G. E. & Rogers, R. C. Convergence of vagal and gustatory afferent input within the parabrachial nucleus of the rat. J. Auton. Nerv. Syst. 13, 1–17 (1985).

    CAS  PubMed  Google Scholar 

  305. Baird, J.-P., Travers, S. P. & Travers, J. B. Integration of gastric distension and gustatory responses in the parabrachial nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1581–R1593 (2001).

    CAS  PubMed  Google Scholar 

  306. Stricker, E. M. & Hoffmann, M. L. Presystemic signals in the control of thirst, salt appetite, and vasopressin secretion. Physiol. Behav. 91, 404–412 (2007).

    CAS  PubMed  Google Scholar 

  307. Zimmerman, C. A., Leib, D. E. & Knight, Z. A. Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18, 459–469 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Gizowski, C. & Bourque, C. W. The neural basis of homeostatic and anticipatory thirst. Nat. Rev. Nephrol. 14, 11–25 (2018).

    CAS  PubMed  Google Scholar 

  309. Ryan, P. J. The neurocircuitry of fluid satiation. Physiol. Rep. 6, e13744 (2018).

    PubMed  PubMed Central  Google Scholar 

  310. Rolls, B. J. & Rolls, E. T. Thirst (Cambridge Univ. Press, 1982).

  311. Toyoshima, K., Miyamoto, K., Itoh, A. & Shimamura, A. Merkel–neurite complexes in the fungiform papillae of two species of monkeys. Cell Tissue Res. 250, 237–239 (1987).

    CAS  PubMed  Google Scholar 

  312. Zahm, D. S. & Munger, B. L. The innervation of the primate fungiform papilla — development, distribution and changes following selective ablation. Brain Res. 356, 147–186 (1985).

    CAS  PubMed  Google Scholar 

  313. Tadokoro, O. et al. Merkel-like cells in Malassez epithelium in the periodontal ligament of cats: an immunohistochemical, confocal-laser scanning and immuno electron-microscopic investigation. J. Periodontal Res. 37, 456–463 (2002).

    CAS  PubMed  Google Scholar 

  314. Kingsmill, V. J., Berkovitz, B. K. B. & Barrett, A. W. An immunohistochemical analysis of human Merkel cell density in gingival epithelium from dentate and edentulous subjects. Arch. Oral. Biol. 50, 883–887 (2005).

    CAS  PubMed  Google Scholar 

  315. Watanabe, I. Ultrastructures of mechanoreceptors in the oral mucosa. Anat. Sci. Int. 79, 55–61 (2004).

    PubMed  Google Scholar 

  316. Ramieri, G. et al. The innervation of human teeth and gingival epithelium as revealed by means of an antiserum for protein gene product 9.5 (PGP 9.5). Am. J. Anat. 189, 146–154 (1990).

    CAS  PubMed  Google Scholar 

  317. Bradlaw, R. The histology and histopathology of the dental innervation. Proc. R. Soc. Med. 32, 1040–1053 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Lambrichts, I., Creemers, J. & van. Steenberghe, D. Morphology of neural endings in the human periodontal ligament: an electron microscopic study. J. Periodontal Res. 27, 191–196 (1992).

    CAS  PubMed  Google Scholar 

  319. Schulze, C., Spaethe, A. & Halata, Z. The sensory innervation of the gingiva and mucosa in monodelphis domestica: an ultrastructural study. Acta Anat. 146, 36–41 (1993).

    CAS  PubMed  Google Scholar 

  320. Halata, Z. & Baumann, K. I. Sensory nerve endings in the hard palate and papilla incisiva of the rhesus monkey. Anat. Embryol. 199, 427–437 (1999).

    CAS  Google Scholar 

  321. Gairns, F. W. The sensory nerve endings of the human palate. Q. J. Exp. Physiol. Cogn. Med. Sci. 40, 40–48 (1955).

    CAS  PubMed  Google Scholar 

  322. Qu, Z.-D. et al. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res. 334, 147–161 (2008).

    CAS  PubMed  Google Scholar 

  323. Alvarez-Berdugo, D. et al. Localization and expression of TRPV1 and TRPA1 in the human oropharynx and larynx. Neurogastroenterol. Motil. 28, 91–100 (2016).

    CAS  PubMed  Google Scholar 

  324. Kido, M. A., Muroya, H., Yamaza, T., Terada, Y. & Tanaka, T. Vanilloid receptor expression in the rat tongue and palate. J. Dent. Res. 82, 393–397 (2003).

    CAS  PubMed  Google Scholar 

  325. Kanazawa, T. & Matsumoto, S. Expression of transient receptor potential vanilloid 1 and anoctamin 1 in rat trigeminal ganglion neurons innervating the tongue. Brain Res. Bull. 106, 17–20 (2014).

    CAS  PubMed  Google Scholar 

  326. Wang, B., Danjo, A., Kajiya, H., Okabe, K. & Kido, M. A. Oral epithelial cells are activated via TRP channels. J. Dent. Res. 90, 163–167 (2011).

    CAS  PubMed  Google Scholar 

  327. Wu, P., Arris, D., Grayson, M., Hung, C.-N. & Ruparel, S. Characterization of sensory neuronal subtypes innervating mouse tongue. PLoS ONE 13, e0207069 (2018).

    PubMed  PubMed Central  Google Scholar 

  328. Richter, T. A., Dvoryanchikov, G. A., Roper, S. D. & Chaudhari, N. Acid-sensing ion channel-2 is not necessary for sour taste in mice. J. Neurosci. 24, 4088–4091 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Richter, T. A., Dvoryanchikov, G. A., Chaudhari, N. & Roper, S. D. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J. Neurophysiol. 92, 1928–1936 (2004).

    CAS  PubMed  Google Scholar 

  330. Ghiaroni, V., Pattabiraman, P., Fieni, F., Domenici, L. & Bigiani, A. in State-of-the-Art in Flavour Chemistry and Biology (eds Hofmann, T., Rothe, M. & Schieberle, P.) 15–20 (Deutsche Forschungsanstalt für Lebensmittelchemie, 2005).

  331. Sooampon, S., Manokawinchoke, J. & Pavasant, P. Transient receptor potential vanilloid-1 regulates osteoprotegerin/RANKL homeostasis in human periodontal ligament cells. J. Periodontal Res. 48, 22–29 (2013).

    CAS  PubMed  Google Scholar 

  332. Takahashi, N. et al. Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation. J. Dent. Res. 93, 1141–1147 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  333. Gibbs, J. L., Melnyk, J. L. & Basbaum, A. I. Differential TRPV1 and TRPV2 channel expression in dental pulp. J. Dent. Res. 90, 765–770 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Takahashi, N. et al. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci. Rep. 6, 29294 (2016).

    PubMed  PubMed Central  Google Scholar 

  335. Son, G. Y., Yang, Y. M., Park, W. S., Chang, I. & Shin, D. M. Hypotonic stress induces RANKL via transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) in human PDL cells. J. Dent. Res. 94, 473–481 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  336. Kitsuki, T. et al. Enhanced junctional epithelial permeability in TRPV4-deficient mice. J. Periodontal Res. 55, 51–60 (2020).

    CAS  PubMed  Google Scholar 

  337. López-González, M. J. et al. TRPA1 channels mediate human gingival fibroblast response to phenytoin. J. Dent. Res. 96, 832–839 (2017).

    PubMed  Google Scholar 

  338. Hermanstyne, T. O., Markowitz, K., Fan, L. & Gold, M. S. Mechanotransducers in rat pulpal afferents. J. Dent. Res. 87, 834–838 (2008).

    CAS  PubMed  Google Scholar 

  339. Ohara, A., Saeki, Y., Nishikawa, M., Yamamoto, Y. & Yamamoto, G. Single-channel recordings of TREK-1 K+ channels in periodontal ligament fibroblasts. J. Dent. Res. 85, 664–669 (2006).

    CAS  PubMed  Google Scholar 

  340. Saeki, Y., Ohara, A., Nishikawa, M., Yamamoto, T. & Yamamoto, G. The presence of arachidonic acid-activated K+ channel, Trek-1, in human periodontal ligament fibroblasts. Drug Metab. Rev. 39, 457–465 (2007).

    CAS  PubMed  Google Scholar 

  341. Emrick, J. J., von Buchholtz, L. J. & Ryba, N. J. P. Transcriptomic classification of neurons innervating teeth. J. Dent. Res. 99, 1478–1485 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Zhang, Z. et al. Menthol relieves acid reflux inflammation by regulating TRPV1 in esophageal epithelial cells. Biochem. Biophys. Res. Commun. 525, 113–120 (2020).

    CAS  Google Scholar 

  343. Surdenikova, L., Ru, F., Nassenstein, C., Tatar, M. & Kollarik, M. The neural crest- and placodes-derived afferent innervation of the mouse esophagus. Neurogastroenterol. Motil. 24, e517–e525 (2012).

    CAS  PubMed  Google Scholar 

  344. Shikano, M. et al. Acid inhibits TRPV4-mediated Ca2+ influx in mouse esophageal epithelial cells. Neurogastroenterol. Motil. 23, 1020–1028, e497 (2011).

    CAS  PubMed  Google Scholar 

  345. Brozmanova, M. et al. Preferential activation of the vagal nodose nociceptive subtype by TRPA1 agonists in the guinea pig esophagus. Neurogastroenterol. Motil. 23, e437–e445 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  346. Dusenkova, S. et al. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G922–G930 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  347. Lou, W. et al. Five miRNAs-mediated PIEZO2 downregulation, accompanied with activation of Hedgehog signaling pathway, predicts poor prognosis of breast cancer. Aging 11, 2628–2652 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Zhang, L., Jones, S., Brody, K., Costa, M. & Brookes, S. J. H. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G983–G991 (2004).

    CAS  PubMed  Google Scholar 

  349. Csekő, K. et al. Upregulation of the TRPA1 ion channel in the gastric mucosa after iodoacetamide-induced gastritis in rats: a potential new therapeutic target. Int. J. Mol. Sci. 21, 5591 (2020).

    PubMed Central  Google Scholar 

  350. Brierley, S. M. et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).

    CAS  PubMed  Google Scholar 

  351. Amato, A., Serio, R. & Mulè, F. Involvement of cholinergic nicotinic receptors in the menthol-induced gastric relaxation. Eur. J. Pharmacol. 745, 129–134 (2014).

    CAS  PubMed  Google Scholar 

  352. Sugiura, T., Dang, K., Lamb, K., Bielefeldt, K. & Gebhart, G. F. Acid-sensing properties in rat gastric sensory neurons from normal and ulcerated stomach. J. Neurosci. 25, 2617–2627 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  353. Akiba, Y. et al. CO2 chemosensing in rat oesophagus. Gut 57, 1654–1664 (2008).

    CAS  PubMed  Google Scholar 

  354. Schicho, R., Florian, W., Liebmann, I., Holzer, P. & Lippe, I. T. Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur. J. Neurosci. 19, 1811–1818 (2004).

    PubMed  Google Scholar 

  355. Koh, S. D. et al. TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. An essential role in smooth muscle inhibitory neurotransmission. J. Biol. Chem. 276, 44338–44346 (2001).

    CAS  PubMed  Google Scholar 

  356. Medhurst, A. D. et al. Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Mol. Brain Res. 86, 101–114 (2001).

    CAS  PubMed  Google Scholar 

  357. Zhao, H., Sprunger, L. K. & Simasko, S. M. Expression of transient receptor potential channels and two-pore potassium channels in subtypes of vagal afferent neurons in rat. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G212–G221 (2009).

    PubMed  PubMed Central  Google Scholar 

  358. Park, S. J., Yu, Y. & Beyak, M. J. Effect of high fat diet on mechanosensitive TRP channel activation in vagal afferent neurons. Can. J. Physiol. Pharmacol. 99, 660–666 (2020).

    PubMed  Google Scholar 

  359. Nozawa, K. et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc. Natl Acad. Sci. USA 106, 3408–3413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  360. Li, C. et al. Anatomical and functional characterization of a duodeno-pancreatic neural reflex that can induce acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G490–G500 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  361. Dong, X. et al. Expression of acid-sensing ion channels in intestinal epithelial cells and their role in the regulation of duodenal mucosal bicarbonate secretion. Acta Physiol. 201, 97–107 (2011).

    CAS  Google Scholar 

  362. Kaji, I., Yasuoka, Y., Karaki, S. & Kuwahara, A. Activation of TRPA1 by luminal stimuli induces EP4-mediated anion secretion in human and rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G690–G701 (2011).

    PubMed  Google Scholar 

  363. Brierley, S. M., Hibberd, T. J. & Spencer, N. J. Spinal afferent innervation of the colon and rectum. Front. Cellular Neurosci. 12, 467 (2018).

    CAS  Google Scholar 

  364. Cenac, N. et al. Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135, 937–946.e2 (2008).

    CAS  PubMed  Google Scholar 

  365. La, J.-H. & Gebhart, G. F. Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G165–G174 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  366. Paintal, A. S. A study of gastric stretch receptors. Their role in the peripheral mechanism of satiation of hunger and thirst. J. Physiol. 126, 255–270 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  367. Cottrell, D. F. & Iggo, A. Mucosal enteroceptors with vagal afferent fibres in the proximal duodenum of sheep. J. Physiol. 354, 497–522 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  368. Green, B. G. Oral astringency: a tactile component of flavor. Acta Psychol. 84, 119–125 (1993).

    CAS  Google Scholar 

  369. Bajec, M. R. & Pickering, G. J. Astringency: mechanisms and perception. Crit. Rev. Food Sci. Nutr. 48, 858–875 (2008).

    CAS  PubMed  Google Scholar 

  370. Bartoshuk, L. M. in Handbook of Perception. Tasting and Smelling Vol. VIA (eds Carterette, E. C. & Friedman, M. P.) 3–18 (Academic, 1978).

  371. Kawamura, Y., Funakoshi, M., Kasahara, Y. & Yamamoto, T. A neurophysiological study on astringent taste. Jpn. J. Physiol. 19, 851–865 (1969).

    CAS  PubMed  Google Scholar 

  372. Schiffman, S. S., Suggs, M. S., Sostman, L. & Simon, S. A. Chorda tympani and lingual nerve responses to astringent compounds in rodents. Physiol. Behav. 51, 55–63 (1992).

    CAS  PubMed  Google Scholar 

  373. Breslin, P. A. S., Gilmore, M. M., Beauchamp, G. K. & Green, B. G. Psychophysical evidence that oral astringency is a tactile sensation. Chem. Senses 18, 405–417 (1993).

    CAS  Google Scholar 

  374. Lim, J. & Lawless, H. T. Oral sensations from iron and copper sulfate. Physiol. Behav. 85, 308–313 (2005).

    CAS  PubMed  Google Scholar 

  375. Schöbel, N. et al. Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds. Chem. Senses 39, 471–487 (2014).

    PubMed  Google Scholar 

  376. Joslyn, M. A. & Goldstein, J. L. in Advances in Food Research Vol. 13 (eds Chichester, C. O., Mrak, E. M. & Stewart, G. F.) 179–217 (Academic, 1964).

  377. Jöbstl, E., O’Connell, J., Fairclough, J. P. A. & Williamson, M. P. Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules 5, 942–949 (2004).

    PubMed  Google Scholar 

  378. Gibbins, H. L. & Carpenter, G. H. Alternative mechanisms of astringency — what is the role of saliva? J. Texture Stud. 44, 364–375 (2013).

    Google Scholar 

  379. Tate, C. M. & Geliebter, A. Intragastric balloon treatment for obesity: review of recent studies. Adv. Ther. 34, 1859–1875 (2017).

    PubMed  Google Scholar 

  380. Geliebter, A., Melton, P. M., Gage, D., McCray, R. S. & Hashim, S. A. Gastric balloon to treat obesity: a double-blind study in nondieting subjects. Am. J. Clin. Nutr. 51, 584–588 (1990).

    CAS  PubMed  Google Scholar 

  381. Chakravartty, S., Tassinari, D., Salerno, A., Giorgakis, E. & Rubino, F. What is the mechanism behind weight loss maintenance with gastric bypass? Curr. Obes. Rep. 4, 262–268 (2015).

    PubMed  Google Scholar 

  382. Miras, A. D. & le Roux, C. W. Mechanisms underlying weight loss after bariatric surgery. Nat. Rev. Gastroenterol. Hepatol. 10, 575–584 (2013).

    PubMed  Google Scholar 

  383. Kampe, J. et al. Neural and humoral changes associated with the adjustable gastric band: insights from a rodent model. Int. J. Obes. 36, 1403–1411 (2012).

    CAS  Google Scholar 

  384. Payne, S. C., Furness, J. B. & Stebbing, M. J. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 16, 89–105 (2019).

    PubMed  Google Scholar 

  385. Wo, J. M., Nowak, T. V., Waseem, S. & Ward, M. P. Gastric electrical stimulation for gastroparesis and chronic unexplained nausea and vomiting. Curr. Treat. Options Gastroenterol. 14, 386–400 (2016).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D.-Y. Kim for help in the literature search, S.J. Moon for comments on the manuscript and members of the S.-Y.K. laboratory for critical discussions. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA2001-09.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. S.-Y.K. and M.K. contributed substantially to discussion of the content. The authors all wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sung-Yon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks M. Gershon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bolus

A ball-like mixture of chewed food and saliva that forms in the oral cavity.

Chyme

A thick semi-fluidic mass consisting of partially digested food, gastric acid and digestive enzymes produced by the mechanical and chemical breakdown of the bolus in the stomach.

Motilities

Contractions and relaxations of smooth muscles in the digestive tract that mix, triturate and propel ingesta, supporting numerous digestive functions including swallowing, peristalsis, gastric relaxation and emptying, and defecation.

Mechanoreceptor

A specialized sensory cell that responds to a mechanical stimulus, such as pressure or distortion. Examples include Merkel cells in the skin, mechanosensory vagal nerve endings in the stomach and enterochromaffin cells in the intestines.

Low-threshold mechanoreceptors

Mechanoreceptors that detect innocuous mechanical stimuli.

High-threshold mechanoreceptors

Mechanoreceptors that only respond to intense mechanical stimuli, such as pinching and strong stretching, and are regarded as a type of nociceptor.

Intraganglionic laminar endings

(IGLEs). A morphologically defined type of vagal or spinal sensory nerve endings that is characterized by highly branching, flattened lamellar processes, found in the myenteric ganglia of the oesophagus, stomach and intestines, considered to function as a tension receptor.

Intramuscular arrays

(IMAs). A major morphologically defined sensory terminal type that consists of varicose nerve fibres branching and extending parallel to muscle fibres within the longitudinal or circular muscle layers throughout the gastrointestinal tract; these are proposed, but not demonstrated, as stretch receptors.

Intraganglionic varicose endings

(IGVEs). A morphological type of spinal afferent endings consisting of branching varicose nerve fibres that is found in the myenteric plexus throughout the gastrointestinal tract.

Dogiel type I neurons

A morphologically defined type of enteric neurons with a relatively small cell body, short, flat and thick dendrites, and a single axon, corresponding to electrophysiologically classified S (synaptic)-neurons, as it receives prominent and fast excitatory synaptic inputs.

Dogiel type II neurons

A morphological type of enteric neurons with a large smooth cell body and multiple axons that project locally to the myenteric plexus and to the mucosa. These are often termed ‘after-hyperpolarizing’ neurons, as most exhibit slow and prolonged hyperpolarizing currents following an action potential.

Intestinofugal neurons

Intestinal enteric neurons that project to sympathetic neurons in the prevertebral ganglia (that is, celiac, superior mesenteric or inferior mesenteric ganglia).

Enterochromaffin cells

The largest population of enteroendocrine cells in the intestinal epithelium that release serotonin in response to various chemical, mechanical and neural stimuli, and synthesize 95% of the body’s serotonin.

Filiform papillae

The most numerous lingual papillae that cover most of the dorsal surface of the anterior two thirds of the tongue. Filiform papillae are devoid of taste buds and are considered to play a major role in lingual mechanosensation.

Lingual nerves

Branches of the mandibular division of the trigeminal sensory nerve that innervate the tongue. The chorda tympani nerve also joins the lingual nerve between the lateral and medial pterygoid muscles.

Chorda tympani

A branch of the facial nerve that innervates the anterior two thirds of the tongue and submandibular ganglion.

Sensory trigeminal nerve nuclei

The brainstem nuclei to which trigeminal sensory fibres primarily project, consisting of the mesencephalic nucleus (Me5), principal sensory nucleus (Pr5) and spinal trigeminal nucleus (Sp5).

Vagovagal reflex

A digestive tract reflex coordinated by vagal afferents and efferents, including secondary peristalsis, oesophageal distension-induced sphincter relaxation, receptive relaxation of the stomach and adaptive relaxation of the stomach.

Gag reflex

A protective response in which the back of the throat contracts to prevent swallowing of harmful substances.

Flavour

A multisensory perception of food consisting of both chemical (for example, smell and taste) and physical (for example, texture and temperature) sensations.

Dysphagia

Difficulty in swallowing.

Achalasia

Failure of oesophageal smooth muscle relaxation, which hinders the passage of ingesta, causing dysphagia, regurgitation and, occasionally, chest pain.

Faecal incontinence

Inability to control bowel movement resulting in unexpected stool leakage.

Irritable bowel syndrome

(IBS). A functional gastrointestinal disorder characterized by a group of symptoms including abdominal discomfort or pain, bloating sensation and stool irregularities.

Roux-en-Y gastric bypass

The most commonly performed bariatric surgery involving partitioning off the proximal stomach to create a small pouch and connecting the pouch directly to the jejunum.

Adjustable gastric banding

A type of bariatric surgery procedure in which an adjustable band is placed around the proximal stomach to create a small gastric pouch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Heo, G. & Kim, SY. Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 23, 135–156 (2022). https://doi.org/10.1038/s41583-021-00544-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00544-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing