Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Horizontal gene transfer in eukaryotes: aligning theory with data

Abstract

Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells — phagocytosis and endosymbiosis — have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences between eukaryotic, bacterial and archaeal cells.
Fig. 2: Ecological strategies that promote or suppress horizontal gene transfer.
Fig. 3: Endosymbiotic gene transfer in early organelle evolution.

Similar content being viewed by others

References

  1. Smith, M. W., Feng, D. F. & Doolittle, R. F. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem. Sci. 17, 489–493 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2129 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blais, C. & Archibald, J. M. The past, present and future of the tree of life. Curr. Biol. 31, R314–R321 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Daubin, V. & Szöllősi, G. J. Horizontal gene transfer and the history of life. Cold Spring Harb. Perspect. Biol. 8, a018036 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Domingues, S. & Nielsen, K. M. Membrane vesicles and horizontal gene transfer in prokaryotes. Curr. Opin. Microbiol. 38, 16–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19, 442–453 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Arnold, B. J., Huang, I. T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Gophna, U. & Altman-Price, N. Horizontal gene transfer in archaea — from mechanisms to genome evolution. Annu. Rev. Microbiol. 76, 481–502 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Ku, C. et al. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc. Natl Acad. Sci. USA 112, 10139–10146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin, W. F. Too much eukaryote LGT. Bioessays https://doi.org/10.1002/bies.201700115 (2017). This paper and Leger et al. are endpoints of a long debate about whether HGT took place in nuclear genomes, with this article detailing arguments against the presence of widespread HGT.

  14. Leger, M. M., Eme, L., Stairs, C. W. & Roger, A. J. Demystifying eukaryote lateral gene transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). Bioessays 40, e1700242 (2018). This paper and Martin (2017) are endpoints of a long debate about whether HGT took place in nuclear genomes, with this article detailing arguments for the presence of widespread HGT.

    Article  PubMed  Google Scholar 

  15. Martin, W. F. Eukaryote lateral gene transfer is Lamarckian. Nat. Ecol. Evol. 2, 754 (2018).

    Article  PubMed  Google Scholar 

  16. Van Etten, J. & Bhattacharya, D. Horizontal gene transfer in eukaryotes: not if, but how much? Trends Genet. 36, 915–925 (2020). This Review aims to turn the page on the debate from whether HGT affected eukaryotes to focusing on how it changed their ecology and evolution.

    Article  PubMed  Google Scholar 

  17. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Keeling, P. J. & Campo, J. D. Marine protists are not just big bacteria. Curr. Biol. 27, R541–R549 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bergthorsson, U., Richardson, A. O., Young, G. J., Goertzen, L. R. & Palmer, J. D. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc. Natl Acad. Sci. USA 101, 17747–17752 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rice, D. W. & Palmer, J. D. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol. 4, 31 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khan, H. et al. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol. Biol. Evol. 24, 1832–1842 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Keeling, P. J. & Palmer, J. D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9, 605–618 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, N., Wang, Y. & Hua, J. The roles of mitochondrion in intergenomic gene transfer in plants: a source and a pool. Int. J. Mol. Sci. 19, 547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Filip, E. & Skuza, L. Horizontal gene transfer involving chloroplasts. Int. J. Mol. Sci. 22, 4484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jenkins, C. et al. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl Acad. Sci. USA 99, 17049–17054 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guljamow, A. et al. Horizontal gene transfer of two cytoskeletal elements from a eukaryote to a cyanobacterium. Curr. Biol. 17, R757–R759 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Akil, C. et al. Structural and biochemical evidence for the emergence of a calcium-regulated actin cytoskeleton prior to eukaryogenesis. Commun. Biol. 5, 890 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shiratori, T., Suzuki, S., Kakizawa, Y. & Ishida, K. I. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat. Commun. 10, 5529 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Spang, A. et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 14, e1007080 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    Article  PubMed  Google Scholar 

  36. Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021). This paper provides a detailed summary of the extent of symbiosis across the tree of eukaryotes, emphasizing not only how widespread it is but also how it affects genome evolution and how little we understand it functionally.

    Article  CAS  PubMed  Google Scholar 

  37. Husnik, F. et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153, 1567–1578 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Husnik, F. & McCutcheon, J. P. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc. Natl Acad. Sci. USA 113, E5416–E5424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Stanier, R. Y. in Organization and Control in Prokaryotic and Eukaryotic Cells: 20th symposium of the Society for General Microbiology (eds Charles, H. P. & Knight, B. D.) 1–38 (Cambridge Univ. Press, 1970).

  41. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Keeling, P. J. The impact of history on our perception of evolutionary events: endosymbiosis and the origin of eukaryotic complexity. Cold Spring Harb. Perspect. Biol. 6, a016196 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Koonin, E. V. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos. Trans. R. Soc. B 370, 20140333 (2015).

    Article  Google Scholar 

  44. Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. B 370, 20140330 (2015).

    Article  Google Scholar 

  45. Pittis, A. A. & Gabaldon, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martin, W. F. et al. Late mitochondrial origin is an artifact. Genome Biol. Evol. 9, 373–379 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The Physiology of phagocytosis in the context of mitochondrial origin. Microbiol. Mol. Biol. Rev. 81, e00008-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gabaldón, T. Relative timing of mitochondrial endosymbiosis and the “pre-mitochondrial symbioses” hypothesis. IUBMB Life 70, 1188–1196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gabaldon, T. Origin and early evolution of the eukaryotic cell. Annu. Rev. Microbiol. 75, 631–647 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Albers, S., Ashmore, J., Pollard, T., Spang, A. & Zhou, J. Origin of eukaryotes: what can be learned from the first successfully isolated Asgard archaeon. Fac. Rev. 11, 3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Boothby, T. C. et al. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc. Natl Acad. Sci. USA 112, 15976–15981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Choi, I. G. & Kim, S. H. Global extent of horizontal gene transfer. Proc. Natl Acad. Sci. USA 104, 4489–4494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alsmark, C. et al. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol. 14, R19 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Boto, L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. Biol. Sci. 281, 20132450 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Schönknecht, G., Weber, A. P. & Lercher, M. J. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. Bioessays 36, 9–20 (2014).

    Article  PubMed  Google Scholar 

  57. Gluck-Thaler, E. & Slot, J. C. Dimensions of horizontal gene transfer in eukaryotic microbial pathogens. PLoS Pathog. 11, e1005156 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lacroix, B. & Citovsky, V. A functional bacterium-to-plant DNA transfer machinery of Rhizobium etli. PLoS Pathog. 12, e1005502 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16, 67–79 (2018). This paper provides a thorough review of bacterial-to-eukaryotic HGT, placing a much needed emphasis on functional transfers that will persist in evolutionary time, as distinguished from the simple non-functional uptake of DNA.

    Article  CAS  PubMed  Google Scholar 

  60. Fan, X. et al. Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. Sci. Adv. 6, eaba0111 (2020). This paper describes a genomic analysis including a wide diversity of ecologically important algae, showing that their genomes have been impacted to varying degrees by HGT, but that in all cases physiologically important functions have been affected.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gabaldón, T. Patterns and impacts of nonvertical evolution in eukaryotes: a paradigm shift. Ann. N. Y. Acad. Sci. 1476, 78–92 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cote-L’Heureux, A., Maurer-Alcala, X. X. & Katz, L. A. Old genes in new places: a taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet. 18, e1010239 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cummings, T. F. M. et al. Citrullination was introduced into animals by horizontal gene transfer from cyanobacteria. Mol. Biol. Evol. 39, msab317 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Katz, L. A. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist. Philos. Trans. R. Soc. B 370, 20140324 (2015). This paper describes a systematic analysis of HGT across the tree of eukaryotes showing ancient transfers are rare in comparison with recent ones, mirroring earlier observations on bacteria.

    Article  Google Scholar 

  65. Ku, C. et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524, 427–432 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Hao, W. & Golding, G. B. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res. 16, 636–643 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marri, P. R., Hao, W. & Golding, G. B. The role of laterally transferred genes in adaptive evolution. BMC Evol. Biol. 7, S8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Eme, L., Gentekaki, E., Curtis, B., Archibald, J. M. & Roger, A. J. Lateral gene transfer in the adaptation of the anaerobic parasite Blastocystis to the gut. Curr. Biol. 27, 807–820 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Stairs, C. W. et al. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 7, e34292 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jimenez-Gonzalez, A., Xu, F. & Andersson, J. O. Lateral acquisitions repeatedly remodel the oxygen detoxification pathway in diplomonads and relatives. Genome Biol. Evol. 11, 2542–2556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murphy, C. L. et al. Horizontal gene transfer as an indispensable driver for evolution of neocallimastigomycota into a distinct gut-dwelling fungal lineage. Appl. Environ. Microbiol. 85, e00988-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Feng, J. M. et al. Single-cell transcriptome sequencing of rumen ciliates provides insight into their molecular adaptations to the anaerobic and carbohydrate-rich rumen microenvironment. Mol. Phylogenet. Evol. 143, 106687 (2020).

    Article  PubMed  Google Scholar 

  73. Lewis, W. H. et al. Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss. Mol. Biol. Evol. 37, 524–539 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Yubuki, N. et al. Ancient adaptive lateral gene transfers in the symbiotic OpalinaBlastocystis stramenopile lineage. Mol. Biol. Evol. 37, 651–659 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Žárský, V. et al. The Mastigamoeba balamuthi genome and the nature of the free-living ancestor of Entamoeba. Mol. Biol. Evol. 38, 2240–2259 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Woehle, C. et al. A novel eukaryotic denitrification pathway in foraminifera. Curr. Biol. 28, 2536–2543.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Valach, M. et al. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol. 21, 99 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schönknecht, G. et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339, 1207–1210 (2013).

    Article  PubMed  Google Scholar 

  79. Striepen, B. et al. Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc. Natl Acad. Sci. USA 101, 3154–3159 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Andersson, J. O. et al. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genom. 8, 51 (2007).

    Article  Google Scholar 

  81. Haegeman, A., Jones, J. T. & Danchin, E. G. Horizontal gene transfer in nematodes: a catalyst for plant parasitism. Mol. Plant Microbe Interact. 24, 879–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Dean, P. et al. Transporter gene acquisition and innovation in the evolution of Microsporidia intracellular parasites. Nat. Commun. 9, 1709 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sibbald, S. J., Eme, L., Archibald, J. M. & Roger, A. J. Lateral gene transfer mechanisms and pan-genomes in eukaryotes. Trends Parasitol. 36, 927–941 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Gilbert, C. & Maumus, F. Sidestepping Darwin: horizontal gene transfer from plants to insects. Curr. Opin. Insect Sci. 57, 101035 (2023).

    Article  PubMed  Google Scholar 

  85. Verster, K. I. et al. Evolution of insect innate immunity through domestication of bacterial toxins. Proc. Natl Acad. Sci. USA 120, e2218334120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walker, A. A. et al. Horizontal gene transfer underlies the painful stings of asp caterpillars (Lepidoptera: Megalopygidae). Proc. Natl Acad. Sci. USA 120, e2305871120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Urquhart, A. S., Vogan, A. A., Gardiner, D. M. & Idnurm, A. Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proc. Natl Acad. Sci. USA 120, e2214521120 (2023). This study provides experimental evidence that eukaryotic transposable elements can move between species in fungi, with implications for accelerating the rates of HGT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Douanne, N. et al. Leishmania parasites exchange drug-resistance genes through extracellular vesicles. Cell Rep. 40, 111121 (2022). This study provides experimental evidence that DNA can move between eukaryotic cells through extracellular vesicles, in this case leading to the spread of drug resistance in parasitic protists.

    Article  CAS  PubMed  Google Scholar 

  89. Marcilla, A. & Sanchez-Lopez, C. M. Extracellular vesicles as a horizontal gene transfer mechanism in Leishmania. Trends Parasitol. 38, 823–825 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Haimovich, G., Dasgupta, S. & Gerst, J. E. RNA transfer through tunneling nanotubes. Biochem. Soc. Trans. 49, 145–160 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Pereira, L., Christin, P. A. & Dunning, L. T. The mechanisms underpinning lateral gene transfer between grasses. Plants People Planet 5, 672–682 (2022).

    Article  Google Scholar 

  92. Gilbert, C. & Cordaux, R. Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Curr. Opin. Virol. 25, 16–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Malik, S. S., Azem-E-Zahra, S., Kim, K. M., Caetano-Anollés, G. & Nasir, A. Do viruses exchange genes across superkingdoms of life? Front. Microbiol. 8, 2110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Irwin, N. A. T. et al. Viral proteins as a potential driver of histone depletion in dinoflagellates. Nat. Commun. 9, 1535 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Irwin, N. A. T., Pittis, A. A., Richards, T. A. & Keeling, P. J. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat. Microbiol. 7, 327–336 (2022). This study describes the first systematic analysis of HGT between eukaryotes and their viruses, showing important functional impacts on both as well as confirming that transduction is a potentially major mechanism for HGT between eukaryotes.

    Article  CAS  PubMed  Google Scholar 

  96. Slamovits, C. H. & Keeling, P. J. Widespread recycling of processed cDNAs in dinoflagellates. Curr. Biol. 18, R550–R552 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Doolittle, W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14, 307–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Olofsson, J. K. et al. Population-specific selection on standing variation generated by lateral gene transfers in a grass. Curr. Biol. 29, 3921–3927.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Thorsness, P. E. & Weber, E. R. Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int. Rev. Cytol. 165, 207–234 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Huang, C. Y., Ayliffe, M. A. & Timmis, J. N. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422, 72–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Stegemann, S., Hartmann, S., Ruf, S. & Bock, R. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl Acad. Sci. USA 100, 8828–8833 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fuentes, I., Karcher, D. & Bock, R. Experimental reconstruction of the functional transfer of intron-containing plastid genes to the nucleus. Curr. Biol. 22, 763–771 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Matsuo, M., Ito, Y., Yamauchi, R. & Obokata, J. The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17, 665–675 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dunning Hotopp, J. C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Nikoh, N. et al. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res. 18, 272–280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Doolittle, W. F. Darwinizing Gaia. J. Theor. Biol. 434, 11–19 (2017).

    Article  PubMed  Google Scholar 

  110. Glasner, M. E., Truong, D. P. & Morse, B. C. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS J. 287, 1323–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Keeling, P. J. Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes. Philos. Trans. R. Soc. B 374, 20190085 (2019).

    Article  Google Scholar 

  112. Richards, T. A., Leonard, G., Soanes, D. & Talbot, N. J. Gene transfer into the fungi. Fungal Biol. Rev. 25, 98–110 (2011).

    Article  Google Scholar 

  113. Slot, J. C. & Rokas, A. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr. Biol. 21, 134–139 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Fitzpatrick, D. A. Horizontal gene transfer in fungi. FEMS Microbiol. Lett. 329, 1–8 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Shen, X. X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545 e1520 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Slot, J. C. & Hibbett, D. S. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS ONE 2, e1097 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Richards, T. A. Genome evolution: horizontal movements in the fungi. Curr. Biol. 21, R166–R168 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Milner, D. S. et al. Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proc. Natl Acad. Sci. USA 116, 5613–5622 (2019). Transporters are a classes of proteins that might confer a strong and immediate selective advantage, and this work shows they spread among eukaryotes by HGT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ocana-Pallares, E. et al. Divergent genomic trajectories predate the origin of animals and fungi. Nature 609, 747–753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Soanes, D. M., Richards, T. A. & Talbot, N. J. Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity? Plant Cell 19, 3318–3326 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Richards, T. A. et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc. Natl Acad. Sci. USA 108, 15258–15263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Richards, T. A. & Talbot, N. J. Horizontal gene transfer in osmotrophs: playing with public goods. Nat. Rev. Microbiol. 11, 720–727 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Savory, F., Leonard, G. & Richards, T. A. The role of horizontal gene transfer in the evolution of the oomycetes. PLoS Pathog. 11, e1004805 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Savory, F. R., Milner, D. S., Miles, D. C. & Richards, T. A. Ancestral function and diversification of a horizontally acquired oomycete carboxylic acid transporter. Mol. Biol. Evol. 35, 1887–1900 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Richardson, A. O. & Palmer, J. D. Horizontal gene transfer in plants. J. Exp. Bot. 58, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Gao, C. et al. Horizontal gene transfer in plants. Funct. Integr. Genomics 14, 23–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Davis, C. C. & Xi, Z. Horizontal gene transfer in parasitic plants. Curr. Opin. Plant Biol. 26, 14–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Dunning, L. T. & Christin, P. A. Reticulate evolution, lateral gene transfer, and innovation in plants. Am. J. Bot. 107, 541–544 (2020).

    Article  PubMed  Google Scholar 

  129. Wickell, D. A. & Li, F. W. On the evolutionary significance of horizontal gene transfers in plants. New Phytol. 225, 113–117 (2020).

    Article  PubMed  Google Scholar 

  130. Aubin, E., El Baidouri, M. & Panaud, O. Horizontal gene transfers in plants. Life 11, 857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cho, Y., Qiu, Y. L., Kuhlman, P. & Palmer, J. D. Explosive invasion of plant mitochondria by a group I intron. Proc. Natl Acad. Sci. USA 95, 14244–14249 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cho, Y. & Palmer, J. D. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. Mol. Biol. Evol. 16, 1155–1165 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Palmer, J. D. et al. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc. Natl Acad. Sci. USA 97, 6960–6966 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sinn, B. T. & Barrett, C. F. Ancient mitochondrial gene transfer between fungi and the orchids. Mol. Biol. Evol. 37, 44–57 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Garcia, L. E., Edera, A. A., Palmer, J. D., Sato, H. & Sanchez-Puerta, M. V. Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant. New Phytol. 229, 1701–1714 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Yue, J., Hu, X., Sun, H., Yang, Y. & Huang, J. Widespread impact of horizontal gene transfer on plant colonization of land. Nat. Commun. 3, 1152 (2012).

    Article  PubMed  Google Scholar 

  137. Cheng, S. et al. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179, 1057–1067.e1014 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, R. et al. Adaptive innovation of green plants by horizontal gene transfer. Biotechnol. Adv. 46, 107671 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Won, H. & Renner, S. S. Horizontal gene transfer from flowering plants to Gnetum. Proc. Natl Acad. Sci. USA 100, 10824–10829 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Davis, C. C., Anderson, W. R. & Wurdack, K. J. Gene transfer from a parasitic flowering plant to a fern. Proc. Biol. Sci. 272, 2237–2242 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kado, T. & Innan, H. Horizontal gene transfer in five parasite plant species in Orobanchaceae. Genome Biol. Evol. 10, 3196–3210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dunning, L. T. et al. Lateral transfers of large DNA fragments spread functional genes among grasses. Proc. Natl Acad. Sci. USA 116, 4416–4425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Phansopa, C., Dunning, L. T., Reid, J. D. & Christin, P. A. Lateral gene transfer acts as an evolutionary shortcut to efficient C4 biochemistry. Mol. Biol. Evol. 37, 3094–3104 (2020). This paper shows that the diversity of a key enzyme in C4 photosynthesis in a grass species comes from a combination of mutation and HGT in different populations, and those populations in which HGT plays a role adopt advantageous enzyme kinetics more rapidly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hibdige, S. G. S., Raimondeau, P., Christin, P. A. & Dunning, L. T. Widespread lateral gene transfer among grasses. New Phytol. 230, 2474–2486 (2021). This paper describes a systemic analysis of HGT in grasses, including important crops, showing both prevalence and trends across the group that help outline potential mechanisms and functional outcomes.

    Article  CAS  PubMed  Google Scholar 

  145. Ma, J. et al. Major episodes of horizontal gene transfer drove the evolution of land plants. Mol. Plant 15, 857–871 (2022). This paper describes a comprehensive analysis of HGT in plants linking gains of functionally important genes to major transitions in plant evolution.

    Article  CAS  PubMed  Google Scholar 

  146. Prasad, A., Chirom, O. & Prasad, M. Horizontal gene transfer and the evolution of land plants. Trends Plant Sci. 27, 1203–1205 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Royo, J., Gimez, E. & Hueros, G. CMP–KDO synthetase: a plant gene borrowed from gram-negative eubacteria. Trends Genet. 16, 432–433 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Yue, J., Hu, X. & Huang, J. Origin of plant auxin biosynthesis. Trends Plant Sci. 19, 764–770 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Yang, Z. et al. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development. New Phytol. 206, 807–816 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, Q., Smith, S. M. & Huang, J. Origins of strigolactone and karrikin signaling in plants. Trends Plant Sci. 27, 450–459 (2022).

    Article  PubMed  Google Scholar 

  151. Davis, C. C. & Wurdack, K. J. Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305, 676–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Barkman, T. J. et al. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol. Biol. 7, 248 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cusimano, N. & Renner, S. S. Sequential horizontal gene transfers from different hosts in a widespread Eurasian parasitic plant, Cynomorium coccineum. Am. J. Bot. 106, 679–689 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Cai, L. et al. Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana griff. (Rafflesiaceae). Curr. Biol. 31, 1002–1011.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Westwood, J. H. Plant biology: genome reveals secrets of the alien within. Curr. Biol. 31, R241–R243 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Guo, X. et al. The Sapria himalayana genome provides new insights into the lifestyle of endoparasitic plants. BMC Biol. 21, 134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bonen, L., Cunningham, R. S., Gray, M. W. & Doolittle, W. F. Wheat embryo mitochondrial 18 S ribosomal RNA: evidence for its prokaryotic nature. Nucleic Acids Res. 4, 663–671 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. Proc. Natl Acad. Sci. USA 82, 4443–4447 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 225–274 (1967).

    Article  CAS  Google Scholar 

  161. Goksøyr, J. Evolution of eucaryotic cells. Nature 214, 1161 (1967).

    Article  PubMed  Google Scholar 

  162. Weeden, N. F. Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J. Mol. Evol. 17, 133–139 (1981).

    Article  CAS  PubMed  Google Scholar 

  163. Adams, K. L., Daley, D. O., Qiu, Y. L., Whelan, J. & Palmer, J. D. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408, 354–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Millen, R. S. et al. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13, 645–658 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Adams, K. L., Qiu, Y. L., Stoutemyer, M. & Palmer, J. D. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc. Natl Acad. Sci. USA 99, 9905–9912 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. van Dooren, G. G., Su, V., D’Ombrain, M. C. & McFadden, G. I. Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J. Biol. Chem. 277, 23612–23619 (2002).

    Article  PubMed  Google Scholar 

  167. Choi, C., Liu, Z. & Adams, K. L. Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes. New Phytol. 172, 429–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Bock, R. & Timmis, J. N. Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 30, 556–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Bock, R. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu. Rev. Genet. 51, 1–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Martin, W. Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos. Trans. R. Soc. B 365, 847–855 (2010).

    Article  CAS  Google Scholar 

  171. Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 12246–12251 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Palenik, B. The genomics of symbiosis: hosts keep the baby and the bath water. Proc. Natl Acad. Sci. USA 99, 11996–11997 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gabaldon, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Hannaert, V. et al. Plant-like traits associated with metabolism of Trypanosoma parasites. Proc. Natl Acad. Sci. USA 100, 1067–1071 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Reyes-Prieto, A., Moustafa, A. & Bhattacharya, D. Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr. Biol. 18, 956–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Moustafa, A. et al. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324, 1724–1726 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Woehle, C., Dagan, T., Martin, W. F. & Gould, S. B. Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol. Evol. 3, 1220–1230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Patron, N. J., Waller, R. F. & Keeling, P. J. A tertiary plastid uses genes from two endosymbionts. J. Mol. Biol. 357, 1373–1382 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Reyes-Prieto, A., Hackett, J. D., Soares, M. B., Bonaldo, M. F. & Bhattacharya, D. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr. Biol. 16, 2320–2325 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Curtis, B. A. et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492, 59–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Burki, F. et al. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. Eukaryot. Cell 13, 246–255 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Hehenberger, E., Gast, R. J. & Keeling, P. J. A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc. Natl Acad. Sci. USA 116, 17934–17942 (2019). This paper, and Karnkowska et al. (2023), analyse plastid-targeted proteins from kleptoplastic sisters of lineages with secondary or tertiary plastids, and both show the presence of hetero-EPT and that protein targeting evolved before the organelle was permanently integrated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Burki, F. et al. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol. Evol. 4, 626–635 (2012).

    Article  PubMed  Google Scholar 

  184. Deschamps, P. & Moreira, D. Reevaluating the green contribution to diatom genomes. Genome Biol. Evol. 4, 683–688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Moreira, D. & Deschamps, P. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes. Cold Spring Harb. Perspect. Biol. 6, a016014 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Karnkowska, A. et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Gornik, S. G. et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc. Natl Acad. Sci. USA 112, 5767–5772 (2015). This paper describes one of the earliest cases of complete loss of an organelle (the plastid in this case) that also showed no evidence for relict organelle-derived genes (that is, no hetero-EGT).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mathur, V. et al. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 29, 2936–2941.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Schön, M. E. et al. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat. Commun. 12, 6651 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Archibald, J. M., Rogers, M. B., Toop, M., Ishida, K. & Keeling, P. J. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc. Natl Acad. Sci. USA 100, 7678–7683 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Suzuki, K. & Miyagishima, S. Y. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol. Biol. Evol. 27, 581–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Szklarczyk, R. & Huynen, M. A. Mosaic origin of the mitochondrial proteome. Proteomics 10, 4012–4024 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Qiu, H. et al. Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci. 18, 680–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Gray, M. W. Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc. Natl Acad. Sci. USA 112, 10133–10138 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Marin, B., Nowack, E. C. & Melkonian, M. A plastid in the making: evidence for a second primary endosymbiosis. Protist 156, 425–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Nowack, E. C. M., Melkonian, M. & Glöckner, G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr. Biol. 18, 410–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Nowack, E. C. & Grossman, A. R. Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc. Natl Acad. Sci. USA 109, 5340–5345 (2012). This paper was among the first to provide evidence for protein-targeting to an endosymbiont other than the mitochondria or plastids, an important step widely believed to mark the distinguishing characteristic of an organelle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Nowack, E. C. et al. Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc. Natl Acad. Sci. USA 113, 12214–12219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Singer, A. et al. Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr. Biol. 27, 2763–2773.e5 (2017). This paper describes a comprehensive analysis of the proteins targeted to the chromatophore showing that many are not derived from the same lineage as the organelle itself.

    Article  CAS  PubMed  Google Scholar 

  201. Nowack, E. C. M. & Weber, A. P. M. Genomics-informed insights into endosymbiotic organelle evolution in photosynthetic eukaryotes. Annu. Rev. Plant Biol. 69, 51–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Oberleitner, L., Perrar, A., Macorano, L., Huesgen, P. F. & Nowack, E. C. M. A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore. Plant Physiol. 189, 152–164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Morales, J. et al. Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr. Biol. 33, 28–40.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: from endosymbionts to organelles. Science 304, 253–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Karnkowska, A. et al. Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis. Proc. Natl Acad. Sci. USA 120, e2220100120 (2023). This paper, and Hehenberger et al., analyse plastid-targeted proteins from kleptoplastic sisters of lineages with secondary or tertiary plastids, and both show the presence of hetero-EPT and that protein targeting evolved before the organelle was permanently integrated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Larkum, A. W., Lockhart, P. J. & Howe, C. J. Shopping for plastids. Trends Plant Sci. 12, 189–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Keeling, P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Zachar, I., Szilagyi, A., Szamado, S. & Szathmary, E. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc. Natl Acad. Sci. USA 115, E1504–E1510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Keeling, P. J. & Burki, F. Progress towards the tree of eukaryotes. Curr. Biol. 29, R808–R817 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Crisp, A., Boschetti, C., Perry, M., Tunnacliffe, A. & Micklem, G. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol. 16, 50 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Salzberg, S. L. & Eisen, J. A. Lateral gene transfer or viral colonization? Science 293, 1048 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Salzberg, S. L. Horizontal gene transfer is not a hallmark of the human genome. Genome Biol. 18, 85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Arakawa, K. No evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc. Natl Acad. Sci. USA 113, E3057 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bemm, F., Weiss, C. L., Schultz, J. & Forster, F. Genome of a tardigrade: horizontal gene transfer or bacterial contamination? Proc. Natl Acad. Sci. USA 113, E3054–E3056 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Koutsovoulos, G. et al. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc. Natl Acad. Sci. USA 113, 5053–5058 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Gladyshev, E. A., Meselson, M. & Arkhipova, I. R. Massive horizontal gene transfer in bdelloid rotifers. Science 320, 1210–1213 (2008). High frequencies of HGTs to animals had been erroneously reported previously, but this case reporting many HGTs in bdelloid rotifers has withstood comprehensive reanalysis, making these rotifers unique among metazoans.

    Article  CAS  PubMed  Google Scholar 

  217. Eyres, I. et al. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol. 13, 90 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Nowell, R. W. et al. Comparative genomics of bdelloid rotifers: insights from desiccating and nondesiccating species. PLoS Biol. 16, e2004830 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Gladyshev, E. A. & Arkhipova, I. R. Genome structure of bdelloid rotifers: shaped by asexuality or desiccation? J. Hered. 101, S85–S93 (2010).

    Article  CAS  PubMed  Google Scholar 

  220. Debortoli, N. et al. Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex. Curr. Biol. 26, 723–732 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Signorovitch, A., Hur, J., Gladyshev, E. & Meselson, M. Evidence for meiotic sex in bdelloid rotifers. Curr. Biol. 26, R754–R755 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Li, X. et al. Desiccation does not drastically increase the accessibility of exogenous DNA to nuclear genomes: evidence from the frequency of endosymbiotic DNA transfer. BMC Genom. 21, 452 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks F. Doolittle, J. McCutcheon, V. Boscaro and N. Irwin for a number of long and interesting discussions on the topic of HGT in general; F. Burki, V. Boscaro and L. Hehenberger for debate over EGT terminology; and N. Irwin, N. Fast and T. Richards for their critical reading of the manuscript. This work was supported by a grant from the Gordon and Betty Moore Foundation (https://doi.org/10.37807/GBMF9201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Keeling.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Laura Eme, Ewa Nowack and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keeling, P.J. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-023-00688-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-023-00688-5

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology