Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New opportunities and old challenges in the clinical translation of nanotheranostics

Abstract

Nanoparticle-based systems imbued with both diagnostic and therapeutic functions, known as nanotheranostics, have enabled remarkable progress in guiding focal therapy, inducing active responses to endogenous and exogenous biophysical stimuli and stratifying patients for optimal treatment. However, although in recent years more nanotechnological platforms and techniques have been implemented in the clinic, several important challenges remain that are specific to nanotheranostics. In this Review, we first discuss some of the many ways of ‘constructing’ nanotheranostics, focusing on the different imaging modalities and therapeutic strategies. We then outline nanotheranostics that are currently used in humans at different stages of clinical development, identifying specific advantages and opportunities. Finally, we define critical steps along the winding road of preclinical and clinical development and suggest actions to overcome technical, manufacturing, regulatory and economical challenges for the safe and effective clinical translation of nanotheranostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theranostic nanoparticles.
Fig. 2: Examples of nanotheranostics with different imaging, therapeutic and targeting components.
Fig. 3: Clinical demonstrations of nanotheranostics.
Fig. 4: Milestones in the clinical translation of nanotheranostics.

Similar content being viewed by others

References

  1. Wagner, F. E. et al. Before striking gold in gold–ruby glass. Nature 407, 691–692 (2009).

    Article  Google Scholar 

  2. Nano on reflection. Nat. Nanotechnol. 11, 828–834 (2016).

  3. Weber, D. O. Nanomedicine. Health Forum J. 42, 32 (1999).

    Google Scholar 

  4. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  5. Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Article  CAS  Google Scholar 

  6. Chen, H., Zhang, W., Zhu, G., Xie, J. & Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017).

    Article  CAS  Google Scholar 

  7. McCready, V. R. Radioiodine — the success story of nuclear medicine: 75th anniversary of the first use of iodine-131 in humans. Eur. J. Nucl. Med. Mol. Imaging 44, 179–182 (2017).

    Article  Google Scholar 

  8. Bodei, L., Herrmann, K., Schöder, H., Scott, A. M. & Lewis, J. S. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat. Rev. Clin. Oncol. 19, 534–550 (2022).

    Article  CAS  Google Scholar 

  9. Kaittanis, C. et al. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun. 5, 3384 (2014).

    Article  Google Scholar 

  10. van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article  Google Scholar 

  11. Dasgupta, A., Biancacci, I., Kiessling, F. & Lammers, T. Imaging-assisted anticancer nanotherapy. Theranostics 10, 956–967 (2020).

    Article  CAS  Google Scholar 

  12. Cho, M. et al. Assembly of iron oxide nanocubes for enhanced cancer hyperthermia and magnetic resonance imaging. Nanomaterials 7, 72 (2017).

    Article  Google Scholar 

  13. Du, Y., Liu, X., Liang, Q., Liang, X.-J. & Tian, J. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 19, 3618–3626 (2019).

    Article  CAS  Google Scholar 

  14. Mai, B. T. et al. Thermoresponsive iron oxide nanocubes for an effective clinical translation of magnetic hyperthermia and heat-mediated chemotherapy. ACS Appl. Mater. Interfaces 11, 5727–5739 (2019).

    Article  Google Scholar 

  15. Li, Z. et al. Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy. J. Control. Rel. 338, 719–730 (2021).

    Article  CAS  Google Scholar 

  16. Li, X. et al. Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomater. 30, 378–387 (2016).

    Article  CAS  Google Scholar 

  17. Wu, C. et al. Hyaluronic acid-functionalized gadolinium oxide nanoparticles for magnetic resonance imaging-guided radiotherapy of tumors. Nanoscale Res. Lett. 15, 94 (2020).

    Article  CAS  Google Scholar 

  18. Ma, M. et al. Bi2S3-embedded mesoporous silica nanoparticles for efficient drug delivery and interstitial radiotherapy sensitization. Biomaterials 37, 447–455 (2015).

    Article  CAS  Google Scholar 

  19. Herrero Alvarez, N., Bauer, D., Hernandez-Gil, J. & Lewis, J. S. Recent advances in radiometals for combined imaging and therapy in cancer. ChemMedChem 16, 2909–2941 (2021).

    Article  CAS  Google Scholar 

  20. Ferreira, C. A. et al. Ultrasmall porous silica nanoparticles with enhanced pharmacokinetics for cancer theranostics. Nano Lett. 21, 4692–4699 (2021).

    Article  CAS  Google Scholar 

  21. Kotagiri, N., Sudlow, G. P., Akers, W. J. & Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 10, 370–379 (2015).

    Article  CAS  Google Scholar 

  22. Tang, R. et al. Osteotropic radiolabeled nanophotosensitizer for imaging and treating multiple myeloma. ACS Nano 14, 4255–4264 (2020).

    Article  CAS  Google Scholar 

  23. Kamkaew, A. et al. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 8, 26630–26637 (2016).

    Article  CAS  Google Scholar 

  24. Ni, D. et al. Magnetic targeting of nanotheranostics enhances cerenkov radiation-induced photodynamic therapy. J. Am. Chem. Soc. 140, 14971–14979 (2018).

    Article  Google Scholar 

  25. Yu, B. et al. A ‘missile-detonation’ strategy to precisely supply and efficiently amplify cerenkov radiation energy for cancer theranostics. Adv. Mater. 31, e1904894 (2019).

    Article  Google Scholar 

  26. Xi, L. & Jiang, H. Image‐guided surgery using multimodality strategy and molecular probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 46–60 (2016).

    Article  Google Scholar 

  27. Shi, H. et al. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Acta Biomater. 72, 256–265 (2018).

    Article  CAS  Google Scholar 

  28. de Vries, M. et al. [Sentinel lymph node biopsy for melanoma: prognostic value and disadvantages in 300 patients]. Ned. Tijdschr. Geneeskd. 149, 1845–1851 (2005).

    Google Scholar 

  29. Rousseau, C. et al. The impact of nonvisualization of sentinel nodes on lymphoscintigraphy in breast cancer. Ann. Surg. Oncol. 12, 533–538 (2005).

    Article  CAS  Google Scholar 

  30. Chen, L.-J., Yang, C.-X. & Yan, X.-P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 89, 6936–6939 (2017).

    Article  CAS  Google Scholar 

  31. Wang, J. et al. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 11, 8010–8017 (2017).

    Article  CAS  Google Scholar 

  32. Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  CAS  Google Scholar 

  33. Zheng, B. et al. Near-infrared light-excited upconverting persistent nanophosphors in vivo for imaging-guided cell therapy. ACS Appl. Mater. Interfaces 10, 19514–19522 (2018).

    Article  CAS  Google Scholar 

  34. Xue, Z. et al. A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging. Nanoscale 9, 7276–7283 (2017).

    Article  CAS  Google Scholar 

  35. Zheng, S. et al. X-ray recharged long afterglow luminescent nanoparticles MgGeO3: Mn2+, Yb3+, Li+ in the first and second biological windows for long-term bioimaging. Nanoscale 12, 14037–14046 (2020).

    Article  CAS  Google Scholar 

  36. Liu, N. et al. In vivo repeatedly activated persistent luminescence nanoparticles by radiopharmaceuticals for long‐lasting tumor optical imaging. Small 16, 2001494 (2020).

    Article  CAS  Google Scholar 

  37. Thébault, C. J. et al. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J. Control. Rel. 322, 137–148 (2020).

    Article  Google Scholar 

  38. Centelles, M. N. et al. Image-guided thermosensitive liposomes for focused ultrasound drug delivery: using NIRF-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. J. Control. Rel. 280, 87–98 (2018).

    Article  CAS  Google Scholar 

  39. Han, S. et al. Contrast agents for photoacoustic imaging: a review focusing on the wavelength range. Biosensors 12, 594 (2022).

    Article  CAS  Google Scholar 

  40. Fan, Z. et al. Tumor-homing and immune-reprogramming cellular nanovesicles for photoacoustic imaging-guided phototriggered precise chemoimmunotherapy. ACS Nano 16, 16177–16190 (2022).

    Article  CAS  Google Scholar 

  41. Morse, S. V., Mishra, A., Chan, T. G., de Rosales, R. T. M. & Choi, J. J. Liposome delivery to the brain with rapid short-pulses of focused ultrasound and microbubbles. J. Control. Release 341, 605–615 (2022).

    Article  CAS  Google Scholar 

  42. Morse, S. V. et al. Rapid short-pulse ultrasound delivers drugs uniformly across the murine blood–brain barrier with negligible disruption. Radiology 291, 459–466 (2019).

    Article  Google Scholar 

  43. Duan, L. et al. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 10, 462–483 (2020).

    Article  CAS  Google Scholar 

  44. Theek, B. et al. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J. Control. Rel. 231, 77–85 (2016).

    Article  CAS  Google Scholar 

  45. Li, X. et al. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol. 17, 891–899 (2022).

    Article  CAS  Google Scholar 

  46. Chandan, R., Mehta, S. & Banerjee, R. Ultrasound-responsive carriers for therapeutic applications. ACS Biomater. Sci. Eng. 6, 4731–4747 (2020).

    Article  CAS  Google Scholar 

  47. Tayier, B. et al. Biosynthetic nanobubbles for targeted gene delivery by focused ultrasound. Nanoscale 11, 14757–14768 (2019).

    Article  CAS  Google Scholar 

  48. Rwei, A. Y. et al. Ultrasound-triggered local anaesthesia. Nat. Biomed. Eng. 1, 644–653 (2017).

    Article  CAS  Google Scholar 

  49. Shen, Z. et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11, 10992–11004 (2017).

    Article  CAS  Google Scholar 

  50. Pellico, J., Gawne, P. J. & de Rosales, R. T. M. Radiolabelling of nanomaterials for medical imaging and therapy. Chem. Soc. Rev. 50, 3355–3423 (2021).

    Article  CAS  Google Scholar 

  51. Perez-Medina, C., Teunissen, A. J. P., Kluza, E., Mulder, W. J. M. & van der Meel, R. Nuclear imaging approaches facilitating nanomedicine translation. Adv. Drug Deliv. Rev. 154-155, 123–141 (2020).

    Article  CAS  Google Scholar 

  52. Tang, J. et al. Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc. Natl Acad. Sci. USA 113, E6731–E6740 (2016).

    Article  CAS  Google Scholar 

  53. Zhang, X. et al. Subsecond total-body imaging using ultrasensitive positron emission tomography. Proc. Natl Acad. Sci. USA 117, 2265–2267 (2020).

    Article  CAS  Google Scholar 

  54. Binderup, T. et al. Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Sci. Transl. Med. 11, eaaw7736 (2019).

    Article  Google Scholar 

  55. Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).

    Article  CAS  Google Scholar 

  56. Cormode, D. P., Naha, P. C. & Fayad, Z. A. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol. Imaging 9, 37–52 (2014).

    Article  CAS  Google Scholar 

  57. Georgy Sergeevich, T. et al. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J. Biomed. Opt. 14, 021016 (2009).

    Article  Google Scholar 

  58. Stern, J. M. et al. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int. J. Toxicol. 35, 38–46 (2016).

    Article  CAS  Google Scholar 

  59. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  Google Scholar 

  60. Rastinehad, A. R. et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl Acad. Sci. USA 116, 18590–18596 (2009).

    Article  Google Scholar 

  61. Oumano, M. et al. CT imaging of gold nanoparticles in a human-sized phantom. J. Appl. Clin. Med. Phys. 22, 337–342 (2021).

    Article  Google Scholar 

  62. Kimm, M. A. et al. Gold nanoparticle mediated multi-modal CT imaging of Hsp70 membrane-positive tumors. Cancers 12, 1331 (2020).

    Article  CAS  Google Scholar 

  63. Cormode, D. P. et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256, 774–782 (2010).

    Article  Google Scholar 

  64. Daldrup-Link, H. E. Ten things you might not know about iron oxide nanoparticles. Radiology 284, 616–629 (2017).

    Article  Google Scholar 

  65. Liu, Y. et al. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat. Commun. 9, 2920 (2018).

    Article  Google Scholar 

  66. Toth, G. B. et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 92, 47–66 (2017).

    Article  CAS  Google Scholar 

  67. Maier-Hauff, K. et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324 (2011).

    Article  Google Scholar 

  68. Mahmoudi, K., Bouras, A., Bozec, D., Ivkov, R. & Hadjipanayis, C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int. J. Hyperth. 34, 1316–1328 (2018).

    Article  Google Scholar 

  69. Richards, J. M. et al. In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans. Circ. Cardiovasc. Imaging 5, 509–517 (2012).

    Article  Google Scholar 

  70. Karussis, D. et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194 (2010).

    Article  Google Scholar 

  71. Tang, T. Y. et al. The ATHEROMA (atorvastatin therapy: effects on reduction of macrophage activity) study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J. Am. Coll. Cardiol. 53, 2039–2050 (2009).

    Article  CAS  Google Scholar 

  72. Rogosnitzky, M. & Branch, S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29, 365–376 (2016).

    Article  CAS  Google Scholar 

  73. Laurent, S., Vander Elst, L., Henoumont, C. & Muller, R. N. How to measure the transmetallation of a gadolinium complex. Contrast Media Mol. Imaging 5, 305–308 (2010).

    Article  CAS  Google Scholar 

  74. Bort, G. et al. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX nanoparticles. Theranostics 10, 1319–1331 (2020).

    Article  CAS  Google Scholar 

  75. Tran, V. L. et al. Quantitative tissue pharmacokinetics and EPR effect of AGuIX nanoparticles: a multimodal imaging study in an orthotopic glioblastoma rat model and healthy macaque. Adv. Healthc. Mater. 10, e2100656 (2021).

    Article  Google Scholar 

  76. Miladi, I. et al. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 11, 247–257 (2015).

    Article  CAS  Google Scholar 

  77. Verry, C. et al. Theranostic AGuIX nanoparticles as radiosensitizer: a phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother. Oncol. 160, 159–165 (2021).

    Article  CAS  Google Scholar 

  78. Marill, J. et al. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat. Oncol. 9, 150 (2014).

    Article  Google Scholar 

  79. Bonvalot, S. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 20, 1148–1159 (2019).

    Article  CAS  Google Scholar 

  80. Bradbury, M. S. et al. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr. Biol. 5, 74–86 (2013).

    Article  CAS  Google Scholar 

  81. Cao, L. et al. Competitive performance of carbon ‘quantum’ dots in optical bioimaging. Theranostics 2, 295–301 (2012).

    Article  CAS  Google Scholar 

  82. Hong, G., Diao, S., Antaris, A. L. & Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816–10906 (2015).

    Article  CAS  Google Scholar 

  83. Wu, X. et al. Sentinel lymph node detection using carbon nanoparticles in patients with early breast cancer. PLoS ONE 10, e0135714 (2015).

    Article  Google Scholar 

  84. Du, J. et al. Evaluation of the tracing effect of carbon nanoparticle and carbon nanoparticle-epirubicin suspension in axillary lymph node dissection for breast cancer treatment. World J. Surg. Oncol. 14, 164 (2016).

    Article  Google Scholar 

  85. Jacquart, A. et al. LipImage 815: novel dye-loaded lipid nanoparticles for long-term and sensitive in vivo near-infrared fluorescence imaging. J. Biomed. Opt. 18, 101311 (2013).

    Article  Google Scholar 

  86. Sayag, D. et al. Phase-0/phase-I study of dye-loaded lipid nanoparticles for near-infrared fluorescence imaging in healthy dogs. Eur. J. Pharm. Biopharm. 100, 85–93 (2016).

    Article  CAS  Google Scholar 

  87. Cabon, Q. et al. Evaluation of intraoperative fluorescence imaging-guided surgery in cancer-bearing dogs: a prospective proof-of-concept phase II study in 9 cases. Transl. Res. 170, 73–88 (2016).

    Article  Google Scholar 

  88. Chen, Q. Y. et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial. JAMA Surg. 155, 300–311 (2020).

    Article  Google Scholar 

  89. Watanabe, J. et al. Long-term outcomes of indocyanine green fluorescence imaging-guided laparoscopic lateral pelvic lymph node dissection for clinical stage II/III middle-lower rectal cancer: a propensity score-matched cohort study. Tech. Coloproctol. https://doi.org/10.1007/s10151-023-02761-x (2023).

    Article  Google Scholar 

  90. Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

    Article  CAS  Google Scholar 

  91. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  CAS  Google Scholar 

  92. Borys, N. & Dewhirst, M. W. Drug development of lyso-thermosensitive liposomal doxorubicin: combining hyperthermia and thermosensitive drug delivery. Adv. Drug Deliv. Rev. 178, 113985 (2021).

    Article  CAS  Google Scholar 

  93. Celik, H. et al. Radiofrequency ablation duration per tumor volume may correlate with overall survival in solitary hepatocellular carcinoma patients treated with radiofrequency ablation plus lyso-thermosensitive liposomal doxorubicin. J. Vasc. Interv. Radiol. 30, 1908–1914 (2019).

    Article  Google Scholar 

  94. Nichols, J. W. & Bae, Y. H. EPR: evidence and fallacy. J. Control. Rel. 190, 451–464 (2014).

    Article  CAS  Google Scholar 

  95. Ramanathan, R. K. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin. Cancer Res. 23, 3638–3648 (2017).

    Article  CAS  Google Scholar 

  96. Ravi, H. et al. Pretherapy ferumoxytol-enhanced MRI to predict response to liposomal irinotecan in metastatic breast cancer. Radiol. Imaging Cancer 5, e220022 (2023).

    Article  Google Scholar 

  97. Segal, A. W., Gregoriadis, G., Lavender, J. P., Tarin, D. & Peters, T. J. Tissue and hepatic subcellular distribution of liposomes containing bleomycin after intravenous administration to patients with neoplasms. Clin. Sci. Mol. Med. 51, 421–425 (1976).

    CAS  Google Scholar 

  98. Murray, J. L. et al. Phase I trial of liposomal muramyl tripeptide phosphatidylethanolamine in cancer patients. J. Clin. Oncol. 7, 1915–1925 (1989).

    Article  CAS  Google Scholar 

  99. Weers, J. et al. A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J. Aerosol Med. Pulm. Drug Deliv. 22, 131–138 (2009).

    Article  CAS  Google Scholar 

  100. Behr, J. et al. Lung deposition of a liposomal cyclosporine A inhalation solution in patients after lung transplantation. J. Aerosol Med. Pulm. Drug Deliv. 22, 121–130 (2009).

    Article  CAS  Google Scholar 

  101. Saari, M., Vidgren, M. T., Koskinen, M. O., Turjanmaa, V. M. & Nieminen, M. M. Pulmonary distribution and clearance of two beclomethasone liposome formulations in healthy volunteers. Int. J. Pharm. 181, 1–9 (1999).

    Article  CAS  Google Scholar 

  102. Saari, S. M. et al. Regional lung deposition and clearance of 99mTc-labeled beclomethasone-DLPC liposomes in mild and severe asthma. Chest 113, 1573–1579 (1998).

    Article  CAS  Google Scholar 

  103. Koukourakis, M. I. et al. High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas — rationale for combination with radiotherapy. Acta Oncol. 39, 207–211 (2000).

    Article  CAS  Google Scholar 

  104. Kumar, N. et al. Edetate calcium disodium nanoparticle dry powder inhalation: a novel approach against heavy metal decorporation. Int. J. Pharm. 416, 376–383 (2011).

    Article  CAS  Google Scholar 

  105. Seymour, L. W. et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34, 1629–1636 (2009).

    Article  CAS  Google Scholar 

  106. Koukourakis, M. I. et al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J. Clin. Oncol. 17, 3512–3521 (1999).

    Article  CAS  Google Scholar 

  107. Lee, H. et al. (64)Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 23, 4190–4202 (2017).

    Article  CAS  Google Scholar 

  108. Miedema, I. H. C. et al. PET-CT imaging of polymeric nanoparticle tumor accumulation in patients. Adv. Mater. 34, e2201043 (2022).

    Article  Google Scholar 

  109. Wang, S. J. et al. A phase 0 study of the pharmacokinetics, biodistribution, and dosimetry of (188)Re-liposome in patients with metastatic tumors. EJNMMI Res. 9, 46 (2019).

    Article  CAS  Google Scholar 

  110. Herrmann, K. et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 21, e146–e156 (2020).

    Article  CAS  Google Scholar 

  111. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update post COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

    Article  CAS  Google Scholar 

  112. Namiot, E. D., Sokolov, A. V., Chubarev, V. N., Tarasov, V. V. & Schioth, H. B. Nanoparticles in clinical trials: analysis of clinical trials, FDA approvals and use for COVID-19 vaccines. Int. J. Mol. Sci. 24, 787 (2023).

    Article  CAS  Google Scholar 

  113. Pallares, R. M., Mottaghy, F. M., Schulz, V., Kiessling, F. & Lammers, T. Nanoparticle diagnostics and theranostics in the clinic. J. Nucl. Med. 63, 1802–1808 (2022).

    Article  CAS  Google Scholar 

  114. Lammers, T. & Ferrari, M. The success of nanomedicine. Nano Today 31, 100853 (2020).

    Article  CAS  Google Scholar 

  115. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  Google Scholar 

  116. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  Google Scholar 

  117. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    Article  CAS  Google Scholar 

  118. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  119. McNeil, S. E. Evaluation of nanomedicines: stick to the basics. Nat. Rev. Mater. 1, 16073 (2016).

    Article  Google Scholar 

  120. Price, L. S. L., Stern, S. T., Deal, A. M., Kabanov, A. V. & Zamboni, W. C. A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Sci. Adv. 6, eaay9249 (2020).

    Article  CAS  Google Scholar 

  121. Lin, Z. et al. Predicting nanoparticle delivery to tumors using machine learning and artificial intelligence approaches. Int. J. Nanomed. 17, 1365–1379 (2022).

    Article  CAS  Google Scholar 

  122. Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019).

    Article  CAS  Google Scholar 

  123. Faria, M. et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article  CAS  Google Scholar 

  124. Gagliardini, E., Conti, S., Benigni, A., Remuzzi, G. & Remuzzi, A. Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J. Am. Soc. Nephrol. 21, 2081–2089 (2010).

    Article  Google Scholar 

  125. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  126. Zhou, C. et al. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. 124, 10265–10269 (2012).

    Article  Google Scholar 

  127. Maraganore, J. Reflections on alnylam. Nat. Biotechnol. 40, 641–650 (2022).

    Article  CAS  Google Scholar 

  128. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  Google Scholar 

  129. Man, F., Gawne, P. J. & de Rosales, T. M. R. Nuclear imaging of liposomal drug delivery systems: a critical review of radiolabelling methods and applications in nanomedicine. Adv. Drug. Deliv. Rev. 143, 134–160 (2019).

    Article  CAS  Google Scholar 

  130. van der Geest, T. et al. Comparison of three remote radiolabelling methods for long-circulating liposomes. J. Control. Rel. 220, 239–244 (2015).

    Article  Google Scholar 

  131. Takechi-Haraya, Y. et al. Current status and challenges of analytical methods for evaluation of size and surface modification of nanoparticle-based drug formulations. AAPS PharmSciTech 23, 150 (2022).

    Article  CAS  Google Scholar 

  132. Fourches, D. et al. Quantitative nanostructure–activity relationship modeling. ACS Nano 4, 5703–5712 (2010).

    Article  CAS  Google Scholar 

  133. Zhu, D., Long, Q., Xu, Y. & Xing, J. Evaluating nanoparticles in preclinical research using microfluidic systems. Micromachines 10, 414 (2019).

    Article  Google Scholar 

  134. Zhang, T. et al. Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv. Drug Deliv. Rev. 186, 114319 (2022).

    Article  CAS  Google Scholar 

  135. Boso, D. P., Di Mascolo, D., Santagiuliana, R., Decuzzi, P. & Schrefler, B. A. Drug delivery: experiments, mathematical modelling and machine learning. Comput. Biol. Med. 123, 103820 (2020).

    Article  CAS  Google Scholar 

  136. Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    Article  CAS  Google Scholar 

  137. Isles, M. P. Nanomedicines and nanosimilars — why a robust centralised regulatory framework is essential to enhance patient safety. Front. Pharmacol. 12, 787239 (2021).

    Article  CAS  Google Scholar 

  138. Pita, R., Ehmann, F. & Papaluca, M. Nanomedicines in the EU-regulatory overview. AAPS J. 18, 1576–1582 (2016).

    Article  CAS  Google Scholar 

  139. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. The European Parliament and the Council of the European Union https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32001L0083 (2001).

  140. Regulation (EC) No 726/2004 of the European Parliament and of the Council of 31 March 2004 laying down Community procedures for the authorisation and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency. The European Parliament and the Council of the European Union https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32004R0726 (2004).

  141. Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. The European Parliament and the Council of the European Union https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32007R1394 (2007).

  142. Regulation (EC) No 141/2000 of the European Parliament and of the Council of 16 December 1999 on orphan medicinal products. The European Parliament and the Council of the European Union https://www.legislation.gov.uk/eur/2000/141 (1999).

  143. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices. The European Parliament and the Council of the European Union https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745 (2017).

  144. European Medicines Agency. EMA Preclinical safety evaluation of biotechnology-derived pharmaceuticals, ICH S6 (R1) Preclinical safety evaluation of biotechnology-derived pharmaceuticals - Scientific guideline. EMA https://www.ema.europa.eu/en/ich-s6-r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals-scientific-guideline (2011).

  145. FDA. Formal Meetings Between the FDA and Sponsors or Applicants of PDUFA Products Guidance for Industry. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products-guidance-industry (2017).

Download references

Acknowledgements

This work was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 616695, European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement nos 754490 and 872648. P.D. acknowledges mentoring and support by Stanford’s SPARK Translational Research Program. J.G. acknowledges support by NIH grant nos CA218615, CA215700 and P30 CA08748 (to S. M. Vickers, MSKCC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Paolo Decuzzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Xiaoyuan Chen, Twan Lammers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawne, P.J., Ferreira, M., Papaluca, M. et al. New opportunities and old challenges in the clinical translation of nanotheranostics. Nat Rev Mater 8, 783–798 (2023). https://doi.org/10.1038/s41578-023-00581-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00581-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research