Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The expanding diagnostic toolbox for rare genetic diseases

Abstract

Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively — through truly integrative multi-omics approaches and data sharing — the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The current clinical diagnostic workflow using sequencing-based technologies.
Fig. 2: Emerging technologies for variant identification.
Fig. 3: Emerging functional assays for variant interpretation.
Fig. 4: Coordinated and integrated multi-omic analyses in the future.

Similar content being viewed by others

References

  1. Ferreira, C. R. The burden of rare diseases. Am. J. Med. Genet. A 179, 885–892 (2019). This study provided one of the first estimates of the true burden of rare disease.

    Article  PubMed  Google Scholar 

  2. Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 28, 165–173 (2020).

    Article  PubMed  Google Scholar 

  3. Global Genes. Annual Impact Report 2020. https://globalgenes.org/wp-content/uploads/2021/03/Annual-Report-2020_FINAL.pdf (2020).

  4. Costa, T., Scriver, C. R. & Childs, B. The effect of Mendelian disease on human health: a measurement. Am. J. Med. Genet. 21, 231–242 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Marshall, D. A. et al. Direct health-care costs for children diagnosed with genetic diseases are significantly higher than for children with other chronic diseases. Genet. Med. 21, 1049–1057 (2019).

    Article  PubMed  Google Scholar 

  6. Liu, Z., Zhu, L., Roberts, R. & Tong, W. Toward clinical implementation of next-generation sequencing-based genetic testing in rare diseases: where are we? Trends Genet. 35, 852–867 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Wright, C. F., FitzPatrick, D. R. & Firth, H. V. Paediatric genomics: diagnosing rare disease in children. Nat. Rev. Genet. 19, 253–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Esquivel-Sada, D. & Nguyen, M. T. Diagnosis of rare diseases under focus: impacts for Canadian patients. J. Community Genet. 9, 37–50 (2018).

    Article  PubMed  Google Scholar 

  9. Shashi, V. et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet. Med. 16, 176–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Durmaz, A. A. et al. Evolution of genetic techniques: past, present, and beyond. Biomed. Res. Int. 2015, 461524 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hartley, T. et al. New diagnostic approaches for undiagnosed rare genetic diseases. Annu. Rev. Genomics Hum. Genet. 21, 351–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. BCC Research. Global DNA sequencing: research, applied and clinical markets https://www.bccresearch.com/market-research/biotechnology/dna-sequencing-emerging-tech-applications-report.html (2021).

  13. Srivastava, S. et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 21, 2413–2421 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stefanski, A. et al. Clinical sequencing yield in epilepsy, autism spectrum disorder, and intellectual disability: a systematic review and meta-analysis. Epilepsia 62, 143–151 (2021).

    Article  PubMed  Google Scholar 

  15. Stenton, S. L. & Prokisch, H. Genetics of mitochondrial diseases: identifying mutations to help diagnosis. EBioMedicine 56, 102784 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schofield, D. et al. Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases. NPJ Genom. Med. 2, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Herman, I. et al. Clinical exome sequencing in the diagnosis of pediatric neuromuscular disease. Muscle Nerve 63, 304–310 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Krenn, M. et al. Genotype-guided diagnostic reassessment after exome sequencing in neuromuscular disorders: experiences with a two-step approach. Eur. J. Neurol. 27, 51–61 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Ramchand, J. et al. Prospective evaluation of the utility of whole exome sequencing in dilated cardiomyopathy. J. Am. Heart Assoc. 9, e013346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ritter, A. et al. Clinical utility of exome sequencing in infantile heart failure. Genet. Med. 22, 423–426 (2020).

    Article  PubMed  Google Scholar 

  21. Clark, M. M. et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom. Med. 3, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wright, C. F. et al. Genomic diagnosis of rare pediatric disease in the United Kingdom and Ireland. N. Engl. J. Med. 388, 1559–1571 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). American College of Medical Genetics and Genomics guidelines for variant interpretation used by all laboratories globally.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Keppler-Noreuil, K. M. et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am. J. Med. Genet. A 167A, 287–295 (2015).

    Article  PubMed  Google Scholar 

  25. Treichel, A. M. et al. Phenotypic distinctions between mosaic forms of tuberous sclerosis complex. Genet. Med. 21, 2594–2604 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2, 16080 (2016).

    Article  PubMed  Google Scholar 

  27. Stark, Z. & Scott, R. H. Genomic newborn screening for rare diseases. Nat. Rev. Genet. 24, 755–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Rafehi, H. et al. Unexpected diagnosis of myotonic dystrophy type 2 repeat expansion by genome sequencing. Eur. J. Hum. Genet. 31, 122–124 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Nisar, H. et al. Whole-genome sequencing as a first-tier diagnostic framework for rare genetic diseases. Exp. Biol. Med. 246, 2610–2617 (2021).

    Article  CAS  Google Scholar 

  30. McMillan, H. J. et al. Whole genome sequencing reveals biallelic PLA2G6 mutations in siblings with cerebellar atrophy and cap myopathy. Clin. Genet. 99, 746–748 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. McMillan, H. J. et al. Whole genome sequencing identifies pathogenic RNU4ATAC variants in a child with recurrent encephalitis, microcephaly, and normal stature. Am. J. Med. Genet. A 185, 3502–3506 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Marshall, C. R. et al. Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease. NPJ Genom. Med. 5, 47 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lionel, A. C. et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet. Med. 20, 435–443 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Bick, D., Jones, M., Taylor, S. L., Taft, R. J. & Belmont, J. Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases. J. Med. Genet. 56, 783–791 (2019).

    Article  PubMed  Google Scholar 

  35. Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 583, 96–102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stranneheim, H. et al. Integration of whole genome sequencing into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med. 13, 40 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kingsmore, S. F. et al. A randomized, controlled trial of the analytic and diagnostic performance of singleton and trio, rapid genome and exome sequencing in ill infants. Am. J. Hum. Genet. 105, 719–733 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, H. et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312, 1880–1887 (2014). Early report on the uses of exome sequencing, highlighting the utility of the trio approach.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Retterer, K. et al. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 18, 696–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Tan, T. Y. et al. A head-to-head evaluation of the diagnostic efficacy and costs of trio versus singleton exome sequencing analysis. Eur. J. Hum. Genet. 27, 1791–1799 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun, Y. et al. Next-generation diagnostics: gene panel, exome, or whole genome. Hum. Mutat. 36, 648–655 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Lelieveld, S. H., Spielmann, M., Mundlos, S., Veltman, J. A. & Gilissen, C. Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions. Hum. Mutat. 36, 815–822 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moreno-Cabrera, J. M. et al. Evaluation of CNV detection tools for NGS panel data in genetic diagnostics. Eur. J. Hum. Genet. 28, 1645–1655 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Whitford, W., Lehnert, K., Snell, R. G. & Jacobsen, J. C. Evaluation of the performance of copy number variant prediction tools for the detection of deletions from whole genome sequencing data. J. Biomed. Inf. 94, 103174 (2019).

    Article  Google Scholar 

  45. Yang, L. A practical guide for structural variation detection in the human genome. Curr. Protoc. Hum. Genet. 107, e103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lemire, G. et al. ABHD16A deficiency causes a complicated form of hereditary spastic paraplegia associated with intellectual disability and cerebral anomalies. Am. J. Hum. Genet. 108, 2017–2023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bamshad, M. J., Nickerson, D. A. & Chong, J. X. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105, 448–455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Consortium, E. P. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  Google Scholar 

  49. Zaugg, J. B. et al. Current challenges in understanding the role of enhancers in disease. Nat. Struct. Mol. Biol. 29, 1148–1158 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Pellerin, D. et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar Ataxia. N. Engl. J. Med. 388, 128–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Miyatake, S. et al. Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom. Med. 7, 62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dremsek, P. et al. Optical genome mapping in routine human genetic diagnostics — its advantages and limitations. Genes 12, 1958 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Bruijn, S. E. et al. Optical genome mapping and revisiting short-read genome sequencing data reveal previously overlooked structural variants disrupting retinal disease-associated genes. Genet. Med. 25, 100345 (2022).

    Article  PubMed  Google Scholar 

  54. Yang, Y. & Hao, W. Identification of a familial complex chromosomal rearrangement by optical genome mapping. Mol. Cytogenet. 15, 41 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai, Y. et al. Single-molecule optical mapping enables quantitative measurement of D4Z4 repeats in facioscapulohumeral muscular dystrophy (FSHD). J. Med. Genet. 57, 109–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Krawczak, M., Reiss, J. & Cooper, D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Montgomery, S. B., Bernstein, J. A. & Wheeler, M. T. Toward transcriptomics as a primary tool for rare disease investigation. Cold Spring Harb. Mol. Case Stud. 8, a006198 (2022). Early comprehensive review of the potential utility of RNA sequencing for rare disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marwaha, S., Knowles, J. W. & Ashley, E. A. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med. 14, 23 (2022). Assessment of multi-omics approaches when rare disease patients are negative.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cummings, B. B. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 9, eaal5209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fresard, L. et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat. Med. 25, 911–919 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gonorazky, H. D. et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease. Am. J. Hum. Genet. 104, 466–483 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kremer, L. S. et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 15824 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, H. et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet. Med. 22, 490–499 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Murdock, D. R. et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J. Clin. Invest. 131, e141500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yepez, V. A. et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med. 14, 38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  Google Scholar 

  67. Schenkel, L. C. et al. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin 10, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Siu, M. T. et al. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Clin. Epigenetics 11, 103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Butcher, D. T. et al. CHARGE and Kabuki syndromes: gene-specific DNA methylation signatures identify epigenetic mechanisms linking these clinically overlapping conditions. Am. J. Hum. Genet. 100, 773–788 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aref-Eshghi, E. et al. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am. J. Hum. Genet. 104, 685–700 (2019). Description of the utility for methylation analysis in a number of different rare diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Granadillo, J. L. et al. Discovery of a novel CHD7 CHARGE syndrome variant by integrated omics analyses. Am. J. Med. Genet. A 185, 544–548 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. McConkey, H., White-Brown, A., Kerkhof, J., Dyment, D. & Sadikovic, B. Genetically unresolved case of Rauch-Steindl syndrome diagnosed by its Wolf-Hirschhorn associated DNA methylation episignature. Front. Cell Dev. Biol. 10, 1022683 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cheung, W. A. et al. Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort. Nat. Commun. 14, 3090 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tse, O. Y. O. et al. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. Proc. Natl Acad. Sci. USA 118, e2019768118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sharim, H. et al. Long-read single-molecule maps of the functional methylome. Genome Res. 29, 646–656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wishart, D. S. et al. HMDB 3.0 — the human metabolome database in 2013. Nucleic Acids Res. 41, D801–D807 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Kyle, J. E. et al. A resource of lipidomics and metabolomics data from individuals with undiagnosed diseases. Sci. Data 8, 114 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. American College of Medical Genetics/American Society of Human Genetics Test and Technology Transfer Committee Working Group. Tandem mass spectrometry in newborn screening. American College of Medical Genetics/American Society of Human Genetics Test and Technology Transfer Committee Working Group. Genet. Med. 2, 267–269 (2000). Assessment of mass spectrometry for wide inclusion in newborn screening programmes.

    Google Scholar 

  80. Banerjee, S. Empowering clinical diagnostics with mass spectrometry. ACS Omega 5, 2041–2048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hannibal, L. et al. Metabolic profiling in human fibroblasts enables subtype clustering in glycogen storage disease. Front. Endocrinol. 11, 579981 (2020).

    Article  Google Scholar 

  82. Burrage, L. C. et al. Untargeted metabolomic profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders. Genet. Med. 21, 1977–1986 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tebani, A. et al. Urinary metabolic phenotyping of mucopolysaccharidosis type I combining untargeted and targeted strategies with data modeling. Clin. Chim. Acta 475, 7–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Tebani, A. et al. Unveiling metabolic remodeling in mucopolysaccharidosis type III through integrative metabolomics and pathway analysis. J. Transl. Med. 16, 248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Radenkovic, S. et al. The metabolic map into the pathomechanism and treatment of PGM1-CDG. Am. J. Hum. Genet. 104, 835–846 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thistlethwaite, L. R. et al. Clinical diagnosis of metabolic disorders using untargeted metabolomic profiling and disease-specific networks learned from profiling data. Sci. Rep. 12, 6556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alaimo, J. T. et al. Integrated analysis of metabolomic profiling and exome data supplements sequence variant interpretation, classification, and diagnosis. Genet. Med. 22, 1560–1566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zandl-Lang, M., Plecko, B. & Kofeler, H. Lipidomics-paving the road towards better insight and precision medicine in rare metabolic diseases. Int. J. Mol. Sci. 24, 1709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Garcia-Cazorla, A., Mochel, F., Lamari, F. & Saudubray, J. M. The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J. Inherit. Metab. Dis. 38, 19–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Byeon, S. K., Lee, J. Y., Lee, J. S. & Moon, M. H. Lipidomic profiling of plasma and urine from patients with Gaucher disease during enzyme replacement therapy by nanoflow liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1381, 132–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Sandhoff, K. & Harzer, K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J. Neurosci. 33, 10195–10208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hermansson, M. et al. Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study. J. Neurochem. 95, 609–617 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Huffnagel, I. C. et al. Disease progression in women with X-linked adrenoleukodystrophy is slow. Orphanet J. Rare Dis. 14, 30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Verdura, E. et al. Biallelic PI4KA variants cause a novel neurodevelopmental syndrome with hypomyelinating leukodystrophy. Brain 144, 2659–2669 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zandl-Lang, M. et al. Changes in the cerebrospinal fluid and plasma lipidome in patients with rett syndrome. Metabolites 12, 291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Azbukina, N. V. et al. Oxylipin profiles in plasma of patients with Wilson’s disease. Metabolites 10, 222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, S. et al. Targeted lipidomics reveals plasmalogen phosphatidylethanolamines and storage triacylglycerols as the major systemic lipid aberrations in Bietti crystalline corneoretinal dystrophy. J. Genet. Genomics 49, 380–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Ruiz, M. et al. Lipidomics unveils lipid dyshomeostasis and low circulating plasmalogens as biomarkers in a monogenic mitochondrial disorder. JCI Insight 4, e123231 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dayon, L., Cominetti, O. & Affolter, M. Proteomics of human biological fluids for biomarker discoveries: technical advances and recent applications. Expert. Rev. Proteom. 19, 131–151 (2022).

    Article  CAS  Google Scholar 

  100. Matafora, V. et al. Early markers of Fabry disease revealed by proteomics. Mol. Biosyst. 11, 1543–1551 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Hollander, Z. et al. Gender-specific plasma proteomic biomarkers in patients with Anderson-Fabry disease. Eur. J. Heart Fail. 17, 291–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Pawlinski, L. et al. Proteomic biomarkers in Gaucher disease. J. Clin. Pathol. 74, 25–29 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Orchard, P. J. et al. Association between APOE4 and biomarkers in cerebral adrenoleukodystrophy. Sci. Rep. 9, 7858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Richmond, P. A. et al. Multi-omic approach to identify phenotypic modifiers underlying cerebral demyelination in X-linked adrenoleukodystrophy. Front. Cell Dev. Biol. 8, 520 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sutcliffe, D. J. et al. Induced pluripotent stem cells from subjects with Lesch-Nyhan disease. Sci. Rep. 11, 8523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Raimo, S. et al. Mitochondrial morphology, bioenergetics and proteomic responses in fatty acid oxidation disorders. Redox Biol. 41, 101923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Edhager, A. V. et al. Proteomic investigation of cultivated fibroblasts from patients with mitochondrial short-chain acyl-CoA dehydrogenase deficiency. Mol. Genet. Metab. 111, 360–368 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Claussnitzer, M. et al. Minimum information and guidelines for reporting a Multiplexed Assay of Variant Effect. Preprint at ArXiv. 2306.15113v1 (2023).

  109. Fowler, D. M. et al. An atlas of variant effects to understand the genome at nucleotide resolution. Genome Biol. 24, 147 (2023). Database for variant effect data, which will undoubtedly grow as this information accumulates and will be vital for clinical interpretation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. NHLBI Grand Opportunity Exome Sequencing Project (ESP) https://esp.gs.washington.edu (2023).

  111. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  112. Karczewski, K. J. et al. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res. 45, D840–D845 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wojcik, G. L. et al. Opportunities and challenges for the use of common controls in sequencing studies. Nat. Rev. Genet. 23, 665–679 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Krusche, P. et al. Best practices for benchmarking germline small-variant calls in human genomes. Nat. Biotechnol. 37, 555–560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kerr, K. et al. A scoping review and proposed workflow for multi-omic rare disease research. Orphanet J. Rare Dis. 15, 107 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Marshall, A. E. et al. Integrated omics analyses clarifies ATRX copy number variant of uncertain significance. J. Hum. Genet. https://doi.org/10.1038/s10038-023-01203-8 (2023).

  118. Birney, E., Vamathevan, J. & Goodhand, P. Genomics in healthcare: GA4GH looks to 2022. Preprint at bioRxiv https://doi.org/10.1101/203554 (2017).

  119. American College of Medical Genetics and Genomics Board of Directors Laboratory and clinical genomic data sharing is crucial to improving genetic health care: a position statement of the American College of Medical Genetics and Genomics. Genet. Med. 19, 721–722 (2017). Statement from the American College of Medical Genetics and Genomics on the importance of data sharing for rare disease.

    Article  Google Scholar 

  120. Boycott, K. et al. The clinical application of genome-wide sequencing for monogenic diseases in Canada: Position Statement of the Canadian College of Medical Geneticists. J. Med. Genet. 52, 431–437 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Harrison, S. M. et al. Using ClinVar as a resource to support variant interpretation. Curr. Protoc. Hum. Genet. 89, 8.16.11–8.16.23 (2016).

    Google Scholar 

  122. Foreman, J. et al. DECIPHER: improving genetic diagnosis through dynamic integration of genomic and clinical data. Annu. Rev. Genomics Hum. Genet. 24, 151–176 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rodrigues, E. D. S. et al. Variant-level matching for diagnosis and discovery: challenges and opportunities. Hum. Mutat. 43, 782–790 (2022).

    PubMed  PubMed Central  Google Scholar 

  124. Lerner-Ellis, J., Wang, M., White, S. & Lebo, M. S., Canadian Open Genetics Repository Group Canadian Open Genetics Repository (COGR): a unified clinical genomics database as a community resource for standardising and sharing genetic interpretations. J. Med. Genet. 52, 438–445 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Tudini, E. et al. Shariant platform: enabling evidence sharing across Australian clinical genetic-testing laboratories to support variant interpretation. Am. J. Hum. Genet. 109, 1960–1973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rehm, H. L. et al. ClinGen — the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mighton, C. et al. Data sharing to improve concordance in variant interpretation across laboratories: results from the Canadian Open Genetics Repository. J. Med. Genet. 59, 571–578 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Investigators, G. P. P. et al. 100,000 genomes pilot on rare-disease diagnosis in health care — preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article  Google Scholar 

  129. Fioretos, T. et al. Implementing precision medicine in a regionally organized healthcare system in Sweden. Nat. Med. 28, 1980–1982 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Buske, O. J. et al. The Matchmaker Exchange API: automating patient matching through the exchange of structured phenotypic and genotypic profiles. Hum. Mutat. 36, 922–927 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Boycott, K. M., Azzariti, D. R., Hamosh, A. & Rehm, H. L. Seven years since the launch of the Matchmaker Exchange: the evolution of genomic matchmaking. Hum. Mutat. 43, 659–667 (2022). Description of the evolution of the Matchmaker Exchange for rare disease discovery.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Osmond, M. et al. Outcome of over 1500 matches through the Matchmaker Exchange for rare disease gene discovery: the 2-year experience of Care4Rare Canada. Genet. Med. 24, 100–108 (2022). Our groups experience with matchmaking for rare disease, including the benefits and challenges.

    Article  CAS  PubMed  Google Scholar 

  133. DiStefano, M. T. et al. The gene curation coalition: a global effort to harmonize gene-disease evidence resources. Genet. Med. 24, 1732–1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hartley, T. et al. Bridging clinical care and research in Ontario, Canada: maximizing diagnoses from reanalysis of clinical exome sequencing data. Clin. Genet. 103, 288–300 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Sadikovic, B. et al. Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders. Genet. Med. 23, 1065–1074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Langlois, S., Wilson, R. D. & Genetics, C., CCMG Prenatal Diagnosis Committee Carrier screening for genetic disorders in individuals of Ashkenazi Jewish descent. J. Obstet. Gynaecol. Can. 28, 324–332 (2006).

    Article  PubMed  Google Scholar 

  137. Shi, L. et al. Comprehensive population screening in the Ashkenazi Jewish population for recurrent disease-causing variants. Clin. Genet. 91, 599–604 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Grody, W. W. et al. Laboratory standards and guidelines for population-based cystic fibrosis carrier screening. Genet. Med. 3, 149–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Olynyk, J. K. & Ramm, G. A. Hemochromatosis. N. Engl. J. Med. 387, 2159–2170 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Walburger, D. K., Afonina, I. A. & Wydro, R. An improved real time PCR method for simultaneous detection of C282Y and H63D mutations in the HFE gene associated with hereditary hemochromatosis. Mutat. Res. 432, 69–78 (2001).

    CAS  PubMed  Google Scholar 

  141. Dunbar, S. A. & Jacobson, J. W. Rapid screening for 31 mutations and polymorphisms in the cystic fibrosis transmembrane conductance regulator gene by Lminex xMAP suspension array. Methods Mol. Med. 114, 147–171 (2005).

    CAS  PubMed  Google Scholar 

  142. Kosugi, S. et al. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 20, 117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Miller, D. T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jezkova, J. et al. Exon-focused targeted oligonucleotide microarray design increases detection of clinically relevant variants across multiple NHS genomic centres. NPJ Genom. Med. 5, 28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gordeeva, V. et al. Benchmarking germline CNV calling tools from exome sequencing data. Sci. Rep. 11, 14416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pfundt, R. et al. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet. Med. 19, 667–675 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Zhou, B. et al. Whole-genome sequencing analysis of CNV using low-coverage and paired-end strategies is efficient and outperforms array-based CNV analysis. J. Med. Genet. 55, 735–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Singh, A. K. et al. Detecting copy number variation in next generation sequencing data from diagnostic gene panels. BMC Med. Genomics 14, 214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Warner, J. P. et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J. Med. Genet. 33, 1022–1026 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Petronis, A. et al. Direct detection of expanded trinucleotide repeats using PCR and DNA hybridization techniques. Am. J. Med. Genet. 67, 85–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Rajan-Babu, I. S. et al. Genome-wide sequencing as a first-tier screening test for short tandem repeat expansions. Genome Med. 13, 126 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bahlo, M. et al. Recent advances in the detection of repeat expansions with short-read next-generation sequencing. F1000Res 7, F1000 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Chintalaphani, S. R., Pineda, S. S., Deveson, I. W. & Kumar, K. R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun. 9, 98 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Moelans, C. B., Atanesyan, L., Savola, S. P. & van Diest, P. J. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). Methods Mol. Biol. 1708, 537–549 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Barros-Silva, D., Marques, C. J., Henrique, R. & Jeronimo, C. Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications. Genes (Basel) 9, 429 (2018).

    Article  PubMed  Google Scholar 

  156. Aref-Eshghi, E. et al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am. J. Hum. Genet. 106, 356–370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Levy, M. A. et al. Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders. Hum. Mutat. 43, 1609–1628 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Care4Rare Canada Consortium (funded by Genome Canada and the Canadian Institutes of Health Research (CIHR) under grant OGI-0147) for providing the opportunity to collectively study undiagnosed rare diseases. K.M.B. was supported by a CIHR Foundation Grant (FDN-154279) and a Tier 1 Canada Research Chair in Rare Disease Precision Health.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kym M. Boycott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Helen V. Firth, Jennifer E. Posey and Marjan M. Weiss for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Atlas of Variant Effects: https://www.varianteffect.org

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/

dGTEx: https://dgtex.org/

ENCODE: https://www.encodeproject.org/

Gene Matcher: https://genematcher.org/

Matchmaker Exchange: https://www.matchmakerexchange.org/

OMIM: https://www.omim.org/

Undiagnosed Diseases Network: https://undiagnosed.hms.harvard.edu/

Glossary

Epigenomics

Genome-wide assessment of epigenetic marks, such as DNA methylation and histone modifications, or chromatin accessibility to determine their functional effect on gene expression. In the context of rare diseases, aberrant epigenetic patterns have been associated with disease in patients.

Exome sequencing

Selective sequencing of the coding portion of the genome.

Functional assays

Testing that aims to assess the effect of a variant on messenger RNA and/or protein function.

Gene panel

Selective sequencing of targeted regions of the genome to examine a specific set of genes associated with a particular rare disease or a group of related rare diseases.

Genome sequencing

Untargeted sequencing of the entire genome.

Germline variants

Variants beginning in the sperm or egg and present in all cells in the body.

Lipidomics

Assessment of a targeted subset or all lipid species in a specific specimen.

Matchmaking

Approach whereby researchers input their suspected novel disease gene and some basic information (for example, phenotype and zygosity) in an effort to identify unrelated patients with the same condition and variants in the same gene to support disease association.

Metabolomics

Assessment of a targeted subset or all metabolites in a specific specimen.

Multi-omics

Analysis in which multiple omics modalities, such as genomics, transcriptomics, epigenomics, proteomics and metabolomics, are analysed for a given sample.

Proteomics

Assessment of a targeted subset or all proteins in a specific specimen.

RNA sequencing

(RNA-seq). Assessment of all messenger RNAs in a sample aimed at assessing both expression levels and mRNA splicing.

Second-tier test

Testing performed to clarify the results of an initial genetic test.

Variants of unknown significance

(VUS). Genetic variants or mutations whose clinical significance or effect on health is uncertain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kernohan, K.D., Boycott, K.M. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-023-00683-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-023-00683-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing