Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Activation of human endogenous retroviruses and its physiological consequences

Abstract

Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The endogenization of a retrovirus.
Fig. 2: Spatiotemporal patterns of human endogenous retrovirus activity throughout development.
Fig. 3: Proposed model for human endogenous retrovirus contributions to ageing-associated neurodegeneration.
Fig. 4: Deregulation of human endogenous retroviruses in cancer.

Similar content being viewed by others

References

  1. Nisole, S. & Saïb, A. Early steps of retrovirus replicative cycle. Retrovirology 1, 9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jern, P. & Coffin, J. M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. de Parseval, N. & Heidmann, T. Human endogenous retroviruses: from infectious elements to human genes. Cytogenet. Genome Res. 110, 318–332 (2005). Together with Jern and Coffin (2008), this paper is a seminal review article that discusses in detail the foundational studies of endogenous retroviruses.

    Article  PubMed  Google Scholar 

  4. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Vargiu, L. et al. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 13, 7 (2016). This paper is a comprehensive characterization and annotation of the complex HERV structures scattered throughout the human genome.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang, Y.-H. & Dubnau, J. Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nat. Commun. 14, 966 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dopkins, N. et al. A field guide to endogenous retrovirus regulatory networks. Mol. Cell 82, 3763–3768 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, B. et al. Species-specific KRAB-ZFPs function as repressors of retroviruses by targeting PBS regions. Proc. Natl Acad. Sci. USA 119, e2119415119 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garland, W. et al. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Mol. Cell 82, 1691–1707.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bannert, N. & Kurth, R. The evolutionary dynamics of human endogenous retroviral families. Annu. Rev. Genom. Hum. Genet. 7, 149–173 (2006).

    Article  CAS  Google Scholar 

  12. Turelli, P. et al. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 24, 1260–1270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Groh, S. et al. Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation. Nat. Commun. 12, 5996 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chelmicki, T. et al. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 591, 312–316 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

    Article  ADS  PubMed  Google Scholar 

  16. Ha, H. et al. A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genom. 15, 545 (2014).

    Article  Google Scholar 

  17. Whitelaw, E. & Martin, D. I. K. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Göke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).

    Article  PubMed  Google Scholar 

  20. Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barakat, T. S. et al. Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell 23, 276–288.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He, J. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. She, J. et al. The landscape of hervRNAs transcribed from human endogenous retroviruses across human body sites. Genome Biol. 23, 231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burn, A., Roy, F., Freeman, M. & Coffin, J. M. Widespread expression of the ancient HERV-K (HML-2) provirus group in normal human tissues. PLoS Biol. 20, e3001826 (2022). Together with She et al. (2022), this paper provides an in-depth, locus-specific atlas of HERV RNA expression in various healthy human tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coffin, J. M. et al. (eds) Retroviruses (Cold Spring Harbor Laboratory, 1997).

  26. Robasky, K., Lewis, N. E. & Church, G. M. The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet. 15, 56–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Berrens, R. V. et al. Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat. Biotechnol. 40, 546–554 (2021). This paper is a cutting-edge bioinformatics pipeline that provides the highest definition of expression of transposable elements from long-read single-cell RNA sequencing.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Troskie, R.-L. et al. Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome. Genome Biol. 22, 146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Lerat, E. Recent bioinformatic progress to identify epigenetic changes associated to transposable elements. Front. Genet. 13, 891194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodríguez-Quiroz, R. & Valdebenito-Maturana, B. SoloTE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression. Commun. Biol. 5, 1063 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tokuyama, M. et al. ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc. Natl Acad. Sci. USA 115, 12565–12572 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bendall, M. L. et al. Telescope: characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLoS Comput. Biol. 15, e1006453 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, W. R., Ardeljan, D., Pacyna, C. N., Payer, L. M. & Burns, K. H. SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res. 47, e27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeong, H.-H., Yalamanchili, H. K., Guo, C., Shulman, J. M. & Liu, Z. in Biocomputing 2018 Vol. 23, 168–179 (World Scientific, 2018).

  37. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tristem, M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virol. 74, 3715–3730 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andersson, M. L. et al. Diversity of human endogenous retrovirus class II-like sequences. J. Gen. Virol. 80, 255–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Bao, W., Kojima, K. K. & Kohany, O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Paces, J. et al. HERVd: the human endogenous retroviruses database: update. Nucleic Acids Res. 32, D50 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Becker, J. et al. A comprehensive hybridization model allows whole HERV transcriptome profiling using high density microarray. BMC Genom. 18, 286 (2017).

    Article  Google Scholar 

  43. Garazha, A. et al. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome. Cell Cycle 14, 1476–1484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hubley, R. et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 44, D81–D89 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Xiang, X. et al. Human reproduction is regulated by retrotransposons derived from ancient Hominidae-specific viral infections. Nat. Commun. 13, 463 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kigami, D., Minami, N., Takayama, H. & Imai, H. MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos1. Biol. Reprod. 68, 651–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pontis, J. et al. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24, 724–735.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mi, S. et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Dupressoir, A. et al. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl Acad. Sci. USA 106, 12127–12132 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frank, J. A. et al. Evolution and antiviral activity of a human protein of retroviral origin. Science 378, 422–428 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Dopkins, N. et al. How human endogenous retroviruses interact with the microbiota in health and disease. Trends Microbiol. 30, 812–815 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Lima-Junior, D. S. et al. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 184, 3794–3811.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Walsh, D. & Mohr, I. Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol. 9, 860–875 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mommert, M. et al. Dynamic LTR retrotransposon transcriptome landscape in septic shock patients. Crit. Care 24, 96 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dopkins, N. et al. Endogenous reverse transcriptase inhibition attenuates TLR5-mediated inflammation. mBio 14, e0328022 (2023).

    Article  PubMed  Google Scholar 

  59. Young, G. R., Mavrommatis, B. & Kassiotis, G. Microarray analysis reveals global modulation of endogenous retroelement transcription by microbes. Retrovirology 11, 59 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mommert, M. et al. LTR-retrotransposon transcriptome modulation in response to endotoxin-induced stress in PBMCs. BMC Genom. 19, 522 (2018).

    Article  Google Scholar 

  61. Rookhuizen, D. C. et al. Induction transposable element expression is central to innate sensing. Preprint at bioRxiv https://doi.org/10.1101/2021.09.10.457789 (2021).

  62. Yan, N. & Chen, Z. J. Intrinsic antiviral immunity. Nat. Immunol. 13, 214–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kohli, J., Veenstra, I. & Demaria, M. The struggle of a good friend getting old: cellular senescence in viral responses and therapy. EMBO Rep. 22, e52243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Platanitis, E. et al. Interferons reshape the 3D conformation and accessibility of macrophage chromatin. iScience 25, 103840 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Leung, A. et al. LTRs activated by Epstein–Barr virus-induced transformation of B cells alter the transcriptome. Genome Res. 28, 1791–1798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sutkowski, N., Conrad, B., Thorley-Lawson, D. A. & Huber, B. T. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15, 579–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Dai, L. et al. Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi’s sarcoma development. Oncogene 37, 4534–4545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Toufaily, C., Landry, S., Leib-Mosch, C., Rassart, E. & Barbeau, B. Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses 3, 2146–2159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gonzalez-Hernandez, M. J. et al. Expression of human endogenous retrovirus type K (HML-2) is activated by the Tat protein of HIV-1. J. Virol. 86, 7790–7805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. O’Carroll, I. P. et al. Structural mimicry drives HIV-1 Rev-mediated HERV-K expression. J. Mol. Biol. 432, 166711 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen, J., Foroozesh, M. & Qin, Z. Transactivation of human endogenous retroviruses by tumor viruses and their functions in virus-associated malignancies. Oncogenesis 8, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kyriakou, E. & Magiorkinis, G. Interplay between endogenous and exogenous human retroviruses. Trends Microbiol. 31, 933–946 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Anisimova, A. S. et al. Multifaceted deregulation of gene expression and protein synthesis with age. Proc. Natl Acad. Sci. USA 117, 15581–15590 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Li, W. et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7, 307ra153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kassiotis, G. The immunological conundrum of endogenous retroelements. Annu. Rev. Immunol. 41, 99–125 (2023). This paper is a comprehensive overview of the diverse mechanisms by which endogenous retroviruses are involved in immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, X. et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 186, 287–304.e26 (2023). This study demonstrates that activation of HERV-like particles may contribute to the inflammatory processes that underly ageing-related pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, H. et al. Nuclear lamina erosion-induced resurrection of endogenous retroviruses underlies neuronal aging. Cell Rep. 42, 112593 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Küry, P. et al. Human endogenous retroviruses in neurological diseases. Trends Mol. Med. 24, 379–394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jansz, N. & Faulkner, G. J. Endogenous retroviruses in the origins and treatment of cancer. Genome Biol. 22, 147 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gan, L., Cookson, M. R., Petrucelli, L. & La Spada, A. R. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat. Neurosci. 21, 1300–1309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun, W., Samimi, H., Gamez, M., Zare, H. & Frost, B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 21, 1038–1048 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ramirez, P. et al. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog. Neurobiol. 208, 102181 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Steiner, J. P. et al. Human endogenous retrovirus K envelope in spinal fluid of amyotrophic lateral sclerosis is toxic. Ann. Neurol. 92, 545–561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Garcia‐Montojo, M. et al. Antibody response to HML‐2 may be protective in amyotrophic lateral sclerosis. Ann. Neurol. 92, 782–792 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Viola, M. V., Frazier, M., White, L., Brody, J. & Spiegelman, S. RNA-instructed DNA polymerase activity in a cytoplasmic particulate fraction in brains from Guamanian patients. J. Exp. Med. 142, 483–494 (1975).

    Article  CAS  PubMed  Google Scholar 

  89. Tam, O. H. et al. Postmortem cortex samples identify distinct molecular subtypes of ALS: retrotransposon activation, oxidative stress, and activated glia. Cell Rep. 29, 1164–1177.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Padmanabhan Nair, V. et al. Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell 28, 1566–1581.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Johansson, E. M. et al. Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis. Sci. Adv. 6, eabc0708 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jönsson, M. E., Garza, R., Johansson, P. A. & Jakobsson, J. Transposable elements: a common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet. 36, 610–623 (2020).

    Article  PubMed  Google Scholar 

  93. Jönsson, M. E. et al. Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO J. 40, e106423 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Krebs, A.-S. et al. Molecular architecture and conservation of an immature human endogenous retrovirus. Nat. Commun. 14, 5149 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Douville, R., Liu, J., Rothstein, J. & Nath, A. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann. Neurol. 69, 141–151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garcia-Montojo, M., Li, W. & Nath, A. Technical considerations in detection of HERV-K in amyotrophic lateral sclerosis: selection of controls and the perils of qPCR. Acta Neuropathol. Commun. 7, 101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mayer, J. et al. Transcriptional profiling of HERV-K(HML-2) in amyotrophic lateral sclerosis and potential implications for expression of HML-2 proteins. Mol. Neurodegener. 13, 39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Garson, J. A. et al. Quantitative analysis of human endogenous retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 7, 45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dembny, P. et al. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight 5, e131093 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Guo, C. et al. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 23, 2874–2880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dawson, T. et al. Locus specific endogenous retroviral expression associated with Alzheimer’s disease. Front. Aging Neurosci. 15, 1186470 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pisetsky, D. S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 19, 509–524 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Perron, H. et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc. Natl Acad. Sci. USA 94, 7583–7588 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Garson, J. A., Tuke, P. W., Giraud, P., Paranhos-Baccala, G. & Perron, H. Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet 351, 33 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Nakagawa, K., Brusic, V., McColl, G. & Harrison, L. C. Direct evidence for the expression of multiple endogenous retroviruses in the synovial compartment in rheumatoid arthritis. Arthritis Rheum. 40, 627–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Ogasawara, H. et al. Quantitative analyses of messenger RNA of human endogenous retrovirus in patients with systemic lupus erythematosus. J. Rheumatol. 28, 533–538 (2001).

    CAS  PubMed  Google Scholar 

  107. Treger, R. S. et al. The lupus susceptibility locus Sgp3 encodes the suppressor of endogenous retrovirus expression SNERV. Immunity 50, 334–347.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Semsari, H. et al. Association of human endogenous retrovirus-W (HERV-W) copies with pemphigus vulgaris. Curr. Mol. Med. https://doi.org/10.2174/1566524023666230418114152 (2023).

  109. Beck-Engeser, G. B., Eilat, D. & Wabl, M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8, 91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rice, G. I. et al. Reverse-transcriptase inhibitors in the Aicardi–Goutières syndrome. N. Engl. J. Med. 379, 2275–2277 (2018).

    Article  PubMed  Google Scholar 

  111. Hartung, H.-P. et al. Efficacy and safety of temelimab in multiple sclerosis: results of a randomized phase 2b and extension study. Mult. Scler. 28, 429–440 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Rajurkar, M. et al. Reverse transcriptase inhibition disrupts repeat element life cycle in colorectal cancer. Cancer Discov. 12, 1462–1481 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ukadike, K. C. et al. Expression of L1 retrotransposons in granulocytes from patients with active systemic lupus erythematosus. Mob. DNA 14, 5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bach, J.-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  115. Wu, S., Zhu, W., Thompson, P. & Hannun, Y. A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 9, 3490 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  116. Reid Cahn, A., Bhardwaj, N. & Vabret, N. Dark genome, bright ideas: recent approaches to harness transposable elements in immunotherapies. Cancer Cell 40, 792–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Babaian, A. et al. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene 35, 2542–2546 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Lamprecht, B. et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Wiesner, T. et al. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 526, 453–457 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Scarfò, I. et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood 127, 221–232 (2016).

    Article  PubMed  Google Scholar 

  122. Lock, F. E. et al. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 111, E3534–E3543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, A. Y. & Abraham, B. A. Subtractive cloning of a hybrid human endogenous retrovirus and calbindin gene in the prostate cell line PC3. Cancer Res. 51, 4107–4110 (1991).

    CAS  PubMed  Google Scholar 

  124. Attig, J. et al. Human endogenous retrovirus onco-exaptation counters cancer cell senescence through calbindin. J. Clin. Invest. 133, e164397 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Singh, B. et al. Locus specific human endogenous retroviruses reveal new lymphoma subtypes. Preprint at bioRxiv https://doi.org/10.1101/2023.06.08.544208 (2023).

  126. Steiner, M. C. et al. Locus-specific characterization of human endogenous retrovirus expression in prostate, breast, and colon cancers. Cancer Res. 81, 3449–3460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Alcazer, V. et al. HERVs characterize normal and leukemia stem cells and represent a source of shared epitopes for cancer immunotherapy. Am. J. Hematol. 97, 1200–1214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ng, K. W. et al. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature 616, 563–573 (2023). This study demonstrates the possibly tumourigenic effects of HERV protein expression and its immunotherapeutic potential.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saini, S. K. et al. Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat. Commun. 11, 5660 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bonaventura, P. et al. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci. Adv. 8, eabj3671 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Burbage, M. et al. Epigenetically controlled tumor antigens derived from splice junctions between exons and transposable elements. Sci. Immunol. 8, eabm6360 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023). This study provides a molecular basis for the selection of endogenous retroviruses that can form recurrent neoantigens in various malignancies.

    Article  CAS  PubMed  Google Scholar 

  133. Cuevas, M. V. R. et al. BamQuery: a proteogenomic tool to explore the immunopeptidome and prioritize actionable tumor antigens. Genome Biol. 24, 188 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ehx, G. et al. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 54, 737–752.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Shah, N. M. et al. Pan-cancer analysis identifies tumor-specific antigens derived from transposable elements. Nat. Genet. 55, 631–639 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, E. & Aifantis, I. RNA splicing and cancer. Trends Cancer 6, 631–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Ko, E.-J. et al. Expression profiles of human endogenous retrovirus (HERV)-K and HERV-R Env proteins in various cancers. BMB Rep. 54, 368–373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shah, A. H. et al. Human endogenous retrovirus K contributes to a stem cell niche in glioblastoma. J. Clin. Invest. 133, e167929 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marofi, F. et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther. 12, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang-Johanning, F. et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J. Natl Cancer Inst. 104, 189–210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhou, F. et al. Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology 4, e1047582 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Nicholas Dopkins or Douglas F. Nixon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Stéphane Depil, Paola Bonaventura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Dysbiosis

The state of disbalance in the composition and diversity of microorganisms that constitute the microbiota of a host organism.

Expectation–maximization

An algorithmic computational approach that iteratively defines the maximum likelihood for given estimations based on latent variables, commonly used to improve upon estimations provided by probabilistic models of data.

Inflammasome

Multisubunit complex that assemble in the cytosol in response to inflammatory stimuli. Following their assembly, inflammasomes transduce immunological signals.

Inflammatory disorders

Conditions in which unregulated and typically self-targeting inflammation contributes to pathogenesis. Inflammatory disorders generally demonstrate cyclic cascades of immune responses that further reinforce incipient inflammation.

Neurofibrillary tangles

Pathological insoluble aggregates of hyperphosphorylated tau protein in the central nervous system.

Pattern recognition receptors

Invariant innate immunity receptors that recognize and detect molecular signals that commonly arise from pathogen invasion or cellular damage.

Retrovirus-like particles

Assembled endogenous retroviral particles that are morphologically similar to an infectious retrovirus but are replication incompetent and thus non-infectious.

Superantigen

Molecules that possess nonspecific stimulatory capacity of adaptive immunity cell subsets.

Syncytiotrophoblast

A barrier layer of multinucleated epithelial cells that separates the maternal and embryonic circulatory systems.

Ty3 or mdg4

A phylogeny of LTR-possessing retroelements. The previously used nomenclature for these elements relied on the word ‘gypsy’; going forward, these elements should be referred to as ‘Ty3’ or ‘mdg4’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dopkins, N., Nixon, D.F. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol 25, 212–222 (2024). https://doi.org/10.1038/s41580-023-00674-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00674-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing