Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of membrane protein structure and function by their lipid nano-environment

An Author Correction to this article was published on 03 November 2022

This article has been updated

Abstract

Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein–lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid–protein interactions has led to generalizable insights, which we synthesize into a general framework termed the ‘functional paralipidome’ to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inter-relationships between membrane lipidomes, protein structure–function and collective membrane physical properties.
Fig. 2: How collective membrane properties can affect protein organization and function.
Fig. 3: Physical and compositional variations in subcellular membranes.
Fig. 4: Possible modes of lipid interactions with transmembrane proteins.
Fig. 5: The functional paralipidome.

Similar content being viewed by others

Change history

References

  1. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  Google Scholar 

  2. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  Google Scholar 

  3. Payandeh, J. & Volgraf, M. Ligand binding at the protein-lipid interface: strategic considerations for drug design. Nat. Rev. Drug Discov. 20, 710–722 (2021).

    Article  CAS  Google Scholar 

  4. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  Google Scholar 

  5. Capolupo, L. et al. Sphingolipids control dermal fibroblast heterogeneity. Science 376, eabh1623 (2022).

    Article  CAS  Google Scholar 

  6. Symons, J. L. et al. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter 17, 288–297 (2020).

    Article  Google Scholar 

  7. Levental, K. R. et al. omega-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Sci. Adv. 3, eaao1193 (2017). Demonstrates that membrane lipidomes can be comprehensively remodelled by exogenous, dietary fatty acids and that these effects can modulate stem cell differentiation.

    Article  Google Scholar 

  8. Han, X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 12, 668–679 (2016).

    Article  CAS  Google Scholar 

  9. Eiriksson, F. F. et al. Lipidomic study of cell lines reveals differences between breast cancer subtypes. PLoS One 15, e0231289 (2020).

    Article  CAS  Google Scholar 

  10. Levental, K. R. et al. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat. Commun. 11, 1339 (2020).

    Article  CAS  Google Scholar 

  11. Contreras, F. X. et al. Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481, 525–529 (2012). Demonstration of the remarkable specificity of binding between a single-pass transmembrane domain and a particular sub-species of sphingomyelin.

    Article  CAS  Google Scholar 

  12. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell. Biol. 9, 99–111 (2008).

    Article  CAS  Google Scholar 

  13. Moravcevic, K., Oxley, C. L. & Lemmon, M. A. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20, 15–27 (2012).

    Article  CAS  Google Scholar 

  14. Lee, A. G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004).

    Article  CAS  Google Scholar 

  15. Barrera, N. P., Zhou, M. & Robinson, C. V. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol. 23, 1–8 (2013).

    Article  CAS  Google Scholar 

  16. Contreras, F. X., Ernst, A. M., Wieland, F. & Brugger, B. Specificity of intramembrane protein-lipid interactions. Cold Spring Harb. Perspect. Biol. 3, a004705 (2011).

    Article  Google Scholar 

  17. Corradi, V. et al. Emerging diversity in lipid-protein interactions. Chem. Rev. 119, 5775–5848 (2019).

    Article  CAS  Google Scholar 

  18. Sych, T., Levental, K. R. & Sezgin, E. Lipid-protein interactions in plasma membrane organization and function. Annu. Rev. Biophys. 51, 135–156 (2022).

    Article  Google Scholar 

  19. Ernst, M. & Robertson, J. L. The role of the membrane in transporter folding and activity. J. Mol. Biol. 433, 167103 (2021).

    Article  CAS  Google Scholar 

  20. Simunovic, M., Prevost, C., Callan-Jones, A. & Bassereau, P. Physical basis of some membrane shaping mechanisms. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20160034 (2016).

    Google Scholar 

  21. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009).

    Article  CAS  Google Scholar 

  22. Heberle, F. A. et al. Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc. Natl Acad. Sci. USA 117, 19943–19952 (2020).

    Article  CAS  Google Scholar 

  23. Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G. & Engelman, D. M. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl Acad. Sci. USA 101, 4083–4088 (2004).

    Article  CAS  Google Scholar 

  24. Cornell, C. E., Mileant, A., Thakkar, N., Lee, K. K. & Keller, S. L. Direct imaging of liquid domains in membranes by cryo-electron tomography. Proc. Natl Acad. Sci. USA 117, 19713–19719 (2020).

    Article  CAS  Google Scholar 

  25. Fischer, T. D., Dash, P. K., Liu, J. & Waxham, M. N. Morphology of mitochondria in spatially restricted axons revealed by cryo-electron tomography. PLoS Biol. 16, e2006169 (2018).

    Article  Google Scholar 

  26. Andersen, O. S. & Koeppe, R. E. 2nd Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).

    Article  CAS  Google Scholar 

  27. Falzone, M. E. et al. TMEM16 scramblases thin the membrane to enable lipid scrambling. Nat. Commun. 13, 2604 (2022).

    Article  CAS  Google Scholar 

  28. Kaiser, H.-J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).

    Article  CAS  Google Scholar 

  29. Chadda, R. et al. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. eLife 10, e63288 (2021). Unique biochemical approaches are combined with simulations to show that IMP oligomerization is mediated by the energetics of TMD solvation by lipids rather than by direct lipid binding.

    Article  CAS  Google Scholar 

  30. Beaven, A. H. et al. Gramicidin A channel formation induces local lipid redistribution I: experiment and simulation. Biophys. J. 112, 1185–1197 (2017).

    Article  CAS  Google Scholar 

  31. Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    Article  CAS  Google Scholar 

  32. Diaz-Rohrer, B., Levental, K. R. & Levental, I. Rafting through traffic: membrane domains in cellular logistics. Biochim. Biophys. Acta Biomembr. 1838, 3003–3013 (2014).

    Article  CAS  Google Scholar 

  33. Prasad, R., Sliwa-Gonzalez, A. & Barral, Y. Mapping bilayer thickness in the ER membrane. Sci. Adv. 6, aba5130 (2020).

    Article  Google Scholar 

  34. Zhemkov, V. et al. The role of sigma 1 receptor in organization of endoplasmic reticulum signaling microdomains. eLife 10, e65192 (2021).

    Article  CAS  Google Scholar 

  35. King, C., Sengupta, P., Seo, A. Y. & Lippincott-Schwartz, J. ER membranes exhibit phase behavior at sites of organelle contact. Proc. Natl Acad. Sci. USA 117, 7225–7235 (2020).

    Article  CAS  Google Scholar 

  36. Cornelius, F. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry 40, 8842–8851 (2001).

    Article  CAS  Google Scholar 

  37. Lee, A. G. Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003).

    Article  CAS  Google Scholar 

  38. Botelho, A. V., Huber, T., Sakmar, T. P. & Brown, M. F. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys. J. 91, 4464–4477 (2006).

    Article  CAS  Google Scholar 

  39. Jensen, M. O. & Mouritsen, O. G. Lipids do influence protein function — the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta Biomembr. 1666, 205–226 (2004). A detailed discussion of experimental observations documenting how proteins perturb their lipid environments and, vice versa, how membrane properties like hydrophobic mismatch and curvature stress affect protein function.

    Article  CAS  Google Scholar 

  40. Cybulski, L. E. et al. Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. Proc. Natl Acad. Sci. USA 112, 6353–6358 (2015).

    Article  CAS  Google Scholar 

  41. Simunovic, M., Evergren, E., Callan-Jones, A. & Bassereau, P. Curving cells inside and out: roles of BAR domain proteins in membrane shaping and its cellular implications. Annu. Rev. Cell Dev. Biol. 35, 111–129 (2019).

    Article  CAS  Google Scholar 

  42. Cui, H., Lyman, E. & Voth, G. A. Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys. J. 100, 1271–1279 (2011).

    Article  CAS  Google Scholar 

  43. Aimon, S. et al. Membrane shape modulates transmembrane protein distribution. Dev. Cell 28, 212–218 (2014).

    Article  CAS  Google Scholar 

  44. Shurer, C. R. et al. Physical principles of membrane shape regulation by the glycocalyx. Cell 177, 1757–1770.e21 (2019). Protein engineering and scanning electron microscopy reveal remarkable morphological transformations of living cell membranes induced by glycosylated IMPs.

    Article  CAS  Google Scholar 

  45. Stachowiak, J. C., Hayden, C. C. & Sasaki, D. Y. Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc. Natl Acad. Sci. USA 107, 7781–7786 (2010).

    Article  CAS  Google Scholar 

  46. Ernst, A. M. et al. S-palmitoylation sorts membrane cargo for anterograde transport in the Golgi. Dev. Cell 47, 479–493.e7 (2018).

    Article  CAS  Google Scholar 

  47. Budin, I. et al. Viscous control of cellular respiration by membrane lipid composition. Science 362, 1186–1189 (2018). Clever combination of genetics, biophysics and mathematical models to explain how membrane viscosity regulates cell growth via diffusion of electron carriers in the respiratory chain.

    Article  CAS  Google Scholar 

  48. Sinensky, M. Homeoviscous adaptation-a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl Acad. Sci. USA 71, 522–525 (1974).

    Article  CAS  Google Scholar 

  49. Ernst, R., Ejsing, C. S. & Antonny, B. Homeoviscous adaptation and the regulation of membrane lipids. J. Mol. Biol. 428, 4776–4791 (2016).

    Article  CAS  Google Scholar 

  50. Martiniere, A. et al. Homeostasis of plasma membrane viscosity in fluctuating temperatures. N. Phytol. 192, 328–337 (2011).

    Article  CAS  Google Scholar 

  51. Behan-Martin, M. K., Jones, G. R., Bowler, K. & Cossins, A. R. A near perfect temperature adaptation of bilayer order in vertebrate brain membranes. Biochim. Biophys. Acta 1151, 216–222 (1993).

    Article  CAS  Google Scholar 

  52. Ruiz, M. et al. Membrane fluidity is regulated by the C. elegans transmembrane protein FLD-1 and its human homologs TLCD1/2. eLife 7, 40686 (2018).

    Article  Google Scholar 

  53. Covino, R. et al. A eukaryotic sensor for membrane lipid saturation. Mol. Cell 63, 49–59 (2016).

    Article  CAS  Google Scholar 

  54. Ballweg, S. et al. Regulation of lipid saturation without sensing membrane fluidity. Nat. Commun. 11, 756 (2020).

    Article  CAS  Google Scholar 

  55. Radanovic, T., Reinhard, J., Ballweg, S., Pesek, K. & Ernst, R. An emerging group of membrane property sensors controls the physical state of organellar membranes to maintain their identity. BioEssays 40, e1700250 (2018).

    Article  Google Scholar 

  56. Halbleib, K. et al. Activation of the unfolded protein response by lipid bilayer stress. Mol. Cell 67, 673–684.e8 (2017). Demonstration that proteins can sense membrane properties by compressing the bilayer to signal aberrant lipid compositions during cell stress.

    Article  CAS  Google Scholar 

  57. Cox, C. D., Bavi, N. & Martinac, B. Bacterial mechanosensors. Annu. Rev. Physiol. 80, 71–93 (2018).

    Article  CAS  Google Scholar 

  58. Reddy, B., Bavi, N., Lu, A., Park, Y. & Perozo, E. Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS. eLife 8, e50486 (2019).

    Article  CAS  Google Scholar 

  59. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  CAS  Google Scholar 

  60. Lin, Y. C. et al. Force-induced conformational changes in PIEZO1. Nature 573, 230–234 (2019).

    Article  CAS  Google Scholar 

  61. Brohawn, S. G., Su, Z. & MacKinnon, R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc. Natl Acad. Sci. USA 111, 3614–3619 (2014).

    Article  CAS  Google Scholar 

  62. Bavi, N. et al. The conformational cycle of prestin underlies outer-hair cell electromotility. Nature 600, 553–558 (2021).

    Article  CAS  Google Scholar 

  63. Ge, J. et al. Molecular mechanism of prestin electromotive signal amplification. Cell 184, 4669–4679 (2021).

    Article  CAS  Google Scholar 

  64. Dallos, P. et al. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58, 333–339 (2008).

    Article  CAS  Google Scholar 

  65. Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017).

    Article  CAS  Google Scholar 

  66. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  Google Scholar 

  67. Veatch, S. L. & Keller, S. L. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101 (2002).

    Article  Google Scholar 

  68. Veatch, S. L. & Keller, S. L. Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta 1746, 172–185 (2005).

    Article  CAS  Google Scholar 

  69. Sodt, A. J., Sandar, M. L., Gawrisch, K., Pastor, R. W. & Lyman, E. The molecular structure of the liquid-ordered phase of lipid bilayers. J. Am. Chem. Soc. 136, 725–732 (2014).

    Article  CAS  Google Scholar 

  70. Sodt, A. J., Pastor, R. W. & Lyman, E. Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin. Biophys. J. 109, 948–955 (2015).

    Article  CAS  Google Scholar 

  71. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA 104, 3165–3170 (2007).

    Article  CAS  Google Scholar 

  72. Lingwood, D., Ries, J., Schwille, P. & Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl Acad. Sci. USA 105, 10005–10010 (2008).

    Article  CAS  Google Scholar 

  73. Levental, K. R. & Levental, I. Giant plasma membrane vesicles: models for understanding membrane organization. Curr. Top. Membr. 75, 25–57 (2015).

    Article  CAS  Google Scholar 

  74. Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008).

    Article  CAS  Google Scholar 

  75. Levental, I. et al. Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem. J. 424, 163–167 (2009).

    Article  CAS  Google Scholar 

  76. Levental, K. R. et al. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys. J. 110, 1800–1810 (2016).

    Article  CAS  Google Scholar 

  77. Toulmay, A. & Prinz, W. A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202, 35–44 (2013).

    Article  CAS  Google Scholar 

  78. Rayermann, S. P., Rayermann, G. E., Cornell, C. E., Merz, A. J. & Keller, S. L. Hallmarks of reversible separation of living, unperturbed cell membranes into two liquid phases. Biophys. J. 113, 2425–2432 (2017).

    Article  CAS  Google Scholar 

  79. Raghupathy, R. et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161, 581–594 (2015).

    Article  CAS  Google Scholar 

  80. Owen, D. M., Williamson, D. J., Magenau, A. & Gaus, K. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3, 1256 (2012).

    Article  Google Scholar 

  81. Sanchez, S. A., Tricerri, M. A. & Gratton, E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc. Natl Acad. Sci. USA 109, 7314–7319 (2012).

    Article  CAS  Google Scholar 

  82. Kinoshita, M. et al. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J. Cell Biol. 216, 1183–1204 (2017).

    Article  CAS  Google Scholar 

  83. Komura, N. et al. Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12, 402–410 (2016).

    Article  CAS  Google Scholar 

  84. Stone, M. B., Shelby, S. A., Nunez, M. F., Wisser, K. & Veatch, S. L. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6, e19891 (2017).

    Article  Google Scholar 

  85. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  Google Scholar 

  86. Levental, I., Levental, K. R. & Heberle, F. A. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol. 30, 341–353 (2020).

    Article  CAS  Google Scholar 

  87. Sezgin, E. et al. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7, 1042–1051 (2012).

    Article  CAS  Google Scholar 

  88. Diaz-Rohrer, B. B., Levental, K. R., Simons, K. & Levental, I. Membrane raft association is a determinant of plasma membrane localization. Proc. Natl Acad. Sci. USA 111, 8500–8505 (2014).

    Article  CAS  Google Scholar 

  89. Lorent, J. H. et al. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat. Commun. 8, 1219 (2017).

    Article  Google Scholar 

  90. Levental, I., Lingwood, D., Grzybek, M., Coskun, U. & Simons, K. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl Acad. Sci. USA 107, 22050–22054 (2010).

    Article  CAS  Google Scholar 

  91. Levental, I., Grzybek, M. & Simons, K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49, 6305–6316 (2010).

    Article  CAS  Google Scholar 

  92. Castello-Serrano, I., Lorent, J. H., Ippolito, R., Levental, K. R. & Levental, I. Myelin-associated MAL and PLP Are unusual among multipass transmembrane proteins in preferring ordered membrane domains. J. Phys. Chem. B 124, 5930–5939 (2020).

    Article  CAS  Google Scholar 

  93. Sengupta, P. et al. A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nat. Cell Biol. 21, 452–461 (2019).

    Article  CAS  Google Scholar 

  94. Ono, A. & Freed, E. O. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl Acad. Sci. USA 98, 13925–13930 (2001).

    Article  CAS  Google Scholar 

  95. Mitchell, D. C., Straume, M., Miller, J. L. & Litman, B. J. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29, 9143–9149 (1990).

    Article  CAS  Google Scholar 

  96. Huang, S. K. et al. Allosteric modulation of the adenosine A2A receptor by cholesterol. Elife 11, e73901 (2021).

    Article  Google Scholar 

  97. Tikku, S. et al. Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol-rich and cholesterol-poor membrane domains. Am. J. Physiol. Cell Physiol. 293, C440–C450 (2007).

    Article  CAS  Google Scholar 

  98. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995).

    Article  CAS  Google Scholar 

  99. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article  CAS  Google Scholar 

  100. Parton, R. G., Kozlov, M. M. & Ariotti, N. Caveolae and lipid sorting: shaping the cellular response to stress. J. Cell Biol. 219, e201905071 (2020).

    Article  Google Scholar 

  101. Ortegren, U. et al. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem. 271, 2028–2036 (2004).

    Article  Google Scholar 

  102. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

    Article  CAS  Google Scholar 

  103. Epand, R. M., Sayer, B. G. & Epand, R. F. Caveolin scaffolding region and cholesterol-rich domains in membranes. J. Mol. Biol. 345, 339–350 (2005).

    Article  CAS  Google Scholar 

  104. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

    Article  CAS  Google Scholar 

  105. Marsh, D. Protein modulation of lipids, and vice-versa, in membranes. Biochim. Biophys. Acta 1778, 1545–1575 (2008).

    Article  CAS  Google Scholar 

  106. Gonen, T. et al. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633–638 (2005). Ground-breaking study using electron diffraction from two-dimension crystals of a membrane protein, AQP0, providing direct evidence for lipid–protein interaction and the water conduction mechanism.

    Article  CAS  Google Scholar 

  107. Jost, P. C., Griffith, O. H., Capaldi, R. A. & Vanderkooi, G. Evidence for boundary lipid in membranes. Proc. Natl Acad. Sci. USA 70, 480–484 (1973).

    Article  CAS  Google Scholar 

  108. Brotherus, J. R. et al. Lipid-protein multiple binding equilibria in membranes. Biochemistry 20, 5261–5267 (1981).

    Article  CAS  Google Scholar 

  109. Horvath, L. I., Brophy, P. J. & Marsh, D. Exchange rates at the lipid-protein interface of myelin proteolipid protein studied by spin-label electron spin resonance. Biochemistry 27, 46–52 (1988).

    Article  CAS  Google Scholar 

  110. Marius, P., Alvis, S. J., East, J. M. & Lee, A. G. The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids. Biophys. J. 89, 4081–4089 (2005).

    Article  CAS  Google Scholar 

  111. McAuley, K. E. et al. Structural details of an interaction between cardiolipin and an integral membrane protein. Proc. Natl Acad. Sci. USA 96, 14706–14711 (1999).

    Article  CAS  Google Scholar 

  112. Belrhali, H. et al. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. Structure 7, 909–917 (1999).

    Article  CAS  Google Scholar 

  113. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).

    Article  CAS  Google Scholar 

  114. Duncan, A. L., Song, W. & Sansom, M. S. P. Lipid-dependent regulation of ion channels and G protein-coupled receptors: insights from structures and simulations. Annu. Rev. Pharmacol. Toxicol. 60, 31–50 (2020).

    Article  CAS  Google Scholar 

  115. Hansen, S. B., Tao, X. & MacKinnon, R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477, 495–498 (2011).

    Article  CAS  Google Scholar 

  116. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    Article  CAS  Google Scholar 

  117. Rosenhouse-Dantsker, A., Noskov, S., Durdagi, S., Logothetis, D. E. & Levitan, I. Identification of novel cholesterol-binding regions in Kir2 channels. J. Biol. Chem. 288, 31154–31164 (2013).

    Article  CAS  Google Scholar 

  118. Romanenko, V. G. et al. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys. J. 87, 3850–3861 (2004).

    Article  CAS  Google Scholar 

  119. Duncan, A. L., Corey, R. A. & Sansom, M. S. P. Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc. Natl Acad. Sci. USA 117, 7803–7813 (2020).

    Article  CAS  Google Scholar 

  120. Zaydman, M. A. et al. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc. Natl Acad. Sci. USA 110, 13180–13185 (2013).

    Article  CAS  Google Scholar 

  121. Hilgemann, D. W. & Ball, R. Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science 273, 956–959 (1996).

    Article  CAS  Google Scholar 

  122. Hedger, G. et al. Lipid-loving ANTs: molecular simulations of cardiolipin interactions and the organization of the adenine nucleotide translocase in model mitochondrial membranes. Biochemistry 55, 6238–6249 (2016).

    Article  CAS  Google Scholar 

  123. Hite, R. K., Butterwick, J. A. & MacKinnon, R. Phosphatidic acid modulation of Kv channel voltage sensor function. eLife 3, e04366 (2014).

    Article  Google Scholar 

  124. Zocher, M., Zhang, C., Rasmussen, S. G., Kobilka, B. K. & Muller, D. J. Cholesterol increases kinetic, energetic, and mechanical stability of the human beta2-adrenergic receptor. Proc. Natl Acad. Sci. USA 109, E3463–E3472 (2012).

    Article  CAS  Google Scholar 

  125. Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  Google Scholar 

  126. Liu, W. et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012).

    Article  CAS  Google Scholar 

  127. Guixa-Gonzalez, R. et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat. Commun. 8, 14505 (2017).

    Article  CAS  Google Scholar 

  128. Manna, M. et al. Mechanism of allosteric regulation of beta2-adrenergic receptor by cholesterol. eLife 5, e18432 (2016).

    Article  Google Scholar 

  129. Rouviere, E., Arnarez, C., Yang, L. & Lyman, E. Identification of two new cholesterol interaction sites on the A2A adenosine receptor. Biophys. J. 113, 2415–2424 (2017).

    Article  CAS  Google Scholar 

  130. Lee, J. Y. & Lyman, E. Predictions for cholesterol interaction sites on the A2A adenosine receptor. J. Am. Chem. Soc. 134, 16512–16515 (2012).

    Article  CAS  Google Scholar 

  131. Nelson, L. D., Johnson, A. E. & London, E. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. J. Biol. Chem. 283, 4632–4642 (2008).

    Article  CAS  Google Scholar 

  132. D’Avanzo, N., Hyrc, K., Enkvetchakul, D., Covey, D. F. & Nichols, C. G. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One 6, e19393 (2011).

    Article  Google Scholar 

  133. Gutorov, R. et al. Modulation of transient receptor potential C channel activity by cholesterol. Front. Pharmacol. 10, 1487 (2019).

    Article  CAS  Google Scholar 

  134. Elkins, M. R. et al. Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc. Natl Acad. Sci. USA 114, 12946–12951 (2017).

    Article  CAS  Google Scholar 

  135. Barrett, P. J. et al. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336, 1168–1171 (2012).

    Article  CAS  Google Scholar 

  136. Marlow, B., Kuenze, G., Li, B., Sanders, C. R. & Meiler, J. Structural determinants of cholesterol recognition in helical integral membrane proteins. Biophys. J. 120, 1592–1604 (2021).

    Article  CAS  Google Scholar 

  137. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

    Article  Google Scholar 

  138. Flores, A. et al. Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B. Proc. Natl Acad. Sci. USA 116, 18098–18108 (2019).

    Article  CAS  Google Scholar 

  139. Ewers, H. et al. GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 12, 11–18 (2010).

    Article  CAS  Google Scholar 

  140. Coskun, U., Grzybek, M., Drechsel, D. & Simons, K. Regulation of human EGF receptor by lipids. Proc. Natl Acad. Sci. USA 108, 9044–9048 (2010).

    Article  Google Scholar 

  141. Song, W., Yen, H. Y., Robinson, C. V. & Sansom, M. S. P. State-dependent lipid interactions with the A2a receptor revealed by MD simulations using in vivo-mimetic membranes. Structure 27, 392–403.e3 (2019).

    Article  CAS  Google Scholar 

  142. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014). Native mass spectrometry used to demonstrate that lipids can remain bound to proteins through the extraction and ionization process and be identified directly by their molecular mass.

    Article  CAS  Google Scholar 

  143. Cong, X. et al. Determining membrane protein-lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016).

    Article  CAS  Google Scholar 

  144. Patrick, J. W. et al. Allostery revealed within lipid binding events to membrane proteins. Proc. Natl Acad. Sci. USA 115, 2976–2981 (2018).

    Article  CAS  Google Scholar 

  145. Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    Article  CAS  Google Scholar 

  146. Yang, L. & Lyman, E. Local enrichment of unsaturated chains around the A2A adenosine receptor. Biochemistry 58, 4096–4105 (2019).

    Article  CAS  Google Scholar 

  147. Tanford, C. Extension of the theory of linked functions to incorporate the effects of protein hydration. J. Mol. Biol. 39, 539–544 (1969).

    Article  CAS  Google Scholar 

  148. Salari, R., Joseph, T., Lohia, R., Henin, J. & Brannigan, G. A streamlined, general approach for computing ligand binding free energies and its application to GPCR-bound cholesterol. J. Chem. Theory Comput. 14, 6560–6573 (2018).

    Article  CAS  Google Scholar 

  149. Corey, R. A., Stansfeld, P. J. & Sansom, M. S. P. The energetics of protein-lipid interactions as viewed by molecular simulations. Biochem. Soc. Trans. 48, 25–37 (2020).

    Article  CAS  Google Scholar 

  150. Salas-Estrada, L. A., Leioatts, N., Romo, T. D. & Grossfield, A. Lipids alter rhodopsin function via ligand-like and solvent-like interactions. Biophys. J. 114, 355–367 (2018).

    Article  CAS  Google Scholar 

  151. Leonard, A. N. & Lyman, E. Activation of G-protein-coupled receptors is thermodynamically linked to lipid solvation. Biophys. J. 120, 1777–1787 (2021). Conceptual underpinning of the functional paralipidome model, demonstrating via computational and theoretical analysis, how lipid nano-environments could influence protein conformational equilibria.

    Article  CAS  Google Scholar 

  152. Huber, T., Botelho, A. V., Beyer, K. & Brown, M. F. Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys. J. 86, 2078–2100 (2004).

    Article  CAS  Google Scholar 

  153. van ‘t Klooster, J. S. et al. Periprotein lipidomes of Saccharomyces cerevisiae provide a flexible environment for conformational changes of membrane proteins. eLife 9, e57003 (2020). Demonstration of the remarkable specificity of binding between a single-pass transmembrane domain and a particular sub-species of sphingomyelin.

    Article  Google Scholar 

  154. Gupta, K. et al. Identifying key membrane protein lipid interactions using mass spectrometry. Nat. Protoc. 13, 1106–1120 (2018).

    Article  CAS  Google Scholar 

  155. Corradi, V. et al. Lipid-protein interactions are unique fingerprints for membrane proteins. ACS Cent. Sci. 4, 709–717 (2018).

    Article  CAS  Google Scholar 

  156. Denisov, I. G. & Sligar, S. G. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23, 481–486 (2016).

    Article  CAS  Google Scholar 

  157. Dorr, J. M. et al. Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc. Natl Acad. Sci. USA 111, 18607–18612 (2014).

    Article  Google Scholar 

  158. Flores, J. A. et al. Connexin-46/50 in a dynamic lipid environment resolved by CryoEM at 1.9 A. Nat. Commun. 11, 4331 (2020). Ultra-high-resolution structures of native connexin channels, which span two bilayers, reveal novel details of IMP–membrane interactions, including remarkable ordering of outer leaflet lipids.

    Article  CAS  Google Scholar 

  159. Cuevas Arenas, R. et al. Fast collisional lipid transfer among polymer-bounded nanodiscs. Sci. Rep. 7, 45875 (2017).

    Article  CAS  Google Scholar 

  160. Stepien, P. et al. Complexity of seemingly simple lipid nanodiscs. Biochim. Biophys. Acta Biomembr. 1862, 183420 (2020).

    Article  CAS  Google Scholar 

  161. Javanainen, M. et al. Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLoS Comput. Biol. 15, e1007033 (2019).

    Article  CAS  Google Scholar 

  162. Sodt, A. J., Beaven, A. H., Andersen, O. S., Im, W. & Pastor, R. W. Gramicidin a channel formation induces local lipid redistribution II: a 3D continuum elastic model. Biophys. J. 112, 1198–1213 (2017).

    Article  CAS  Google Scholar 

  163. Lundbaek, J. A., Collingwood, S. A., Ingolfsson, H. I., Kapoor, R. & Andersen, O. S. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J. R. Soc. Interface 7, 373–395 (2010).

    Article  CAS  Google Scholar 

  164. McGraw, C., Yang, L., Levental, I., Lyman, E. & Robinson, A. S. Membrane cholesterol depletion reduces downstream signaling activity of the adenosine A2A receptor. Biochim. Biophys. Acta Biomembr. 1861, 760–767 (2019).

    Article  CAS  Google Scholar 

  165. Gutierrez, M. G., Mansfield, K. S. & Malmstadt, N. The functional activity of the human serotonin 5-HT1A receptor is controlled by lipid bilayer composition. Biophys. J. 110, 2486–2495 (2016).

    Article  CAS  Google Scholar 

  166. Kumar, G. A. et al. A molecular sensor for cholesterol in the human serotonin1A receptor. Sci. Adv. 7, eabh2922 (2021).

    Article  CAS  Google Scholar 

  167. Barbotin, A. et al. z-STED imaging and spectroscopy to investigate nanoscale membrane structure and dynamics. Biophys. J. 118, 2448–2457 (2020).

    Article  CAS  Google Scholar 

  168. Nadezhdin, K. D. et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat. Struct. Mol. Biol. 28, 564–572 (2021).

    Article  CAS  Google Scholar 

  169. Doktorova, M., Symons, J. L. & Levental, I. Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat. Chem. Biol. 16, 1321–1330 (2020).

    Article  CAS  Google Scholar 

  170. Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020). Experiments and computational modelling detail the lipidomic and biophysical asymmetry of a mammalian plasma membrane, while bioinformatics shows that membrane asymmetry is reflected in asymmetry of protein TMDs, which is conserved throughout Eukaryota.

    Article  CAS  Google Scholar 

  171. Tsuji, T. et al. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc. Natl Acad. Sci. USA 116, 13368–13373 (2019).

    Article  CAS  Google Scholar 

  172. Malvezzi, M. et al. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat. Commun. 4, 2367 (2013).

    Article  Google Scholar 

  173. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  Google Scholar 

  174. Akimzhanov, A. M. & Boehning, D. Rapid and transient palmitoylation of the tyrosine kinase Lck mediates Fas signaling. Proc. Natl Acad. Sci. USA 112, 11876–11880 (2015).

    Article  CAS  Google Scholar 

  175. Martin, B. R., Wang, C., Adibekian, A., Tully, S. E. & Cravatt, B. F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2011).

    Article  Google Scholar 

  176. Martin, B. R. & Cravatt, B. F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135–138 (2009).

    Article  CAS  Google Scholar 

  177. Veatch, S. L., Gawrisch, K. & Keller, S. L. Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys. J. 90, 4428–4436 (2006).

    Article  CAS  Google Scholar 

  178. Feigenson, G. W. & Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788 (2001).

    Article  CAS  Google Scholar 

  179. Sezgin, E. et al. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta 1818, 1777–1784 (2012).

    Article  CAS  Google Scholar 

  180. Kaiser, H. J. et al. Order of lipid phases in model and plasma membranes. Proc. Natl Acad. Sci. USA 106, 16645–16650 (2009).

    Article  CAS  Google Scholar 

  181. Gerl, M. J. et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell Biol. 196, 213–221 (2012).

    Article  CAS  Google Scholar 

  182. Sampaio, J. L. et al. Membrane lipidome of an epithelial cell line. Proc. Natl Acad. Sci. USA 108, 1903–1907 (2011).

    Article  CAS  Google Scholar 

  183. Franck, J. M., Chandrasekaran, S., Dzikovski, B., Dunnam, C. R. & Freed, J. H. Focus: two-dimensional electron-electron double resonance and molecular motions: the challenge of higher frequencies. J. Chem. Phys. 142, 212302 (2015).

    Article  Google Scholar 

  184. Kuerschner, L. et al. Polyene-lipids: a new tool to image lipids. Nat. Methods 2, 39–45 (2005).

    Article  CAS  Google Scholar 

  185. Ward, A. E., Ye, Y., Schuster, J. A., Wei, S. & Barrera, F. N. Single-molecule fluorescence vistas of how lipids regulate membrane proteins. Biochem. Soc. Trans. 49, 1685–1694 (2021).

    Article  CAS  Google Scholar 

  186. McIntosh, A. L. et al. Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 43, 1185–1208 (2008).

    Article  CAS  Google Scholar 

  187. Thiele, C., Hannah, M. J., Fahrenholz, F. & Huttner, W. B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2, 42–49 (2000).

    Article  CAS  Google Scholar 

  188. Hoglinger, D. et al. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc. Natl Acad. Sci. USA 114, 1566–1571 (2017).

    Article  Google Scholar 

  189. Schuhmacher, M. et al. Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities. Proc. Natl Acad. Sci. USA 117, 7729–7738 (2020).

    Article  CAS  Google Scholar 

  190. Romero, L. O. et al. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat. Commun. 10, 1200 (2019).

    Article  Google Scholar 

  191. Chakrapani, S., Cordero-Morales, J. F. & Perozo, E. A quantitative description of KcsA gating I: macroscopic currents. J. Gen. Physiol. 130, 465–478 (2007).

    Article  CAS  Google Scholar 

  192. Garten, M. et al. Whole-GUV patch-clamping. Proc. Natl Acad. Sci. USA 114, 328–333 (2017).

    Article  CAS  Google Scholar 

  193. Newport, T. D., Sansom, M. S. P. & Stansfeld, P. J. The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res. 47, D390–D397 (2019).

    Article  CAS  Google Scholar 

  194. Kimura, Y. et al. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389, 206–211 (1997).

    Article  CAS  Google Scholar 

  195. Reichow, S. L. & Gonen, T. Lipid-protein interactions probed by electron crystallography. Curr. Opin. Struct. Biol. 19, 560–565 (2009).

    Article  CAS  Google Scholar 

  196. Han, X., Yang, K. & Gross, R. W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass. Spectrom. Rev. 31, 134–178 (2012).

    Article  CAS  Google Scholar 

  197. Laganowsky, A., Reading, E., Hopper, J. T. & Robinson, C. V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8, 639–651 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Major acknowledgement goes to K. Levental for insightful feedback and for generating the beautiful and informative figures for the manuscript. We also acknowledge the members of the Levental and Lyman labs for critical reading and enlightening discussions that have polished the ideas in the manuscript. This work was supported by NIH/National Institute of General Medical Sciences (GM134949, GM124072, GM120351), the Volkswagen Foundation (grant 93091) and the Human Frontiers Science Program (RGP0059/2019).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ilya Levental or Ed Lyman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Richard Epand, Janice Robertson and Peter Tieleman for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Unfolded protein response

A conserved cellular response to various stresses to the protein folding and secretory systems; can also be induced by lipid perturbations.

MscL and MscS families

Bacterial mechanosensitive channels that open in response to membrane tension, for example, induced by osmotic shock.

PIP2

Phosphatidylinositol 4,5-bisphosphate, a highly charged and tightly regulated lipid type that can associate tightly with integral membrane proteins through both electrostatic and stereospecific interactions.

Sphingolipids

Lipid with sphingoid backbones rather than glycerol. Lipids of this class (for example, sphingomyelin) are common components of eukaryote plasma membranes, interact well with sterols and bind strongly to some proteins.

Native mass spectrometry

A mass spectrometric technique capable of measuring molecular weights of large macromolecules (that is, proteins and their complexes) without fragmentation.

Shotgun lipidomics

A mass spectrometric technique for identifying and quantifying the lipid components of a complex sample (for example, cell membrane) without prior chromatographic separation.

Nanodiscs

An experimental construct containing an integral membrane protein, lipids and a scaffold that solubilizes them. The scaffold can be a protein (MSP) or synthetic polymer (for example, styrene maleic acid).

Gramicidin A

An antibiotic peptide that assembles to form transmembrane pores, dependent on its membrane environment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levental, I., Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 24, 107–122 (2023). https://doi.org/10.1038/s41580-022-00524-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00524-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing