Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circulating non-coding RNAs in chronic kidney disease and its complications

Abstract

Post-transcriptional regulation by non-coding RNAs (ncRNAs) can modulate the expression of genes involved in kidney physiology and disease. A large variety of ncRNA species exist, including microRNAs, long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs. Despite early assumptions that some of these species may exist as by-products of cell or tissue injury, a growing body of literature suggests that these ncRNAs are functional and participate in a variety of processes. Although they function intracellularly, ncRNAs are also present in the circulation, where they are carried by extracellular vesicles, ribonucleoprotein complexes or lipoprotein complexes such as HDL. These systemic, circulating ncRNAs are derived from specific cell types and can be directly transferred to a variety of cells, including endothelial cells of the vasculature and virtually any cell type in the kidney, thereby affecting the function of the host cell and/or its response to injury. Moreover, chronic kidney disease itself, as well as injury states associated with transplantation and allograft dysfunction, is associated with a shift in the distribution of circulating ncRNAs. These findings may provide opportunities for the identification of biomarkers with which to monitor disease progression and/or the development of therapeutic interventions.

Key points

  • Circulating non-coding RNAs (ncRNAs) are mediators of cell–cell communication; evidence suggests that they have important roles in kidney disease.

  • Circulating ncRNAs are selectively loaded into their carriers; selective uptake by recipient cells suggests that transported ncRNAs may have very specific functions in specific cell types.

  • ncRNAs in specific carriers may serve as better biomarkers than total levels of circulating ncRNAs.

  • A variety of circulating ncRNA species beyond microRNAs, including long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs, as well as tRNA fragments, may have important functions, but their role in kidney physiology and disease remains to be explored.

  • Selective modulation of carrier–ncRNA complexes may provide novel therapeutic targeting strategies for various kidney diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of circulating non-coding RNAs and their carriers.
Fig. 2: Functional role of carrier-associated non-coding RNAs in kidney disease.
Fig. 3: Biomarker potential of carrier-associated non-coding RNAs in patients with kidney disease.

Similar content being viewed by others

References

  1. Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  2. The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

    Article  Google Scholar 

  3. Mattick, J. S. The central role of RNA in human development and cognition. FEBS Lett. 585, 1600–1616 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Hube, F. & Francastel, C. Mammalian introns: when the junk generates molecular diversity. Int. J. Mol. Sci. 16, 4429–4452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Gebeshuber, C. A. et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19, 481–487 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Kato, M. et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat. Commun. 7, 12864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Creemers, E. E., Tijsen, A. J. & Pinto, Y. M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 110, 483–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Yeri, A. et al. Total extracellular small RNA profiles from plasma, saliva, and urine of healthy subjects. Sci. Rep. 7, 44061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Srinivasan, S. et al. Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell 177, 446–462 e416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi, J. et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat. Cell Biol. 23, 424–436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Zonneveld, A. J., Rabelink, T. J. & Bijkerk, R. miRNA-coordinated networks as promising therapeutic targets for acute kidney injury. Am. J. Pathol. 187, 20–24 (2017).

    Article  PubMed  Google Scholar 

  18. Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9, 219–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Mahtal, N., Lenoir, O., Tinel, C., Anglicheau, D. & Tharaux, P. L. MicroRNAs in kidney injury and disease. Nat. Rev. Nephrol. 18, 643–662 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Amaral, P. P. & Mattick, J. S. Noncoding RNA in development. Mamm. Genome 19, 454–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Yao, R. W., Wang, Y. & Chen, L. L. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21, 542–551 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Jia, H. et al. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16, 1478–1487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moreno, J. A. et al. Non-coding RNAs in kidney diseases: the long and short of them. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22116077 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lorenzen, J. M. & Thum, T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat. Rev. Nephrol. 12, 360–373 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Patop, I. L., Wust, S. & Kadener, S. Past, present, and future of circRNAs. EMBO J. 38, e100836 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Zonneveld, A. J., Kolling, M., Bijkerk, R. & Lorenzen, J. M. Circular RNAs in kidney disease and cancer. Nat. Rev. Nephrol. 17, 814–826 (2021).

    Article  PubMed  Google Scholar 

  28. Pruijn, G. J., Wingens, P. A., Peters, S. L., Thijssen, J. P. & van Venrooij, W. J. Ro RNP associated Y RNAs are highly conserved among mammals. Biochim. Biophys. Acta 1216, 395–401 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Boccitto, M. & Wolin, S. L. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit. Rev. Biochem. Mol. Biol. 54, 133–152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kowalski, M. P. & Krude, T. Functional roles of non-coding Y RNAs. Int. J. Biochem. Cell Biol. 66, 20–29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Driedonks, T. A. P. & Nolte-‘t Hoen, E. N. M. Circulating Y-RNAs in extracellular vesicles and ribonucleoprotein complexes; implications for the immune system. Front. Immunol. 9, 3164 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Thomson, D. W. et al. Assessing the gene regulatory properties of argonaute-bound small RNAs of diverse genomic origin. Nucleic Acids Res. 43, 470–481 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Shen, Y. et al. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J. Mol. Med. 96, 1167–1176 (2018).

    Article  PubMed  Google Scholar 

  34. Honda, S. et al. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl Acad. Sci. USA 112, E3816–E3825 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Tosar, J. P. & Cayota, A. Extracellular tRNAs and tRNA-derived fragments. RNA Biol. 17, 1149–1167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nechooshtan, G., Yunusov, D., Chang, K. & Gingeras, T. R. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment. Nucleic Acids Res. 48, 8035–8049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, D. et al. Role of tRNA derived fragments in renal ischemia-reperfusion injury. Ren. Fail. 44, 815–825 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan, X. et al. Transfer RNA fragments in the kidney in hypertension. Hypertension 77, 1627–1637 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Williams, A. M. et al. Histologically resolved small RNA maps in primary focal segmental glomerulosclerosis indicate progressive changes within glomerular and tubulointerstitial regions. Kidney Int. 101, 766–778 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Kiss, T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 20, 3617–3622 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ender, C. et al. A human snoRNA with microRNA-like functions. Mol. Cell 32, 519–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Freedman, J. E. et al. Diverse human extracellular RNAs are widely detected in human plasma. Nat. Commun. 7, 11106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Persson, H. et al. The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat. Cell Biol. 11, 1268–1271 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allen, R. M. et al. Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. J. Extracell. Vesicles 7, 1506198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, K. et al. The complex exogenous RNA spectra in human plasma: an interface with human gut biota. PLoS One 7, e51009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dellar, E. R., Hill, C., Melling, G. E., Carter, D. R. F. & Baena-Lopez, L. A. Unpacking extracellular vesicles: RNA cargo loading and function. J. Extracell. Biol. 1, e40 (2022).

    Article  CAS  Google Scholar 

  50. Borges, F. T. et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc. Nephrol. 24, 385–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Abbasian, N., Herbert, K. E., Pawluczyk, I., Burton, J. O. & Bevington, A. Vesicles bearing gifts: the functional importance of micro-RNA transfer in extracellular vesicles in chronic kidney disease. Am. J. Physiol. Renal Physiol. 315, F1430–F1443 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, S. et al. Cell-derived microparticles in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Cell Physiol. Biochem. 39, 2439–2450 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Nolte-‘t Hoen, E. N. et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40, 9272–9285 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. van Balkom, B. W., Eisele, A. S., Pegtel, D. M., Bervoets, S. & Verhaar, M. C. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J. Extracell. Vesicles 4, 26760 (2015).

    Article  PubMed  Google Scholar 

  56. Preusser, C. et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J. Extracell. Vesicles 7, 1424473 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tosar, J. P. et al. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 43, 5601–5616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcia-Martin, R. et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601, 446–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.24641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vinas, J. L. et al. Receptor-ligand interaction mediates targeting of endothelial colony forming cell-derived exosomes to the kidney after ischemic injury. Sci. Rep. 8, 16320 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kholia, S. et al. Human liver stem cell derived extracellular vesicles alleviate kidney fibrosis by interfering with the β-catenin pathway through miR29b. Int. J. Mol. Sci. https://doi.org/10.3390/ijms221910780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gao, M. et al. Liver-derived exosome-laden lncRNA MT1DP aggravates cadmium-induced nephrotoxicity. Environ. Pollut. 258, 113717 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Matthews, O. et al. Transfer of hepatocellular microRNA regulates cytochrome P450 2E1 in renal tubular cells. EBioMedicine 62, 103092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gao, L. et al. Cardio-renal exosomes in myocardial infarction serum regulate proangiogenic paracrine signaling in adipose mesenchymal stem cells. Theranostics 10, 1060–1073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, Q. et al. Transfer of functional cargo in exomeres. Cell Rep. 27, 940–954.e946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yuana, Y., Levels, J., Grootemaat, A., Sturk, A. & Nieuwland, R. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.23262 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vickers, K. C. & Michell, D. L. HDL-small RNA export, transport, and functional delivery in atherosclerosis. Curr. Atheroscler. Rep. 23, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wagner, J. et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler. Thromb. Vasc. Biol. 33, 1392–1400 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Baragetti, A. et al. High density lipoprotein cholesterol levels are an independent predictor of the progression of chronic kidney disease. J. Intern. Med. 274, 252–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Nam, K. H. et al. Association between serum high-density lipoprotein cholesterol levels and progression of chronic kidney disease: results from the KNOW-CKD. J. Am. Heart Assoc. 8, e011162 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Davis, C. E. et al. Sex difference in high density lipoprotein cholesterol in six countries. Am. J. Epidemiol. 143, 1100–1106 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Tosar, J. P., Witwer, K. & Cayota, A. Revisiting extracellular RNA release, processing, and function. Trends Biochem. Sci. 46, 438–445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McKenzie, A. J. et al. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15, 978–987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Turchinovich, A. & Burwinkel, B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol. 9, 1066–1075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cantaluppi, V. et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 82, 412–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Bitzer, M., Ben-Dov, I. Z. & Thum, T. Microparticles and microRNAs of endothelial progenitor cells ameliorate acute kidney injury. Kidney Int. 82, 375–377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bijkerk, R. et al. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J. Am. Soc. Nephrol. 25, 1710–1722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. He, Z., Wang, H. & Yue, L. Endothelial progenitor cells-secreted extracellular vesicles containing microRNA-93-5p confer protection against sepsis-induced acute kidney injury via the KDM6B/H3K27me3/TNF-alpha axis. Exp. Cell Res. 395, 112173 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, Y. et al. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol. Ther. 26, 1375–1384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pan, T. et al. Delayed remote ischemic preconditioning confers renoprotection against septic acute kidney injury via exosomal miR-21. Theranostics 9, 405–423 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vinas, J. L. et al. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int. 90, 1238–1250 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Cavallari, C. et al. Online hemodiafiltration inhibits inflammation-related endothelial dysfunction and vascular calcification of uremic patients modulating miR-223 expression in plasma extracellular vesicles. J. Immunol. 202, 2372–2383 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Uil, M. et al. Cellular origin and microRNA profiles of circulating extracellular vesicles in different stages of diabetic nephropathy. Clin. Kidney J. 14, 358–365 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Zietzer, A. et al. MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease. Cardiovasc. Res. 118, 316–333 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Hanatani, S. et al. Akt1-mediated fast/glycolytic skeletal muscle growth attenuates renal damage in experimental kidney disease. J. Am. Soc. Nephrol. 25, 2800–2811 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, B. et al. miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics 9, 1864–1877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, A. et al. Exogenous miR-26a suppresses muscle wasting and renal fibrosis in obstructive kidney disease. FASEB J. 33, 13590–13601 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, H. et al. Exosome-mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice. Mol. Ther. 27, 571–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guan, H. et al. Injured tubular epithelial cells activate fibroblasts to promote kidney fibrosis through miR-150-containing exosomes. Exp. Cell Res. 392, 112007 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Zhao, S. et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys. Theranostics 11, 8660–8673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou, X. et al. Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo. Int. J. Biol. Sci. 17, 4021–4033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, Q. et al. Circulating miR-103a-3p contributes to angiotensin II-induced renal inflammation and fibrosis via a SNRK/NF-κB/p65 regulatory axis. Nat. Commun. 10, 2145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Su, H. et al. Podocyte-derived extracellular vesicles mediate renal proximal tubule cells dedifferentiation via microRNA-221 in diabetic nephropathy. Mol. Cell Endocrinol. 518, 111034 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Hill, N. et al. Glomerular endothelial derived vesicles mediate podocyte dysfunction: A potential role for miRNA. PLoS One 15, e0224852 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, H. et al. M2 macrophage-derived exosomal miR-25-3p improves high glucose-induced podocytes injury through activation autophagy via inhibiting DUSP1 expression. IUBMB Life 72, 2651–2662 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Zhuang, Y., Zheng, H., Yang, Y. & Ni, H. GABA alleviates high glucose-induced podocyte injury through dynamically altering the expression of macrophage M1/M2-derived exosomal miR-21a-5p/miR-25-3p. Biochem. Biophys. Res. Commun. 618, 38–45 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Ding, X. et al. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J. Endocrinol. Invest. 44, 1175–1184 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Z., Sun, W., Li, R. & Liu, Y. miRNA-93-5p in exosomes derived from M2 macrophages improves lipopolysaccharide-induced podocyte apoptosis by targeting Toll-like receptor 4. Bioengineered 13, 7683–7696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, Z. et al. Macrophage-derived exosomal miRNA-155 promotes tubular injury in ischemia-induced acute kidney injury. Int. J. Mol. Med. https://doi.org/10.3892/ijmm.2022.5172 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhao, J., Chen, J., Zhu, W., Qi, X. M. & Wu, Y. G. Exosomal miR-7002-5p derived from high glucose-induced macrophages suppresses autophagy in tubular epithelial cells by targeting Atg9b. FASEB J. 36, e22501 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Li, Z. L. et al. HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int. 95, 388–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Lv, L. L. et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 27, 210–226 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Ding, H., Li, L. X., Harris, P. C., Yang, J. & Li, X. Extracellular vesicles and exosomes generated from cystic renal epithelial cells promote cyst growth in autosomal dominant polycystic kidney disease. Nat. Commun. 12, 4548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Franzin, R. et al. Extracellular vesicles derived from patients with antibody-mediated rejection induce tubular senescence and endothelial to mesenchymal transition in renal cells. Am. J. Transpl. 22, 2139–2157 (2022).

    Article  CAS  Google Scholar 

  108. Rutman, A. K. et al. Extracellular vesicles from kidney allografts express miR-218-5p and Alter Th17/Treg ratios. Front. Immunol. 13, 784374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pang, X. L. et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation. Aging 11, 8911–8924 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, B. et al. Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis. Mol. Ther. 24, 1290–1301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, Y. et al. Exosomes derived from mesenchymal stem cells ameliorate renal fibrosis via delivery of miR-186-5p. Hum. Cell 35, 83–97 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Xu, S. et al. Bone marrow mesenchymal stem cell-derived exosomal miR-21a-5p alleviates renal fibrosis by attenuating glycolysis by targeting PFKM. Cell Death Dis. 13, 876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, S. J. et al. Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-181d protect rats against renal fibrosis by inhibiting KLF6 and the NF-κB signaling pathway. Cell Death Dis. 13, 535 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hu, X. et al. Bone marrow mesenchymal stem cell-derived exosomal miR-34c-5p ameliorates RIF by inhibiting the core fucosylation of multiple proteins. Mol. Ther. 30, 763–781 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cao, J. Y. et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics 11, 5248–5266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010). 531p following 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhu, G. et al. Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. J. Cell Physiol. 234, 23736–23749 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Li, X. et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics 10, 9561–9578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, X. et al. Exosomes secreted by mesenchymal stem cells induce immune tolerance to mouse kidney transplantation via transporting LncRNA DANCR. Inflammation 45, 460–475 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, Z. G. et al. Donor BMSC-derived small extracellular vesicles relieve acute rejection post-renal allograft through transmitting Loc108349490 to dendritic cells. Aging Cell 20, e13461 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cao, S. et al. Circular RNA mmu_circ_0001295 from hypoxia pretreated adipose-derived mesenchymal stem cells (ADSCs) exosomes improves outcomes and inhibits sepsis-induced renal injury in a mouse model of sepsis. Bioengineered 13, 6323–6331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bai, S. et al. Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-κB/MMP-2 axis. Cell Death Dis. 11, 1008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Canfran-Duque, A., Lin, C. S., Goedeke, L., Suarez, Y. & Fernandez-Hernando, C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol. 36, 1076–1084 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hennessy, E. J. et al. The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nat. Metab. 1, 98–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Tabet, F. et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 5, 3292 (2014).

    Article  PubMed  Google Scholar 

  127. Bijkerk, R. et al. Circulating microRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation. Am. J. Transpl. 15, 1081–1090 (2015).

    Article  CAS  Google Scholar 

  128. Hourigan, S. T. et al. The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis. Sci. Rep. 8, 13596 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Morrison, K. R. et al. Elevated HDL-bound miR-181c-5p level is associated with diabetic vascular complications in Australian Aboriginal people. Diabetologia 64, 1402–1411 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Florijn, B. W. et al. Diabetic nephropathy alters the distribution of circulating angiogenic microRNAs among extracellular vesicles, HDL, and Ago-2. Diabetes 68, 2287–2300 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Shroff, R. et al. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J. Am. Soc. Nephrol. 25, 2658–2668 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Keene, D., Price, C., Shun-Shin, M. J. & Francis, D. P. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ 349, g4379 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Laffont, B. et al. Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 122, 253–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Groeneweg, K. E. et al. Diabetic nephropathy alters circulating long noncoding RNA levels that normalize following simultaneous pancreas-kidney transplantation. Am. J. Transpl. 20, 3451–3461 (2020).

    Article  CAS  Google Scholar 

  135. Gu, Y. Y. et al. Non-coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease. Front. Pharmacol. 11, 583528 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Satake, E. et al. Comprehensive search for novel circulating miRNAs and Axon guidance pathway proteins associated with risk of ESKD in diabetes. J. Am. Soc. Nephrol. 32, 2331–2351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pezzolesi, M. G. et al. Circulating TGF-β1-regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes. Diabetes 64, 3285–3293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kolling, M. et al. The circular RNA ciRs-126 predicts survival in critically ill patients with acute kidney injury. Kidney Int. Rep. 3, 1144–1152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Phulkerd, T. et al. Circulating and urinary microRNAs profile for predicting renal recovery from severe acute kidney injury. J. Intensive Care 10, 45 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chen, Y., Han, X., Sun, Y., He, X. & Xue, D. A circulating exosomal microRNA panel as a novel biomarker for monitoring post-transplant renal graft function. J. Cell Mol. Med. 24, 12154–12163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kuscu, C. et al. Integrative analyses of circulating small RNAs and kidney graft transcriptome in transplant glomerulopathy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22126218 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mishima, E. et al. Conformational change in transfer RNA is an early indicator of acute cellular damage. J. Am. Soc. Nephrol. 25, 2316–2326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Holderied, A. & Anders, H. J. t-RNA fragmentation as an early biomarker of (kidney) injury. J. Am. Soc. Nephrol. 25, 2145–2147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vallabhajosyula, P. et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J. Clin. Invest. 127, 1375–1391 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Gremmels, H. et al. The small RNA repertoire of small extracellular vesicles isolated from donor kidney preservation fluid provides a source for biomarker discovery for organ quality and posttransplantation graft function. Transpl. Direct 5, e484 (2019).

    Article  CAS  Google Scholar 

  146. Driedonks, T. A. et al. Y-RNA subtype ratios in plasma extracellular vesicles are cell type-specific and are candidate biomarkers for inflammatory diseases. J. Extracell. Vesicles 9, 1764213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Saejong, S. et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation. Asian Pac. J. Allergy Immunol. 40, 94–102 (2022).

    CAS  PubMed  Google Scholar 

  148. Hart, L. et al. Circulating small non-coding RNAs associate with kidney function in people with type 2 diabetes. Preprint at medRxiv https://doi.org/10.1101/2022.05.23.22275440 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Jankowski, J., Floege, J., Fliser, D., Bohm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Niculescu, L. S. et al. MiR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable coronary artery disease patients. PLoS One 10, e0140958 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Meiri, E. et al. Differential expression of microRNA in serum fractions and association of Argonaute 1 microRNAs with heart failure. J. Cell Mol. Med. 24, 6586–6595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Perez-Hernandez, J. et al. Urinary- and plasma-derived exosomes reveal a distinct microRNA signature associated with albuminuria in hypertension. Hypertension 77, 960–971 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Riffo-Campos, A. L. et al. Exosomal and plasma non-coding RNA signature associated with urinary albumin excretion in hypertension. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23020823 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Regulus Therapeutics Inc. A study of RGLS8429 in patients with autosomal dominant polycystic kidney disease. https://clinicaltrials.gov/ct2/show/NCT05521191 (2023).

  157. Genzyme. Study of lademirsen (SAR339375) in patients with Alport syndrome (HERA). https://clinicaltrials.gov/ct2/show/NCT02855268 (2022).

  158. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Shah, A. M. & Giacca, M. Small non-coding RNA therapeutics for cardiovascular disease. Eur. Heart J. 43, 4548–4561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bondue, T., van den Heuvel, L., Levtchenko, E. & Brock, R. The potential of RNA-based therapy for kidney diseases. Pediatr. Nephrol. 38, 327–344 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Tang, T. T. et al. Kim-1 targeted extracellular vesicles: a new therapeutic platform for RNAi to treat AKI. J. Am. Soc. Nephrol. 32, 2467–2483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zheng, W. et al. Cell-specific targeting of extracellular vesicles though engineering the glycocalyx. J. Extracell. Vesicles 11, e12290 (2022).

    Article  PubMed  Google Scholar 

  163. Nogrady, B. The challenge of delivering RNA-interference therapeutics to their target cells. Nature 574, S8–S9 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Midgley, A. C. et al. Multifunctional natural polymer nanoparticles as antifibrotic gene carriers for CKD therapy. J. Am. Soc. Nephrol. 31, 2292–2311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Huang, S. et al. Application of ultrasound-targeted microbubble destruction-mediated exogenous gene transfer in treating various renal diseases. Hum. Gene Ther. 30, 127–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Winek, K. et al. Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade. Proc. Natl Acad. Sci. USA 117, 32606–32616 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Dutch Kidney Foundation (KOLLF grant 20OK015, to R.B.) and the European Foundation for the Study of Diabetes (to A.J.V.Z. and R.B.). The authors also thank Manon Zuurmond (LUMC, Leiden, the Netherlands) for generating the concept figures used in this Review.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. and R.B researched data for the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Roel Bijkerk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Benjamin Humphreys, Valérie Metzinger-Le Meuth and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Zonneveld, A.J., Zhao, Q., Rotmans, J.I. et al. Circulating non-coding RNAs in chronic kidney disease and its complications. Nat Rev Nephrol 19, 573–586 (2023). https://doi.org/10.1038/s41581-023-00725-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00725-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing