Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defect activity in metal halide perovskites with wide and narrow bandgap

Abstract

Metal halide perovskites (MHPs) constitute a rich library of materials with huge potential for disruptive optoelectronic technologies. Their main strength comes from the possibility of easily tuning their bandgap to integrate them in devices with different functionalities — in principle. In reality, this cannot be achieved yet. In fact, whereas defect tolerance can be claimed for MHPs with a bandgap of about 1.6 eV, the model system that is the object of intense investigations, MHPs with lower and higher bandgaps are far from being defect-tolerant. These materials show various forms of instabilities that are mainly driven by strong defect activity. Here we critically assess the most recent advances in elucidating the physical and chemical activity of defects in both high-bandgap and low-bandgap MHPs, while correlating it to performance and stability losses, especially for solar cells, the driving application for these materials. We also provide an overview of the strategies so far implemented to eventually overcome the remaining materials-based and device-based challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State-of-the-art tandem subcells based on wide-bandgap and narrow-bandgap MHPs.
Fig. 2: Impact of point defects on halide segregation.
Fig. 3: Role of GBs in halide segregation.
Fig. 4: Trap-mediated performance and stability of perovskite optoelectronic devices.
Fig. 5: Impact of halide segregation and energy-level alignment on energy loss of wide-bandgap metal halide perovskite solar cells.
Fig. 6: Impact of alloying of the Sn site by Pb on point defects.
Fig. 7: Interface modulation in FASnI3 MHP solar cells.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  2. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  3. Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  CAS  Google Scholar 

  4. Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Article  CAS  Google Scholar 

  5. Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    Article  CAS  Google Scholar 

  6. Chen, B. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 11, 1257 (2020).

    Article  CAS  Google Scholar 

  7. Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135 (2020).

    Article  CAS  Google Scholar 

  8. Kim, D. H. et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3, 1734–1745 (2019).

    Article  CAS  Google Scholar 

  9. Chen, B. et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3, 177–190 (2019).

    Article  CAS  Google Scholar 

  10. Li, Z. et al. Wide-bandgap perovskite/gallium arsenide tandem solar cells. Adv. Energy Mater. 10, 1903085 (2019).

    Article  CAS  Google Scholar 

  11. Abdollahi, N. B. et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv. Energy Mater. 10, 1903583 (2020).

    Google Scholar 

  12. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  CAS  Google Scholar 

  13. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2−x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  CAS  Google Scholar 

  14. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  CAS  Google Scholar 

  15. Tong, J. et al. Carrier lifetimes of >1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  CAS  Google Scholar 

  16. Yang, Z. et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 4498 (2019).

    Article  CAS  Google Scholar 

  17. McMeekin, D. P. et al. Solution-processed all-perovskite multi-junction solar cells. Joule 3, 387–401 (2019).

    Article  CAS  Google Scholar 

  18. Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Article  CAS  Google Scholar 

  19. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  20. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  Google Scholar 

  21. Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton T. 40, 5563–5568 (2011).

    Article  CAS  Google Scholar 

  22. Jiang, X. et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11, 1245 (2020). This work clarifies the mechanism for the low voltage of tin perovskite solar cells and presents good energy-level alignment at the interface between the pure tin perovskite and the electron transporting layer, achieving high open-circuit voltage.

    Article  CAS  Google Scholar 

  23. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  CAS  Google Scholar 

  24. Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

    Article  CAS  Google Scholar 

  25. Brivio, F., Caetano, C. & Walsh, A. Thermodynamic origin of photoinstability in the CH3NH3Pb (I1–xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).

    Article  CAS  Google Scholar 

  26. Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    Article  CAS  Google Scholar 

  27. Draguta, S. et al. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200 (2017).

    Article  CAS  Google Scholar 

  28. Wang, X. et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nat. Commun. 10, 695 (2019).

    Article  CAS  Google Scholar 

  29. Scheidt, R. A. & Kamat, P. V. Temperature-driven anion migration in gradient halide perovskites. J. Chem. Phys. 151, 134703 (2019).

    Article  CAS  Google Scholar 

  30. Elmelund, T., Scheidt, R. A., Seger, B. & Kamat, P. V. Bidirectional halide ion exchange in paired lead halide perovskite films with thermal activation. ACS Energy Lett. 4, 1961–1969 (2019).

    Article  CAS  Google Scholar 

  31. Vicente, J. R. & Chen, J. Phase segregation and photothermal remixing of mixed-halide lead perovskites. J. Phys. Chem. Lett. 11, 1802–1807 (2020).

    Article  CAS  Google Scholar 

  32. Elmelund, T., Seger, B., Kuno, M. & Kamat, P. V. how interplay between photo and thermal activation dictates halide ion segregation in mixed halide perovskites. ACS Energy Lett. 5, 56–63 (2020).

    Article  CAS  Google Scholar 

  33. Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).

    Article  CAS  Google Scholar 

  34. Mao, W. et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20, 55–61 (2020).

    Article  CAS  Google Scholar 

  35. Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Article  CAS  Google Scholar 

  36. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  CAS  Google Scholar 

  37. Meloni, S. et al. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).

    Article  CAS  Google Scholar 

  38. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

    Article  CAS  Google Scholar 

  39. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  CAS  Google Scholar 

  40. Oranskaia, A., Yin, J., Bakr, O. M., Brédas, J. L. & Mohammed, O. F. Halogen migration in hybrid perovskites: the organic cation matters. J. Phys. Chem. Lett. 9, 5474–5480 (2018).

    Article  CAS  Google Scholar 

  41. Barboni, D. & De Souza, R. A. The thermodynamics and kinetics of iodine vacancies in the hybrid perovskite methylammonium lead iodide. Energy Environ. Sci. 11, 3266–3274 (2018). This work shows that the interaction between photocarriers and iodide ions increases iodine vacancies in perovskites and thus the ionic conductivity.

    Article  CAS  Google Scholar 

  42. Motti, S. G. et al. Defect activity in lead halide perovskites. Adv. Mater. 31, 1901183 (2019). This work focuses on understanding the nature and photochemistry of defects in perovskite materials through a combination of density functional theory calculations and photophysics characterization.

    Article  CAS  Google Scholar 

  43. Samu, G. F. et al. Electrochemical hole injection selectively expels iodide from mixed halide perovskite films. J. Am. Chem. Soc. 141, 10812–10820 (2019).

    Article  CAS  Google Scholar 

  44. DuBose, J. T. & Kamat, P. V. TiO2-assisted halide ion segregation in mixed halide perovskite films. J. Am. Chem. Soc. 142, 5362–5370 (2020).

    Article  CAS  Google Scholar 

  45. Belisle, R. A. et al. Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3, 2694–2700 (2018).

    Article  CAS  Google Scholar 

  46. Lin, Y. et al. Excess charge-carrier induced instability of hybrid perovskites. Nat. Commun. 9, 4981 (2018).

    Article  CAS  Google Scholar 

  47. Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018).

    Article  CAS  Google Scholar 

  48. Motti, S. G. et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photonics 13, 532–539 (2019). This work shows that photoinstabilities are related to the light-induced formation and annihilation of defects acting as carrier trap states.

    Article  CAS  Google Scholar 

  49. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  CAS  Google Scholar 

  50. Mosconi, E. & De Angelis, F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS Energy Lett. 1, 182–188 (2016).

    Article  CAS  Google Scholar 

  51. Mao, W. et al. Visualizing phase segregation in mixed-halide perovskite single crystals. Angew. Chem. 58, 2893–2898 (2018).

    Article  CAS  Google Scholar 

  52. Chen, W., Mao, W., Bach, U., Jia, B. & Wen, X. Tracking dynamic phase segregation in mixed-halide perovskite single crystals under two-photon scanning laser illumination. Small Methods 3, 1900273 (2019).

    Article  CAS  Google Scholar 

  53. Tang, X. et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18, 2172–2178 (2018).

    Article  CAS  Google Scholar 

  54. Ohmann, R. et al. Real-space imaging of the atomic structure of organic–inorganic perovskite. J. Am. Chem. Soc. 137, 16049–16054 (2015).

    Article  CAS  Google Scholar 

  55. She, L., Liu, M. & Zhong, D. Atomic structures of CH3NH3PbI3 (001) surfaces. ACS Nano 10, 1126–1131 (2016).

    Article  CAS  Google Scholar 

  56. Ono, L. K. & Qi, Y. Surface and interface aspects of organometal halide perovskite materials and solar cells. J. Phys. Chem. Lett. 7, 4764–4794 (2016).

    Article  CAS  Google Scholar 

  57. Uratani, H. & Yamashita, K. Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study. J. Phys. Chem. Lett. 8, 742–746 (2017).

    Article  CAS  Google Scholar 

  58. Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019). This work finds that the formation and migration energy barrier of halide defects on perovskite surfaces can vary substantially depending on the surface termination.

    Article  CAS  Google Scholar 

  59. Cai, L., She, L., Qin, H., Xu, L. & Zhong, D. Monolayer methylammonium lead iodide films deposited on Au(111). Surf. Sci. 675, 78–82 (2018).

    Article  CAS  Google Scholar 

  60. Castro-Méndez, A., Hidalgo, J. & Correa-Baena, J. The role of grain boundaries in perovskite solar cells. Adv. Energy Mater. 0, 1901489 (2019).

    Article  CAS  Google Scholar 

  61. Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).

    Article  CAS  Google Scholar 

  62. DeQuilettes, D. W. et al. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 11683 (2016).

    Article  CAS  Google Scholar 

  63. Knight, A. J. et al. Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4, 75–84 (2018).

    Article  CAS  Google Scholar 

  64. Knight, A. J., Patel, J. B., Snaith, H. J., Johnston, M. B. & Herz, L. M. Trap states, electric fields, and phase segregation in mixed-halide perovskite photovoltaic devices. Adv. Energy Mater. 10, 1903488 (2020). This work focuses on understanding trap behaviour under illumination and electrical fields, elucidating the possible role of traps in halide segregation.

    Article  CAS  Google Scholar 

  65. Kim M., Motti S. G., Sorrentino R. & Petrozza A. Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energ. Environ. Sci.11, 2609-2619 (2018).

  66. Yin, W., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 63903 (2014).

    Article  CAS  Google Scholar 

  67. Srimath Kandada, A. R. et al. Nonlinear carrier interactions in lead halide perovskites and the role of defects. J. Am. Chem. Soc. 138, 13604–13611 (2016).

    Article  CAS  Google Scholar 

  68. Motti, S. G. et al. Photoinduced emissive trap states in lead halide perovskite semiconductors. ACS Energy Lett. 1, 726–730 (2016).

    Article  CAS  Google Scholar 

  69. Li, W. et al. Control of charge recombination in perovskites by oxidation state of halide vacancy. J. Am. Chem. Soc. 140, 15753–15763 (2018).

    Article  CAS  Google Scholar 

  70. Leijtens, T. et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci. 9, 3472–3481 (2016).

    Article  CAS  Google Scholar 

  71. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352 (2020). By studying the drive-level capacitance profiling of perovskites, this work shows that most of the deep traps are located at the crystal surface.

    Article  CAS  Google Scholar 

  72. Park, B. et al. Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9, 3301 (2018).

    Article  CAS  Google Scholar 

  73. Zhao, Y. et al. Double-side-passivated perovskite solar cells with ultra-low potential loss. Sol. RRL 3, 1800296 (2018).

    Article  CAS  Google Scholar 

  74. Jacobsson, T. J. et al. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138, 10331–10343 (2016).

    Article  CAS  Google Scholar 

  75. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222 (2015).

    Article  CAS  Google Scholar 

  76. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  CAS  Google Scholar 

  77. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562, 245–248 (2018).

    Article  CAS  Google Scholar 

  78. Yuan, Z. et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019).

    Article  CAS  Google Scholar 

  79. Jia, Y. et al. Role of excess FAI in formation of high-efficiency FAPbI3-based light-emitting diodes. Adv. Funct. Mater. 30, 1906875 (2020).

    Article  CAS  Google Scholar 

  80. Merdasa, A. et al. Impact of excess lead iodide on the recombination kinetics in metal halide perovskites. ACS Energy Lett. 4, 1370–1378 (2019).

    Article  CAS  Google Scholar 

  81. Fu, F. et al. I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions. Energy Environ. Sci. 12, 3074–3088 (2019).

    Article  CAS  Google Scholar 

  82. Long, M. et al. Abnormal synergetic effect of organic and halide ions on the stability and optoelectronic properties of a mixed perovskite via in situ characterizations. Adv. Mater. 30, 1801562 (2018).

    Article  CAS  Google Scholar 

  83. Gratia, P. et al. intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 15821–15824 (2016).

    Article  CAS  Google Scholar 

  84. Correa-Baena, J. et al. Homogenized halides and alkali cation segregation in alloyed organic–inorganic perovskites. Science 363, 627 (2019).

    Article  CAS  Google Scholar 

  85. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020). This work reveals that imperfections within the mixed I–Br perovskite, rather than halide segregation, dominate the open-circuit voltage loss in wide-bandgap perovskite solar cells.

    Article  CAS  Google Scholar 

  86. Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).

    Article  CAS  Google Scholar 

  87. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  CAS  Google Scholar 

  88. Lin, Y. et al. Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 29, 1700607 (2017).

    Article  CAS  Google Scholar 

  89. Hutter, E. M. et al. Thermodynamic stabilization of mixed-halide perovskites against phase segregation. Cell Rep. Phys. Sci. 1, 100120 (2020).

    Article  CAS  Google Scholar 

  90. Tan, H. et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018).

    Article  CAS  Google Scholar 

  91. Frolova, L. A. et al. Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67–72 (2017).

    Article  CAS  Google Scholar 

  92. Dastidar, S. et al. Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 8, 1278–1282 (2017).

    Article  CAS  Google Scholar 

  93. Chen, C. et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Adv. Mater. 29, 1605290 (2017).

    Article  CAS  Google Scholar 

  94. Tai, Q., Tang, K. & Yan, F. Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 12, 2375–2405 (2019).

    Article  CAS  Google Scholar 

  95. Ho-Baillie, A., Zhang, M., Lau, C. F. J., Ma, F. & Huang, S. Untapped potentials of inorganic metal halide perovskite solar cells. Joule 3, 938–955 (2019).

    Article  CAS  Google Scholar 

  96. Faheem, M. B. et al. All-inorganic perovskite solar cells: energetics, key challenges, and strategies toward commercialization. ACS Energy Lett. 5, 290–320 (2020).

    Article  CAS  Google Scholar 

  97. Hörantner, M. T. et al. The potential of multi-junction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  CAS  Google Scholar 

  98. Aydin, E. et al. Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat. Energy 5, 851–859 (2020).

    Article  CAS  Google Scholar 

  99. Hu, M., Bi, C., Yuan, Y., Bai, Y. & Huang, J. Stabilized wide bandgap MAPbBrxI3–x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 3, 1500301 (2016).

    Article  CAS  Google Scholar 

  100. Yu, Y. et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett. 2, 1177–1182 (2017).

    Article  CAS  Google Scholar 

  101. Zhou, Y. et al. Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Adv. Funct. Mater. 28, 1803130 (2018).

    Article  CAS  Google Scholar 

  102. Son, D. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016).

    Article  CAS  Google Scholar 

  103. Chen, S. et al. Spatial distribution of lead iodide and local passivation on organo-lead halide perovskite. ACS Appl. Mater. Inter. 9, 6072–6078 (2017).

    Article  CAS  Google Scholar 

  104. Jiang, Q. et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017).

    Article  CAS  Google Scholar 

  105. Li, Q. et al. Efficient perovskite solar cells fabricated through CsCl-enhanced PbI2 precursor via sequential deposition. Adv. Mater. 30, 1803095 (2018).

    Article  CAS  Google Scholar 

  106. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497 (2018).

    Article  CAS  Google Scholar 

  107. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium–caesium–formamidinium lead halide perovskites. Nat. Energy 6, 135 (2017).

    Google Scholar 

  108. Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Article  CAS  Google Scholar 

  109. Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016).

    Article  CAS  Google Scholar 

  110. Zhou, Y. et al. Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 7, 1701048 (2017).

    Article  CAS  Google Scholar 

  111. Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790–795 (2020).

    Article  CAS  Google Scholar 

  112. Chen, Z. et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 4, 1258–1259 (2019).

    Article  CAS  Google Scholar 

  113. Chung, I. et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012).

    Article  CAS  Google Scholar 

  114. Wang, F. et al. Organic cation-dependent degradation mechanism of organotin halide perovskites. Adv. Funct. Mater. 26, 3417–3423 (2016).

    Article  CAS  Google Scholar 

  115. Shi, T. et al. Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A 5, 15124–15129 (2017).

    Article  CAS  Google Scholar 

  116. Meggiolaro, D., Ricciarelli, D., Alasmari, A. A., Alasmary, F. A. S. & De Angelis, F. Tin versus lead redox chemistry modulates charge trapping and self-doping in tin/lead iodide perovskites. J. Phys. Chem. Lett. 11, 3546–3556 (2020). This work reveals that lead iodide perovskites are dominated by iodine chemistry, whereas tin chemistry dominates the defect chemistry of tin iodide perovskites.

    Article  CAS  Google Scholar 

  117. Xu, P., Chen, S., Xiang, H., Gong, X. & Wei, S. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26, 6068–6072 (2014).

    Article  CAS  Google Scholar 

  118. Nasti, G. & Abate, A. Tin halide perovskite (ASnX3) solar cells: a comprehensive guide toward the highest power conversion efficiency. Adv. Energy Mater. 10, 1902467 (2020).

    Article  CAS  Google Scholar 

  119. Parrott, E. S. et al. Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite. J. Phys. Chem. Lett. 7, 1321–1326 (2016).

    Article  CAS  Google Scholar 

  120. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    Article  CAS  Google Scholar 

  121. Kumar, M. H. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014).

    Article  CAS  Google Scholar 

  122. Milot, R. L. et al. The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films. Adv. Mater. 30, 1804506 (2018).

    Article  CAS  Google Scholar 

  123. Wu, B. et al. Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI3 perovskite crystal for solar cells. Adv. Funct. Mater. 27, 1604818 (2017).

    Article  CAS  Google Scholar 

  124. Ma, L. et al. Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138, 14750–14755 (2016).

    Article  CAS  Google Scholar 

  125. Nishimura, K. et al. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 74, 104858 (2020).

    Article  CAS  Google Scholar 

  126. Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    Article  CAS  Google Scholar 

  127. Marshall, K. P., Walton, R. I. & Hatton, R. A. Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 3, 11631–11640 (2015).

    Article  CAS  Google Scholar 

  128. Tsai, C. et al. Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode. ACS Energy Lett. 1, 1086–1093 (2016).

    Article  CAS  Google Scholar 

  129. Tai, Q. et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. 58, 806–810 (2019).

    Article  CAS  Google Scholar 

  130. Gupta, S., Cahen, D. & Hodes, G. How SnF2 impacts the material properties of lead-free tin perovskites. J. Phys. Chem. C. 122, 13926–13936 (2018).

    Article  CAS  Google Scholar 

  131. Lee, S. J. et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016).

    Article  CAS  Google Scholar 

  132. Song, T. et al. Piperazine suppresses self-doping in CsSnI3 perovskite solar cells. ACS Appl. Energy Mater. 1, 4221–4226 (2018).

    Article  CAS  Google Scholar 

  133. Song, T. et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139, 836–842 (2017).

    Article  CAS  Google Scholar 

  134. Gu, F. et al. Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Sol. RRL 2, 1800136 (2018).

    Article  CAS  Google Scholar 

  135. Zhao, Z. et al. Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 4, 1700204 (2017).

    Article  CAS  Google Scholar 

  136. Li, F. et al. A cation-exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells. Angew. Chem. Int. Ed. 58, 6688–6692 (2019).

    Article  CAS  Google Scholar 

  137. Jokar, E., Chien, C., Tsai, C., Fathi, A. & Diau, E. W. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835 (2019).

    Article  CAS  Google Scholar 

  138. Spanopoulos, I. et al. Unraveling the chemical nature of the 3D ‘hollow' hybrid halide perovskites. J. Am. Chem. Soc. 140, 5728–5742 (2018).

    Article  CAS  Google Scholar 

  139. Ke, W., Stoumpos, C. C. & Kanatzidis, M. G. ‘Unleaded’ perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31, 1803230 (2019).

    Article  CAS  Google Scholar 

  140. Takahashi, Y., Hasegawa, H., Takahashi, Y. & Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor. J. Solid State Chem. 205, 39–43 (2013).

    Article  CAS  Google Scholar 

  141. Gu, S. et al. Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32, 1907392 (2020).

    Article  CAS  Google Scholar 

  142. Diau, E. W., Jokar, E. & Rameez, M. Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Lett. 4, 1930–1937 (2019).

    Article  CAS  Google Scholar 

  143. Liao, M. et al. Efficient and stable FASnI3 perovskite solar cells with effective interface modulation by low-dimensional perovskite layer. ChemSusChem 12, 5007–5014 (2019).

    Article  CAS  Google Scholar 

  144. Chen, K. et al. Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411–418 (2018).

    Article  CAS  Google Scholar 

  145. Liu, X., Wang, Y., Xie, F., Yang, X. & Han, L. Improving the performance of inverted formamidinium tin iodide perovskite solar cells by reducing the energy-level mismatch. ACS Energy Lett. 3, 1116–1121 (2018).

    Article  CAS  Google Scholar 

  146. Xiao, Q. et al. Dopant-free squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells. Angew. Chem. 58, 17724–17730 (2019).

    Article  CAS  Google Scholar 

  147. Ke, W. et al. TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 138, 14998–15003 (2016).

    Article  CAS  Google Scholar 

  148. Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Article  CAS  Google Scholar 

  149. Leijtens, T., Prasanna, R., Gold-Parker, A., Toney, M. F. & McGehee, M. D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2, 2159–2165 (2017).

    Article  CAS  Google Scholar 

  150. Prasanna, R. et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 4, 939–947 (2019).

    Article  CAS  Google Scholar 

  151. Werner, J. et al. Improving low-bandgap tin–lead perovskite solar cells via contact engineering and gas quench processing. ACS Energy Lett. 5, 1215–1223 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Union project PERT PV under grant agreement no. 763977 and ERC project SOPHY under grant agreement N 771528.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., I.P. and A.P. conceived the review structure. Y.Z. developed the section on high-bandgap semiconductors. I.P. developed the section on narrow-bandgap semiconductors. D.M. and F.D.A. reviewed the contribution to the field from theoretical studies. All authors contributed to the writing and revision of the manuscript.

Corresponding author

Correspondence to Annamaria Petrozza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Jinsong Huang, Michael D. McGehee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Currently certified 25.5%: https://www.nrel.gov/pv/cell-efficiency.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Poli, I., Meggiolaro, D. et al. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat Rev Mater 6, 986–1002 (2021). https://doi.org/10.1038/s41578-021-00331-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00331-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing