Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Next-generation sequencing and bioinformatics in rare movement disorders

Abstract

The ability to sequence entire exomes and genomes has revolutionized molecular testing in rare movement disorders, and genomic sequencing is becoming an integral part of routine diagnostic workflows for these heterogeneous conditions. However, interpretation of the extensive genomic variant information that is being generated presents substantial challenges. In this Perspective, we outline multidimensional strategies for genetic diagnosis in patients with rare movement disorders. We examine bioinformatics tools and computational metrics that have been developed to facilitate accurate prioritization of disease-causing variants. Additionally, we highlight community-driven data-sharing and case-matchmaking platforms, which are designed to foster the discovery of new genotype–phenotype relationships. Finally, we consider how multiomic data integration might optimize diagnostic success by combining genomic, epigenetic, transcriptomic and/or proteomic profiling to enable a more holistic evaluation of variant effects. Together, the approaches that we discuss offer pathways to the improved understanding of the genetic basis of rare movement disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Next-generation sequencing data production and analysis workflow.
Fig. 2: Mutational constraint metrics to aid variant interpretation.
Fig. 3: Case matchmaking and disease gene discovery via the GeneMatcher platform.
Fig. 4: A suggested multiomic-based diagnostic strategy.

Similar content being viewed by others

References

  1. Rexach, J., Lee, H., Martinez-Agosto, J. A., Nemeth, A. H. & Fogel, B. L. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol. 18, 492–503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Foo, J. N., Liu, J. J. & Tan, E. K. Whole-genome and whole-exome sequencing in neurological diseases. Nat. Rev. Neurol. 8, 508–517 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Olgiati, S., Quadri, M. & Bonifati, V. Genetics of movement disorders in the next-generation sequencing era. Mov. Disord. 31, 458–470 (2016).

    Article  PubMed  Google Scholar 

  4. Abdo, W. F., van de Warrenburg, B. P., Burn, D. J., Quinn, N. P. & Bloem, B. R. The clinical approach to movement disorders. Nat. Rev. Neurol. 6, 29–37 (2010).

    Article  PubMed  Google Scholar 

  5. Cordeiro, D. et al. Genetic landscape of pediatric movement disorders and management implications. Neurol. Genet. 4, e265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim, M. J., Yum, M. S., Seo, G. H., Ko, T. S. & Lee, B. H. Phenotypic and genetic complexity in pediatric movement disorders. Front. Genet. 13, 829558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perez-Duenas, B. et al. The genetic landscape of complex childhood-onset hyperkinetic movement disorders. Mov. Disord. 37, 2197–2209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marras, C. et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov. Disord. 31, 436–457 (2016).

    Article  PubMed  Google Scholar 

  9. Lange, L. M. et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force — an update. Mov. Disord. 37, 905–935 (2022).

    Article  PubMed  Google Scholar 

  10. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A. & McKusick, V. A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514–D517 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Gorcenco, S. et al. New generation genetic testing entering the clinic. Parkinsonism Relat. Disord. 73, 72–84 (2020).

    Article  PubMed  Google Scholar 

  12. Kwong, A. K. et al. Exome sequencing in paediatric patients with movement disorders. Orphanet J. Rare Dis. 16, 32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Trinh, J. et al. Utility and implications of exome sequencing in early-onset Parkinson’s disease. Mov. Disord. 34, 133–137 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Zech, M. et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 19, 908–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, M. et al. Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genet. Med. 21, 195–206 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Martinez-Rubio, D. et al. Mutations, genes, and phenotypes related to movement disorders and ataxias. Int. J. Mol. Sci. 23, 11847 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Boone, P. M., Wiszniewski, W. & Lupski, J. R. Genomic medicine and neurological disease. Hum. Genet. 130, 103–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cooper, G. M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12, 628–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Pereira, R., Oliveira, J. & Sousa, M. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J. Clin. Med. 9, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Crowther, L. M., Poms, M. & Plecko, B. Multiomics tools for the diagnosis and treatment of rare neurological disease. J. Inherit. Metab. Dis. 41, 425–434 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Karnebeek, C. D. M. et al. The role of the clinician in the multi-omics era: are you ready? J. Inherit. Metab. Dis. 41, 571–582 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Keogh, M. J. & Chinnery, P. F. Next generation sequencing for neurological diseases: new hope or new hype? Clin. Neurol. Neurosurg. 115, 948–953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coutelier, M. et al. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 75, 591–599 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Keller Sarmiento, I. J. & Mencacci, N. E. Genetic dystonias: update on classification and new genetic discoveries. Curr. Neurol. Neurosci. Rep. 21, 8 (2021).

    Article  PubMed  Google Scholar 

  27. Lange, L. M. et al. Genotype-phenotype relations for isolated dystonia genes: MDSGene systematic review. Mov. Disord. 36, 1086–1103 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Posey, J. E. et al. Molecular diagnostic experience of whole-exome sequencing in adult patients. Genet. Med. 18, 678–685 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Feng, H. et al. Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology 89, 762–770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wirth, T. et al. Highlighting the dystonic phenotype related to GNAO1. Mov. Disord. 37, 1547–1554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 583, 96–102 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. 100,000 Genomes Project Pilot Investigators et al. 100,000 Genomes pilot on rare-disease diagnosis in health care — preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article  Google Scholar 

  33. Bertoli-Avella, A. M. et al. Successful application of genome sequencing in a diagnostic setting: 1007 index cases from a clinically heterogeneous cohort. Eur. J. Hum. Genet. 29, 141–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Di Resta, C., Pipitone, G. B., Carrera, P. & Ferrari, M. Current scenario of the genetic testing for rare neurological disorders exploiting next generation sequencing. Neural Regen. Res. 16, 475–481 (2021).

    Article  PubMed  Google Scholar 

  35. Pfundt, R. et al. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet. Med. 19, 667–675 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Royer-Bertrand, B. et al. CNV detection from exome sequencing data in routine diagnostics of rare genetic disorders: opportunities and limitations. Genes 12, 1427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zech, M. et al. Clinically relevant copy-number variants in exome sequencing data of patients with dystonia. Parkinsonism Relat. Disord. 84, 129–134 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Coutelier, M. et al. Combining callers improves the detection of copy number variants from whole-genome sequencing. Eur. J. Hum. Genet. 30, 178–186 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Mok, K. Y. et al. Deletions at 22q11.2 in idiopathic Parkinson’s disease: a combined analysis of genome-wide association data. Lancet Neurol. 15, 585–596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cunningham, A. C. et al. Movement disorder phenotypes in children with 22q11.2 deletion syndrome. Mov. Disord. 35, 1272–1274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pirooznia, M., Goes, F. S. & Zandi, P. P. Whole-genome CNV analysis: advances in computational approaches. Front. Genet. 6, 138 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lillevali, H. et al. Genome sequencing identifies a homozygous inversion disrupting QDPR as a cause for dihydropteridine reductase deficiency. Mol. Genet. Genom. Med. 8, e1154 (2020).

    Article  Google Scholar 

  43. Chiang, T. et al. Atlas-CNV: a validated approach to call single-exon CNVs in the eMERGESeq gene panel. Genet. Med. 21, 2135–2144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wagner, M. et al. Mitochondrial DNA mutation analysis from exome sequencing — a more holistic approach in diagnostics of suspected mitochondrial disease. J. Inherit. Metab. Dis. 42, 909–917 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. van der Sanden, B. et al. Systematic analysis of short tandem repeats in 38,095 exomes provides an additional diagnostic yield. Genet. Med. 23, 1569–1573 (2021).

    Article  PubMed  Google Scholar 

  46. Ibanez, K. et al. Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurol. 21, 234–245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Griffin, H. R. et al. Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations. Genet. Med. 16, 962–971 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poole, O. V. et al. Mitochondrial DNA analysis from exome sequencing data improves diagnostic yield in neurological diseases. Ann. Neurol. 89, 1240–1247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yaldiz, B. et al. Twist exome capture allows for lower average sequence coverage in clinical exome sequencing. Hum. Genomics 17, 39 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dolzhenko, E. et al. ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol. 21, 102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rafehi, H. et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am. J. Hum. Genet. 110, 105–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Magrinelli, F. et al. Detection and characterization of a de novo Alu retrotransposition event causing NKX2-1-related disorder. Mov. Disord. 38, 347–353 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Gilissen, C., Hoischen, A., Brunner, H. G. & Veltman, J. A. Disease gene identification strategies for exome sequencing. Eur. J. Hum. Genet. 20, 490–497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boycott, K. M. et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am. J. Hum. Genet. 100, 695–705 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Skorvanek, M. et al. WARS2 mutations cause dopa-responsive early-onset parkinsonism and progressive myoclonus ataxia. Parkinsonism Relat. Disord. 94, 54–61 (2022).

    Article  PubMed  Google Scholar 

  56. Sleiman, S. et al. Compound heterozygous variants in SHQ1 are associated with a spectrum of neurological features, including early-onset dystonia. Hum. Mol. Genet. 31, 614–624 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. MacDonald, J. R., Ziman, R., Yuen, R. K., Feuk, L. & Scherer, S. W. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42, D986–D992 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Lappalainen, I. et al. DbVar and DGVa: public archives for genomic structural variation. Nucleic Acids Res. 41, D936–D941 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Brunet, T. et al. De novo variants in neurodevelopmental disorders-experiences from a tertiary care center. Clin. Genet. 100, 14–28 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Chang, F. C. et al. Phenotypic insights into ADCY5-associated disease. Mov. Disord. 31, 1033–1040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Westenberger, A. et al. Spectrum of FAR1 (fatty acyl-CoA reductase 1) variants and related neurological conditions. Mov. Disord. 38, 502–504 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Meyer, E. et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat. Genet. 49, 223–237 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Beetz, C. et al. LRRK2 loss-of-function variants in patients with rare diseases: no evidence for a phenotypic impact. Mov. Disord. 36, 1029–1031 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blauwendraat, C. et al. Frequency of loss of function variants in LRRK2 in Parkinson disease. JAMA Neurol. 75, 1416–1422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Salles, P. A., Mata, I. F., Brunger, T., Lal, D. & Fernandez, H. H. ATP1A3-related disorders: an ever-expanding clinical spectrum. Front. Neurol. 12, 637890 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Havrilla, J. M., Pedersen, B. S., Layer, R. M. & Quinlan, A. R. A map of constrained coding regions in the human genome. Nat. Genet. 51, 88–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Wiel, L. et al. MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum. Mutat. 40, 1030–1038 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wiel, L. et al. De novo mutation hotspots in homologous protein domains identify function-altering mutations in neurodevelopmental disorders. Am. J. Hum. Genet. 110, 92–104 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Singh, S. et al. De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy. Genet. Med. 22, 1413–1417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Winter, B. et al. NR4A2 and dystonia with dopa responsiveness. Mov. Disord. 36, 2203–2204 (2021).

    Article  PubMed  Google Scholar 

  71. Jesus, S. et al. NR4A2 mutations can cause intellectual disability and language impairment with persistent dystonia-parkinsonism. Neurol. Genet. 7, e543 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Geisheker, M. R. et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat. Neurosci. 20, 1043–1051 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilcox, E. H. et al. Evaluating the impact of in silico predictors on clinical variant classification. Genet. Med. 24, 924–930 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Martin, A. R. et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat. Genet. 51, 1560–1565 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li, Q. & Wang, K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am. J. Hum. Genet. 100, 267–280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vears, D. F., Senecal, K. & Borry, P. Reporting practices for variants of uncertain significance from next generation sequencing technologies. Eur. J. Med. Genet. 60, 553–558 (2017).

    Article  PubMed  Google Scholar 

  79. Clift, K. et al. Patients’ views on variants of uncertain significance across indications. J. Community Genet. 11, 139–145 (2020).

    Article  PubMed  ADS  Google Scholar 

  80. Liu, P. et al. Reanalysis of clinical exome sequencing data. N. Engl. J. Med. 380, 2478–2480 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mensah, N. E. et al. Automated reanalysis application to assist in detecting novel gene-disease associations after genome sequencing. Genet. Med. 24, 811–820 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Fattahi, Z. et al. Iranome: a catalog of genomic variations in the Iranian population. Hum. Mutat. 40, 1968–1984 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Cordts, I. et al. Adult-onset neurodegeneration in nucleotide excision repair disorders (NERD(ND)): time to move beyond the skin. Mov. Disord. 37, 1707–1718 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Skorvanek, M. et al. Adult-onset neurodegeneration in nucleotide excision repair disorders: more common than expected. Mov. Disord. 37, 2323–2324 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Rehm, H. L. Evolving health care through personal genomics. Nat. Rev. Genet. 18, 259–267 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gilissen, C., Hoischen, A., Brunner, H. G. & Veltman, J. A. Unlocking Mendelian disease using exome sequencing. Genome Biol. 12, 228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bamshad, M. J., Nickerson, D. A. & Chong, J. X. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105, 448–455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McInnes, G. et al. Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. Am. J. Hum. Genet. 108, 535–548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stenson, P. D. et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 136, 665–677 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brandon, M. C. et al. MITOMAP: a human mitochondrial genome database — 2004 update. Nucleic Acids Res. 33, D611–D613 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Lill, C. M. et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov. Disord. 31, 607–609 (2016).

    Article  PubMed  Google Scholar 

  93. Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Philippakis, A. A. et al. The matchmaker exchange: a platform for rare disease gene discovery. Hum. Mutat. 36, 915–921 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gannamani, R., van der Veen, S., van Egmond, M., de Koning, T. J. & Tijssen, M. A. J. Challenges in clinicogenetic correlations: one phenotype — many genes. Mov. Disord. Clin. Pract. 8, 311–321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Neilson, D. E. et al. A novel variant of ATP5MC3 associated with both dystonia and spastic paraplegia. Mov. Disord. 37, 375–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Turner, T. N. et al. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 45, D804–D811 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Lappalainen, I. et al. The European genome-phenome archive of human data consented for biomedical research. Nat. Genet. 47, 692–695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zurek, B. et al. Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases. Eur. J. Hum. Genet. 29, 1325–1331 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zech, M. et al. Variants in mitochondrial ATP synthase cause variable neurologic phenotypes. Ann. Neurol. 91, 225–237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aref-Eshghi, E. et al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am. J. Hum. Genet. 106, 356–370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mirza-Schreiber, N. et al. Blood DNA methylation provides an accurate biomarker of KMT2B-related dystonia and predicts onset. Brain 145, 644–654 (2022).

    Article  PubMed  Google Scholar 

  104. Ciolfi, A. et al. Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile. Clin. Epigenetics 13, 157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kremer, L. S. et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 15824 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Lee, H. et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet. Med. 22, 490–499 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Yepez, V. A. et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med. 14, 38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fresard, L. et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat. Med. 25, 911–919 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Miyatake, S. et al. Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom. Med. 7, 62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wagner, N. et al. Aberrant splicing prediction across human tissues. Nat. Genet. 55, 861–870 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Magri, S. et al. Digenic inheritance of STUB1 variants and TBP polyglutamine expansions explains the incomplete penetrance of SCA17 and SCA48. Genet. Med. 24, 29–40 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Parlar, S. C., Grenn, F. P., Kim, J. J., Baluwendraat, C. & Gan-Or, Z. Classification of GBA1 variants in Parkinson’s disease: the GBA1-PD browser. Mov. Disord. 38, 489–495 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Kalogeropulou, A. F. et al. Impact of 100 LRRK2 variants linked to Parkinson’s disease on kinase activity and microtubule binding. Biochem. J. 479, 1759–1783 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Splinter, K. et al. Effect of genetic diagnosis on patients with previously undiagnosed disease. N. Engl. J. Med. 379, 2131–2139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Buphamalai, P., Kokotovic, T., Nagy, V. & Menche, J. Network analysis reveals rare disease signatures across multiple levels of biological organization. Nat. Commun. 12, 6306 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  117. Bakhit, Y. et al. Intrafamilial and interfamilial heterogeneity of PINK1-associated Parkinson’s disease in Sudan. Parkinsonism Relat. Disord. 111, 105401 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Beijer, D. et al. Standards of NGS data sharing and analysis in ataxias: recommendations by the NGS working group of the Ataxia Global Initiative. Cerebellum https://doi.org/10.1007/s12311-023-01537-1 (2023).

    Article  PubMed  Google Scholar 

  119. Meneret, A. et al. Efficacy of caffeine in ADCY5-related dyskinesia: a retrospective study. Mov. Disord. 37, 1294–1298 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Gilbert, D. L., Leslie, E. J., Keddache, M. & Leslie, N. D. A novel hereditary spastic paraplegia with dystonia linked to chromosome 2q24-2q31. Mov. Disord. 24, 364–370 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.Z. and J.W. receive research support from the German Research Foundation (DFG 458949627; ZE 1213/2-1; WI 1820/14-1). M.Z. acknowledges grant support from the European Joint Programme on Rare Diseases (European Joint Programme on Rare Diseases Joint Transnational Call 2022) and the German Federal Ministry of Education and Research (BMBF, Bonn, Germany), awarded to the project PreDYT (PREdictive biomarkers in DYsTonia, 01GM2302), and from the Federal Ministry of Education and Research (BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder as well as by the Technical University of Munich — Institute for Advanced Study. M.Z. is a member of the Medical and Scientific Advisory Council of the Dystonia Medical Research Foundation and a member of the Governance Council of the International Cerebral Palsy Genomics Consortium. MZ’s research is supported by a “Schlüsselprojekt” grant from the Else Kröner-Fresenius-Stiftung (2022_EKSE.185).

Author information

Authors and Affiliations

Authors

Contributions

Both authors designed and supervised the work and wrote the article.

Corresponding author

Correspondence to Juliane Winkelmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks H. Houlden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/

CNVnator: https://github.com/abyzovlab/CNVnator

Database of Genomic Variants: http://dgv.tcag.ca/dgv/app/home

dbVar: https://www.ncbi.nlm.nih.gov/dbvar/

DECIPHER: https://www.deciphergenomics.org/

DELLY: https://github.com/dellytools/delly

European Genome–Phenome Archive: https://web2.ega-archive.org/

European Joint Programme on Rare Diseases: https://www.ejprarediseases.org/

ExomeDepth: https://cran.r-project.org/package=ExomeDepth

ExpansionHunter Denovo: https://github.com/Illumina/ExpansionHunterDenovo

GeneMatcher: https://genematcher.org/

Genome Aggregation Database (gnomAD): https://gnomad.broadinstitute.org/

Genome Analysis Toolkit: https://gatk.broadinstitute.org/hc/en-us

German Human Genome–Phenome Archive: https://www.ghga.de/

Human Gene Mutation Database: https://www.hgmd.cf.ac.uk/ac/index.php

InterVar: https://wintervar.wglab.org/

Manta: https://github.com/Illumina/manta

Matchmaker Exchange (MME): https://www.matchmakerexchange.org/

MetaDome: https://stuart.radboudumc.nl/metadome/

MITOMAP: https://www.mitomap.org/MITOMAP

Movement Disorder Society Genetic mutation database: https://www.mdsgene.org/

NIH Undiagnosed Diseases Network: https://commonfund.nih.gov/Diseases

Online Mendelian Inheritance in Man: https://www.omim.org/

PanelApp: https://panelapp.genomicsengland.co.uk/

Solve-RD: https://solve-rd.eu/

Glossary

Coverage-based callers

Copy number variant detection tools that determine the presence of a deletion or duplication by comparing the read coverage in the affected genomic interval with the rest of the sequenced exome or genome. Higher sequencing depth is necessary for reliable analysis.

Digenic inheritance

A mechanism whereby the expression of a disease phenotype is determined by the presence of genetic pathologies in two different loci, often associated with epistatic interactions between these loci (encoded proteins might act in the same pathway).

Generative artificial intelligence

Algorithms that can be used to produce new content, including synthetic data.

Integrated paired-end and split-read analysis strategies

Paired-end mapping approaches can define copy number variants on the basis of alterations in the insert size of paired-end reads, whereas split-read approaches are helpful for predicting copy number changes by assessing unaligned discordant reads that were split and mapped separately from the reference genome.

Mapping certainty

A measure of the accuracy of alignment of sequencing reads to the correct location in the genome. Can be confounded by DNA characteristics such as repetitive regions.

Massive parallelization

A high-throughput approach used in next-generation sequencing studies, which allows analysis of millions of short reads (usually containing 100–150 bp) in an automated miniaturized fashion. This approach differs from traditional capillary Sanger analysis in terms of time-effective mass production of sequencing outputs.

Mendelian conditions

Clinical diseases that are caused by high-effect rare variants in single genes, in contrast to polygenic or multifactorial diseases, which are associated with many common variants with low effect sizes at various genomic loci and are influenced by other non-genetic factors.

Missense constraint

A measure of genetic intolerance to amino acid substitutions, which can aid prioritization of gene candidates involved in missense mutation-associated diseases.

Mobile element

Genomic sequences that can move between chromosomes, for example, through cut-and-paste mechanisms in DNA transposons. These elements have a role in genome evolution, and their integration into disease-associated genes can disrupt the open reading frame and cause clinical phenotypes.

Penetrance

A measure of the proportion of carriers of a specific monogenic disease predisposition who present with clinical features of the associated condition.

Phenotypic pleiotropy

A phenomenon whereby variants in a disease-related gene are associated with multiple (similar or divergent) phenotypic abnormalities.

Simplex cases

Individuals with a disease phenotype who have no relatives affected by the same condition.

Spike-in panel

A protocol that dynamically incorporates specific DNA segments into the sequencing analysis; for example, complementary interrogation of all base pairs of the mitochondrial genome in addition to the nuclear coding sequences in the form of a mitochondrial spike-in panel in diagnostic exome studies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zech, M., Winkelmann, J. Next-generation sequencing and bioinformatics in rare movement disorders. Nat Rev Neurol 20, 114–126 (2024). https://doi.org/10.1038/s41582-023-00909-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00909-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing