Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer

Abstract

Surgical resection combined with systemic chemotherapy is the cornerstone of treatment for patients with localized pancreatic cancer. Upfront surgery is considered suboptimal in cases with extensive vascular involvement, which can be classified as either borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In these patients, FOLFIRINOX or gemcitabine plus nab-paclitaxel chemotherapy is currently used as preoperative chemotherapy and is eventually combined with radiotherapy. Thus, more patients might reach 5-year overall survival. Patient selection for chemotherapy, radiotherapy and subsequent surgery is based on anatomical, biological and conditional parameters. Current guidelines and clinical practices vary considerably regarding preoperative chemotherapy and radiotherapy, response evaluation, and indications for surgery. In this Review, we provide an overview of the clinical evidence regarding disease staging, preoperative therapy, response evaluation and surgery in patients with borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In addition, a clinical work-up is proposed based on the available evidence and guidelines. We identify knowledge gaps and outline a proposed research agenda.

Key points

  • Preoperative multi-agent chemotherapy (for example, FOLFIRINOX or gemcitabine plus nab-paclitaxel) is now routinely used in patients with borderline resectable pancreatic cancer (BRPC) or locally advanced pancreatic cancer (LAPC), both to obtain local and systemic control and to select suitable candidates for surgery.

  • Considerable variation exists among national and international guidelines and clinical practices regarding preoperative therapy in patients with BRPC or LAPC, including the type and duration of chemotherapy and the role, type, and timing of radiotherapy; a uniform, evidence-based international guideline with support from all relevant societies is needed.

  • Three randomized controlled trials reported improved outcomes with neoadjuvant chemotherapy or chemoradiotherapy compared with upfront surgery in patients with BRPC; more randomized trials assessing the effect of modern multi-agent chemotherapy and radiotherapy are needed and several are ongoing.

  • Response evaluation after preoperative chemotherapy and chemoradiotherapy is a major challenge as conventional cross-sectional imaging mostly underestimates the tumour response. Biological response evaluation is therefore advised (particularly a relative decrease of serum CA19-9). However, there is an urgent need for more accurate tumour markers.

  • Surgery after preoperative therapy in patients with BRPC and LAPC requires high-volume expertise for patient selection, intraoperative decision-making, extended resections and postoperative care; preoperative counselling and shared decision-making are crucial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Borderline resectable and locally advanced pancreatic tumours.
Fig. 2: Proposed clinical work-up for patients with BRPC and LAPC.

Similar content being viewed by others

References

  1. Siegel, R. L. et al. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  2. Rahib, L. et al. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open. 4, e214708 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mizrahi, J. D., Surana, R., Valle, J. W. & Shroff, R. T. et al. Pancreatic cancer. Lancet 395, 2008–2020 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Springfeld, C. et al. Neoadjuvant therapy for pancreatic cancer. Nat. Rev. Clin. Oncol. 20, 318–337 (2023).

    Article  PubMed  Google Scholar 

  5. Strobel, O. et al. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol. 16, 11–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Groot, V. P. et al. Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann. Surg. 267, 936–945 (2018).

    Article  PubMed  Google Scholar 

  7. Daamen, L. A. et al. Preoperative predictors for early and very early disease recurrence in patients undergoing resection of pancreatic ductal adenocarcinoma. HPB 24, 535–546 (2022).

    Article  PubMed  Google Scholar 

  8. Seelen, L. W. F. et al. Early recurrence after resection of locally advanced pancreatic cancer following induction therapy: an international multicenter study. Ann. Surg. 278, 118–126 (2023).

    Article  PubMed  Google Scholar 

  9. Neoptolemos, J. P. et al. Comparison of adjuvant gemcitabine and capecitrabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicenter, open-label, randomised, phase 3 trial. Lancet 389, 1011–1024 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Conroy, T. et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 379, 2395–2406 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Article  Google Scholar 

  13. Muller, P. C. et al. Neoadjuvant chemotherapy in pancreatic cancer: an appraisal of the current high-level evidence. Pharmacology 106, 143–153 (2020).

    Article  PubMed  Google Scholar 

  14. Brown, Z. J. & Cloyd, J. M. Trends in the utilization of neoadjuvant therapy for pancreatic ductal adenocarcinoma. J. Surg. Oncol. 123, 1432–1440 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Oba, A. et al. Neoadjuvant treatment in pancreatic cancer. Front. Oncol. 10, 245 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ratnayake, B. et al. Recurrence patterns for pancreatic ductal adenocarcinoma after upfront resection versus resection following neoadjuvant therapy: a comprehensive meta-analysis. J. Clin. Med. 9, 2132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sohal, D. P., Walsh, R. M., Ramanathan, R. K. & Khorana, A. A. Pancreatic adenocarcinoma: treating a systemic disease with systemic therapy. J. Natl Cancer Inst. 106, dju011 (2014).

    Article  PubMed  Google Scholar 

  18. Heinrich, S. et al. Opinions and use of neoadjuvant therapy for resectable, borderline resectable, and locally advanced pancreatic cancer: international survey and case-vignette study. BMC Cancer 19, 675 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reames, B. N. et al. Management of locally advanced pancreatic cancer: results of an international survey of current practice. Ann. Surg. 273, 1173–1181 (2021).

    Article  PubMed  Google Scholar 

  20. Khachfe, H. H., Habib, J. R., Nassour, I., Al Harthi, S. & Jamali, F. R. Borderline resectable and locally advanced pancreatic cancers: a review of definitions, diagnostics, strategies for treatment, and future directions. Pancreas 50, 1243–1249 (2021).

    Article  PubMed  Google Scholar 

  21. Takaori, K. et al. International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. Pancreatology 16, 14–27 (2016).

    Article  PubMed  Google Scholar 

  22. Tempero, M. A. et al. Pancreatic Adenocarcinoma, Version 1.2022, NCCN Clinical Practice Guidelines in Oncology. National Comprehensive Cancer Network https://www.nccn.org/home (2022).

  23. Vauthey, J. N. & Dixon, E. AHPBA/SSO/SSAT consensus conference on resectable and borderline resectable pancreatic cancer: rationale and overview of the conference. Ann. Surg. Oncol. 16, 1725–1726 (2009).

    Article  PubMed  Google Scholar 

  24. Das, P. et al. Pancreatic Adenocarcinoma. MD Anderson Cancer Center https://www.mdanderson.org/content/dam/mdanderson/documents/for-physicians/algorithms/cancer-treatment/ca-treatment-pancreatic-web-algorithm.pdf (2021).

  25. Katz, M. H. G. et al. Borderline resectable pancreatic cancer: need for standardization and methods for optimal clinical trial design. Ann. Surg. Oncol. 20, 2787–2795 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Japan Pancreas Society. General Rules for the Study of Pancreatic Cancer 7th edn (Kanehara & Co., Ltd, 2016).

  27. Lutz, M. P. et al. Gallen EORTC gastrointestinal cancer conference: consensus recommendations on controversial issues in the primary tratment of pancreatic cancer. Eur. J. Cancer 79, 41–49 (2017).

    Article  PubMed  Google Scholar 

  28. Wu, Y. H. A. et al. Selecting surgical candidates with locally advanced pancreatic cancer: a review for modern pancreatology. J. Gastrointest. Oncol. 12, 2475–2483 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bratlie, S. O., Wennerblom, J., Vilhav, C., Persson, J. & Rangelova, E. Resectable, borderline, and locally advanced pancreatic cancer — “the good, the bad, and the ugly” candidates for surgery? J. Gastrointest. Oncol. 12, 2450–2460 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Habib, J. R. & Wolfgang, C. L. Commentary: anatomic versus biologic resectability: the role of predictive biomarkers in guiding surgical management. Surgery 168, 1017–1018 (2020).

    Article  PubMed  Google Scholar 

  31. Khorana, A. A. et al. Potentially curable pancreatic cancer: american society of clinical oncology clinical practice guideline. J. Clin. Oncol. 34, 2541–2556 (2016).

    Article  PubMed  Google Scholar 

  32. Khorana, A. A. et al. Potentially curable pancreatic adenocaricnoma: ASCO clinical practice guideline update. J. Clin. Oncol. 37, 2082–2088 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Balaban, E. P. et al. Locally advanced, unresectable pancreatic cancer: american society of clinical oncology clinical practice guideline. J. Clin. Oncol. 34, 2654–2668 (2016).

    Article  PubMed  Google Scholar 

  34. Ducreux, M. et al. Cancer of the pancreas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26, v56–v68 (2015).

    Article  PubMed  Google Scholar 

  35. Pentheroudakis, G., ESMO Guidelines Committee. Recent eUpdates to the ESMO Clinical Practice Guidelines on hepatocellular carcinoma, cancer of the pancreas, soft tissue and visceral sarcomas, cancer of the prostate and gastric cancer. Ann. Oncol. 30, 1395–1397 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Neuzillet, C. et al. Pancreatic cancer: French clinical practice guidelines for diagnosis, treatment and follow-up (SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO, ACHBT, AFC). Dig. Liver Dis. 50, 1257–1271 (2018).

    Article  PubMed  Google Scholar 

  37. Katz, M. H. G. et al. Borderline resectable pancreatic cancer: the importance of this emerging stage of disease. J. Am. Coll. Surg. 206, 833–848 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Isaji, S. et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 18, 2–11 (2018).

    Article  PubMed  Google Scholar 

  39. Anger, F. et al. Impact of borderline resectability in pancreatic head cancer on patient survival: biology matters according to the new international consensus criteria. Ann. Surg. Oncol. 28, 2325–2336 (2021).

    Article  PubMed  Google Scholar 

  40. Tzeng, C. W. et al. Morbidity and mortality after pancreaticoduodenectomy in patients with borderline resectable type C clinical classification. J. Gastrointest. Surg. 18, 146–156 (2014).

    Article  PubMed  Google Scholar 

  41. Tsai, S. et al. Multimodality therapy in patients with borderline resectable or locally advanced pancreatic cancer: importance of locoregional therapies for a systemic disease. J. Oncol. Pract. 12, 915–923 (2016).

    Article  PubMed  Google Scholar 

  42. Chatzizacharias, N. A. et al. Locally advanced pancreas cancer: staging and goals of therapy. Surgery 163, 1053–1062 (2018).

    Article  PubMed  Google Scholar 

  43. Fromer, M. W. et al. An improved staging system for locally advanced pancreatic cancer: a critical need in the multidisciplinary era. Ann. Surg. Oncol. 28, 6201–6210 (2021).

    Article  PubMed  Google Scholar 

  44. Inoue, Y. et al. Radical resection for locally advanced pancreatic cancers in the era of new neoadjuvant therapy - arterial resection, arterial divestment and total pancreatectomy. Cancers 13, 1818 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gemenetzis, G. et al. Anatomic criteria determine resectability in locally advanced pancreatic cancer. Ann. Surg. Oncol. 29, 401–414 (2022).

    Article  PubMed  Google Scholar 

  46. Vernerey, D. et al. Prognostic nomogram and score to predict overall survival in locally advanced untreated pancreatic cancer (PROLAP). Br. J. Cancer 115, 281–289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi, S. H., Park, S. W. & Seong, J. A nomogram for predicting survival of patients with locally advanced pancreatic cancer treated with chemoradiotherapy. Radiother. Oncol. 129, 340–346 (2018).

    Article  PubMed  Google Scholar 

  48. Ishii, N. et al. Proposal of predictive model on survival in unresectable pancreatic cancer receiving systemic chemotherapy. J. Cancer 11, 1223–1230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tong, Z. et al. Development, validation and comparison of artificial neural network models and logistic regression models predicting survival of unresectable pancreatic cancer. Front. Bioeng. Biotechnol. 8, 196 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hwang, H. K. et al. A nomogram to preoperatively predict 1-year disease-specific survival in resected pancreatic cancer following neoadjuvant chemoradiation therapy. Chin. J. Cancer Res. 32, 105–114 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Brada, L. J. H. et al. Pedicting overall survival and resection in patients with locally advanced pancreatic cancer treated with FOLFIRINOX: development and internal validation of two nomograms. J. Surg. Oncol. 124, 589–597 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, X. et al. Development and validation of multicenter predictive nomograms for locally advanced pancreatic cancer after chemoradiotherapy. Front. Oncol. 11, 688576 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ren, W., Xourafas, D., Ashley, S. W. & Clancy, T. E. Predicting surgical margins in patients with borderline resectable and locally advanced pancreatic cancer undergoing resection. Am. Surg. 88, 2899–2906 (2022).

    Article  PubMed  Google Scholar 

  54. Oba, A. et al. Prognosis based definition of resectability in pancreatic cancer: a road map to new guidelines. Ann. Surg. 275, 175–181 (2022).

    Article  PubMed  Google Scholar 

  55. Shibuki, T. et al. Prognostic nomogram for patients with unresectable pancreatic cancer treated with gemcitabine plus nab-paclitaxel or FOLFIRINOX: a post-hoc analysis of a multicenter retrospective study in Japan (NAPOLEON study). BMC Cancer 22, 19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Habib, J. R. et al. Surgical decision making in pancreatic ductal adenocarcinoma: modeling prognosis following pancreatectomy in the era of induction and neoadjuvant chemotherapy. Ann. Surg. 277, 151–158 (2023).

    Article  PubMed  Google Scholar 

  57. Lu, Z. et al. Identifying optimal candidates for tumor resection among borderline and locally advanced pancreatic cancer: a population-based predictive model. Pancreatology 22, 286–293 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Tanaka, M. et al. Induction chemotherapy with FOLFIRINOX for locally advanced pancreatic cancer: a simple scoring system to predict effect and prognosis. Ann. Surg. Oncol. 30, 2401–2408 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Janssen, Q. P. et al. Neoadjuvant FOLFIRINOX in patients with borderline resectable pancreatic cancer: a systematic review and patient-level meta-analysis. J. Natl Cancer Inst. 111, 782–794 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Damm, M. et al. Efficacy and safety of neoadjuvant gemcitabine plus nab-paclitaxel in borderline resectable and locally advanced pancreatic cancer — a systematic review and meta-analysis. Cancers 13, 4326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jang, J. Y. et al. Oncological benefits of neoadjuvant chemoradiation with gemcitabine versus upfront surgery in patients with borderline resectable pancreatic cancer: a prospective, randomized, open-label, multicenter phase 2/3 trial. Ann. Surg. 268, 215–222 (2018).

    Article  PubMed  Google Scholar 

  62. Versteijne, E. et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: results of the Dutch randomized phase III PREOPANC trial. J. Clin. Oncol. 38, 1763–1773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Versteijne, E. et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: long-term results of the dutch randomized PREOPANC trial. J. Clin. Oncol. 40, 1220–1230 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Ghaneh, P. et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 8, 157–168 (2023).

    Article  PubMed  Google Scholar 

  65. Yamaguchi, J. et al. Results of a phase II study on the use of neoadjuvant chemotherapy (FOLFIRINOX or GEM/nab-PTX) for borderline-resectable pancreatic cancer (NUPAT-01). Ann. Surg. 275, 1043–1049 (2022).

    Article  PubMed  Google Scholar 

  66. Oar, A. et al. AGITG MASTERPLAN: a randomised phase II study of modified FOLFIRINOX alone or in combination with stereotactic body radiotherapy for patients with high-risk and locally advanced pancreatic cancer. BMC Cancer 21, 936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. World Health Organization. Effect of Stereotactic Ablative Body Radiotherapy for Unresectable Pancreatic Cancer with Endoscopic Ultrasound Inserted Fiducial Markers and Concurrent Chemotherapy on Survival Rates: SUPER Trial. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=ACTRN12617001571369 (2017).

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05083247 (2023).

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02676349 (2023).

  70. World Health Organization. The Utility of Preoperative Chemoradiotherapy (Gem/nab-PTX+RT) and Chemotherapy (Gem/nab-PTX) for Borderline Resectable Pancreatic Cancer: Multicenter Randomized Phase II Trial — CSGO-HBP-021. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=JPRN-jRCTs051200130 (2021).

  71. World Health Organization. Phase II Study of Neoadjuvant FOLFIRINOX or Nab-Paclitaxel With Gemcitabine for Borderline Resectable Pancreatic Cancer — Phase II Study of Neoadjuvant FOLFIRINOX or Nab-Paclitaxel With Gemcitabine for Borderline Resectable Pancreatic Cancer. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=JPRN-UMIN000017718 (2015).

  72. World Health Organization. Clinical Study of Neoadjuvant Therapy Used in Borderline Resectable Pancreatic Cancer. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR-INR-17012555 (2017).

  73. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04617821 (2022).

  74. Janssen, Q. P. et al. Total neoadjuvant FOLFIRINOX versus neoadjuvant gemcitabine-based chemoradiotherapy and adjuvant gemcitabine for resectable and borderline resectable pancreatic cancer (PREOPANC-2 trial): study protocol for a nationwide multicenter randomized controlled trial. BMC Cancer 21, 300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04793932 (2021).

  76. Cascinu, S. et al. Nab-paclitaxel/gemcitabine combination is more effective than gemcitabine alone in locally advanced, unresectable pancreatic cancer — a GISCAD phase II randomized trial. Eur. J. Cancer 148, 422–429 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Su, Y. Y. et al. A phase II randomised trial of induction chemotherapy followed by concurrent chemoradiotherapy in locally advanced pancreatic cancer: the Taiwan Cooperative Oncology Group T2212 study. Br. J. Cancer 126, 1018–1026 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Dehbi, H. M. & Hackshaw, A. Sample size calculation in randomised phase II selection trials using a margin of practical equivalence. Trials 21, 301 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ozaka, M. et al. A randomised phase II study of modified FOLFIRINOX versus gemcitabine plus nab-paclitaxel for locally advanced pancreatic cancer (JCOG1407). Eur. J. Cancer 181, 135–144 (2022).

    Article  PubMed  Google Scholar 

  80. Suker, M. et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncol. 17, 801–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, Z. et al. Meta-analysis of FOLFIRINOX-based neoadjuvant therapy for locally advanced pancreatic cancer. Medicine 100, e24068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04986930 (2023).

  83. World Health Organization. A Randomized Phase III Study Evaluating Modified FOLFIRINOX (mFFX) With or Without Stereotactic Body Radiotherapy (SBRT) in the Treatment of Locally Advanced Pancreatic Cancer. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=NCT01926197 (2013).

  84. National Institutes of Health. Randomized Phase 2 Study of mFOLFIRINOX With Or Without Stereotactic Body Radiotherapy in Patients With Locally Advanced Pancreatic Adenocarcinoma. NIH https://cris.nih.go.kr/cris/search/detailSearch.do/18961 (2021).

  85. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04998552 (2023).

  86. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03704662 (2023).

  87. Tuli, R., David, J., Lobaugh, S., Zhang, Z. & O’Reilly, E. M. Duration of therapy for locally pancreatic advanced cancer: does it matter? Cancer Med. 9, 4572–4580 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lee, M. et al. Impact of conversion surgery on survival in locally advanced pancreatic cancer patients treated with FOLFIRINOX chemotherapy. J. Hepatobiliary Pancreat. Sci. 30, 111–121 (2023).

    Article  PubMed  Google Scholar 

  89. Michelakos, T. et al. Predictors of resectability and survival in patients with borderline and locally advanced pancreatic cancer who underwent neoadjuvant treatment with FOLFIRINOX. Ann. Surg. 269, 733–740 (2019).

    Article  PubMed  Google Scholar 

  90. Alva-Ruiz, R. et al. Neoadjuvant chemotherapy switch in borderline resectable/locally advanced pancreatic cancer. Ann. Surg. Oncol. 29, 1579–1591 (2022).

    Article  PubMed  Google Scholar 

  91. Vreeland, T. J. et al. Benefit of gemcitabine/nab-paclitaxel rescue of patients with borderline resectable or locally advanced pancreatic adenocarcinoma after early failure of FOLFIRINOX. Pancreas 48, 837–843 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maggino, L. et al. Outcomes of primary chemotherapy for borderline resectable and locally advanced pancreatic ductal adenocarcinoma. JAMA Surg. 154, 932–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Brown, Z. J. et al. Surgical resection rates after neoadjuvant therapy for localized pancreatic ductal adenocarcinoma: meta-analysis. Br. J. Surg. 110, 34–42 (2022).

    Article  PubMed  Google Scholar 

  94. Kunzmann, V. et al. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): a multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 6, 128–138 (2021).

    Article  PubMed  Google Scholar 

  95. Williet, N. et al. Gemcitabine/nab-paclitaxel versus FOLFIRINOX in locally advanced pancreatic cancer: a european multicenter study. Cancers 13, 2797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yoo, C. et al. FOLFIRINOX in borderline resectable and locally advanced unresectable pancreatic adenocarcinoma. Ther. Adv. Med. Oncol. 12, 1758835920953294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hall, W. A. et al. Value of neoadjuvant radiation therapy in the management of pancreatic adenocarcinoma. J. Clin. Oncol. 39, 3773–3777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Versteijne, E. et al. Neoadjuvant treatment for resectable and borderline resectable pancreatic cancer: chemotherapy or chemoradiotherapy? Front. Oncol. 11, 744161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Palta, M. et al. Radiation therapy for pancreatic cancer: executive summary of an ASTRO clinical practice guideline. Pract. Radiat. Oncol. 9, 322–332 (2019).

    Article  PubMed  Google Scholar 

  100. Prasad, S. et al. Intensity modulated radiation therapy reduces gastrointestinal toxicity in locally advanced pancreas cancer. Pract. Radiat. Oncol. 6, 78–85 (2016).

    Article  PubMed  Google Scholar 

  101. Tchelebi, L. T. et al. Conventionally fractionated radiation therapy versus stereotactic body radiation therapy for locally advanced pancreatic cancer (CRiSP): an international systematic rview and meta-analysis. Cancer 126, 2120–2131 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Hill, C. S. et al. neoadjuvant stereotactic body radiotherapy after upfront chemotherapy improves pathologic outcomes compared with chemotherapy alone for patients with borderline resectable or locally advanced pancreatic adenocarcinoma without increasing perioperative toxicity. Ann. Surg. Oncol. 29, 2456–2468 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ma, S. J. et al. Association of survival with stereotactic body radiation therapy following induction chemotherapy for unresected locally advanced pancreatic cancer. J. Radiother. Pract. 21, 403–410 (2022).

    Article  PubMed  Google Scholar 

  104. Amini, A. et al. Patterns of care for locally advanced pancreatic adenocarcinoma using the national cancer database. Pancreas 46, 904–912 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Krishnan, S. et al. Focal radiation therapy dose escalation improves overall survival in locally advanced pancreatic cancer patients receiving induction chemotherapy and consolidative chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 94, 755–765 (2016).

    Article  PubMed  Google Scholar 

  106. Ng, S. P. & Koay, E. J. Current and emerging radiotherapy strategies for pancreatic adenocarcinoma: stereotactic, intensity modulated and particle radiotherapy. Ann. Pancreat. Cancer 1, 22 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chapman, B. C. et al. Perioperative outcomes and survival following neoadjuvant stereotactic body radiation therapy (SBRT) versus intensity-modulated radiation therapy (IMRT) in pancreatic adenocarcinoma. J. Surg. Oncol. 117, 1073–1083 (2018).

    Article  PubMed  Google Scholar 

  108. Abi Jaoude, J. et al. Stereotactic versus conventional radiation therapy for patients with pancreatic cancer in the modern era. Adv. Radiat. Oncol. 6, 100763 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hammel, P. et al. Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: the LAP07 randomized clinical trial. JAMA 315, 1844–1853 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Katz, M. H. G. et al. Efficacy of preoperative mFOLFIRINOX vs mFOLFIRINOX plus hypofractionated radiotherapy for borderline resectable adenocarcinoma of the pancreas: the A021501 phase 2 randomized clinical trial. JAMA Oncol. 8, 1263–1270 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Katz, M. H. G., Herman, J. M. & O’Reilly, E. M. Neoadjuvant mFOLFIRINOX vs mFOLFIRINOX plus radiotherapy in patients with borderline resectable pancreatic cancer-the A021501 trial-reply. JAMA Oncol. 9, 277–278 (2023).

    Article  PubMed  Google Scholar 

  112. Chopra, A. et al. Outcomes of neoadjuvant chemotherapy versus chemoradiation in localized pancreatic cancer: a case-control matched analysis. Ann. Surg. Oncol. 28, 3779–3788 (2021).

    Article  PubMed  Google Scholar 

  113. Vidri, R. J., Vogt, A. O., Macgillivray, D. C., Bristol, I. J. & Fitzgerald, T. L. Better defining the role of total neoadjuvant radiation: changing paradigms in locally advanced pancreatic cancer. Ann. Surg. Oncol. 26, 3701–3708 (2019).

    Article  PubMed  Google Scholar 

  114. Nagakawa, Y. et al. Clinical impact of neoadjuvant chemotherapy and chemoradiotherapy in borderline resectable pancreatic cancer: analysis of 884 patients at facilities specializing in pancreatic surgery. Ann. Surg. Oncol. 26, 1629–1636 (2019).

    Article  PubMed  Google Scholar 

  115. Janssen, Q. P. et al. Neoadjuvant radiotherapy after (m)FOLFIRINOX for borderline resectable pancreatic adenocarcinoma: a TAPS consortium study. J. Natl Compr. Canc. Netw. 20, 783–791.e1 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pietrasz, D. et al. How does chemoradiotherapy following induction FOLFIRINOX improve the results in resected borderline or locally advanced pancreatic adenocarcinoma? An AGEO-FRENCH multicentric cohort. Ann. Surg. Oncol. 26, 109–117 (2019).

    Article  PubMed  Google Scholar 

  117. Auclin, E. et al. Role of FOLFIRINOX and chemoradiotherapy in locally advanced and borderline resectable pancreatic adenocarcinoma: update of the AGEO cohort. Br. J. Cancer 124, 1941–1948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ryckman, J. M. et al. The timing and design of stereotactic radiotherapy approaches as a part of neoadjuvant therapy in pancreatic cancer: is it time for change? Clin. Transl. Radiat. Oncol. 28, 124–128 (2021).

    PubMed  PubMed Central  Google Scholar 

  119. Torgeson, A. et al. Multiagent induction chemotherapy followed by chemoradiation is associated with improved survival in locally advanced pancreatic cancer. Cancer 123, 3816–3824 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. De Simoni, O. et al. Could total neoadjuvant therapy followed by surgical resection be the new standard of care in pancratic cancer? A systematic review and meta-analysis. J. Clin. Med. 11, 812 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Faisal, F. et al. Longer course of induction chemotherapy followed by chemoradiation favors better survival outcomes for patients with locally advanced pancreatic cancer. Am. J. Clin. Oncol. 39, 18–26 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van der Geest, L. G. et al. Nationwide outcomes in patients undergoing surgical exploration without resection for pancreatic cancer. Br. J. Surg. 104, 1568–1577 (2017).

    Article  PubMed  Google Scholar 

  123. Chawla, A. et al. Prospective phase II trials validate the effect of neoadjuvant chemotherapy on pattern of recurrence in pancreatic adenocarcinoma. Ann. Surg. 276, e502–e509 (2022).

    Article  PubMed  Google Scholar 

  124. Dholakia, A. S. et al. Resection of borderline resectable pancreatic cancer after neoadjuvant chemoradiation does not depend on improved radiograpic appearance of tumor-vessel relationship. J. Radiat. Oncol. 2, 413–424 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ferrone, C. R. et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann. Surg. 261, 12–17 (2015).

    Article  PubMed  Google Scholar 

  126. Park, S. et al. CT in the prediction of margin-negative resection in pancreatic cancer following neoadjuvant treatment: a systematic review and meta-analysis. Eur. Radiol. 31, 3383–3393 (2021).

    Article  PubMed  Google Scholar 

  127. Yang, H. K. et al. Systematic review and meta‐analysis of diagnostic performance of CT imaging for assessing resectability of pancreatic ductal adenocarcinoma after neoadjuvant therapy: importance of CT criteria. Abdom. Radiol. 46, 5201–5217 (2021).

    Article  Google Scholar 

  128. Soloff, E. et al. Imaging assessment of pancreatic cancer resectability after neoadjuvant therapy: ajr expert panel narrative review. AJR Am. J. Roentgenol. 218, 570–581 (2022).

    Article  PubMed  Google Scholar 

  129. Oba, A. et al. New criteria of resectability for pancreatic cancer: a position paper by the Japanese Society of Hepato-Biliary-Pancreatic Surgery (JSHBPS). J. Hepatobiliary Pancreat. Sci. 29, 725–731 (2022).

    Article  PubMed  Google Scholar 

  130. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Perri, G. et al. Response and survival associated with first-line FOLFIRINOX vs gemcitabine and nab-paclitaxel chemotherapy for localized pancreatic ductal adenocarcinoma. JAMA Surg. 155, 832–839 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ahmed, S. A. et al. Preoperative CT staging of borderline pancreatic cancer patients after neoadjuvant treatment: accuracy in the prediction of vascular invasion and resectability. Abdom. Radiol. 46, 280–289 (2021).

    Article  Google Scholar 

  133. Ahmed, S. A., Atta, H. & Hassan, R. A. The utility of multi-detector computed tomography criteria after neoadjuvant therapy in borderline resectable pancreatic cancer: prospective, bi-institutional study. Eur. J. Radiol. 139, 109685 (2021).

    Article  PubMed  Google Scholar 

  134. Noda, Y. et al. Arterial involvement and resectability scoring system to predict R0 resection in patients with pancreatic ductal adenocarcinoma treated with neoadjuvant chemoradiation therapy. Eur. Radiol. 32, 2470–2480 (2022).

    Article  PubMed  Google Scholar 

  135. Habib, J. R. et al. Periadventitial dissection of the superior mesenteric artery for locally advanced pancreatic cancer: surgical planning with the “halo sign” and “string sign”. Surgery 169, 1026–1031 (2021).

    Article  PubMed  Google Scholar 

  136. Stoop, T. F. et al. Added value of 3T MRI and the MRI-halo sign in assessing resectability of locally advanced pancreatic cancer following induction chemotherapy (IMAGE-MRI): prospective pilot study. Langenbecks Arch. Surg. 407, 3487–3499 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Giannone, F. et al. Resectability of pancreatic cancer is in the eye of the observer — a multicenter, blinded, prospective assessment of interobserver agreement on NCCN resectability status criteria. Ann. Surg. Open 2, e087 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kim, H. Y. et al. Tumor resectability and response on CT following neoadjuvant therapy for pancreatic cancer: inter-observer agreement study. Eur. Radiol. 32, 3799–3807 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Heckler, M. & Hackert, T. Surgery for locally advanced pancreatic ductal adenocarcinoma - is it only about the vessels? J. Gastrointest. Oncol. 12, 2503–2511 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Committee of the Korean Clinical Practice Guideline for Pancreatic Cancer and National Cancer Center, Korea. Korean Clinical Practice Guideline for Pancreatic Cancer 2021: a summary of evidence-based, multidisciplinary diagnostic and therapeutic approaches. Pancreatology 21, 1326–1341 (2021).

    Article  Google Scholar 

  141. Ballehaninna, U. K. & Chamberlain, R. S. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J. Gastrointest. Oncol. 3, 105–119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bergquist, J. R. et al. Carbohydrate antigen 19-9 elevation in anatomically resectable, early stage pancreatic cancer is independently associated with decreased overall survival and an indication for neoadjuvant therapy: a national cancer database study. J. Am. Coll. Surg. 223, 52–65 (2016).

    Article  PubMed  Google Scholar 

  143. Kinny-Köster, B., Habib, J., Wolfgang, C. L., He, J. & Javed, A. A. Favorable tumor biology in locally advanced pancreatic cancer — beyond CA19-9. J. Gastrointest. Oncol. 12, 2484–2494 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Aldakkak, M. et al. Pre-treatment carbohydrate antigen 19-9 does not predict the response to neoadjuvant therapy in patients with localized pancreatic cancer. HPB 17, 942–952 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Combs, S. E. et al. Prognostic impact of CA 19-9 on outcome after neoadjuvant chemoradiation in patients with locally advanced pancreatic cancer. Ann. Surg. Oncol. 21, 2801–2807 (2014).

    Article  PubMed  Google Scholar 

  146. Tzeng, C. W. et al. Serum carbohydrate antigen 19-9 represents a marker of response to neoadjuvant therapy in patients with borderline resectable pancreatic cancer. HPB 16, 430–438 (2014).

    Article  PubMed  Google Scholar 

  147. Tsai, S. et al. Importance of normalization of CA19-9 levels following neoadjuvant therapy in patients with localized pancreatic cancer. Ann. Surg. 271, 740–747 (2020).

    Article  PubMed  Google Scholar 

  148. Newhook, T. E. et al. Prognosis associated with CA19-9 response dynamics and normalization during neoadjuvant therapy in resected pancreatic adenocarcinoma. Ann. Surg. 277, 484–490 (2023).

    Article  PubMed  Google Scholar 

  149. Maggino, L. et al. CA19.9 response and tumor size predict recurrence following post-neoadjuvant pancreatectomy in initially resectable and borderline resectable pancreatic ductal adenocarcinoma. Ann. Surg. Oncol. 30, 207–219 (2023).

    Article  PubMed  Google Scholar 

  150. Hartlapp, I. et al. Prognostic and predictive value of CA19-9 in locally advanced pancreatic cancer treated with multi-agent induction chemotherapy: results from a prospective, multicenter phase II trial (NEOLAP-AIO-PAK-0113). ESMO Open 7, 100552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Heger, U. et al. Induction chemotherapy in pancreatic cancer: CA 19-9 may predict resectability and survival. HPB 22, 224–232 (2020).

    Article  PubMed  Google Scholar 

  152. Ye, C. et al. The prognostic value of CA19-9 response after neoadjuvant therapy in patients with pancreatic cancer: a systematic review and pooled analysis. Cancer Chemother. Pharmacol. 86, 731–740 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Lee, W. et al. Reduced and normalized carbohydrate antigen 19-9 concentrations after neoadjuvant chemotherapy have comparable prognostic performance in patients with borderline resectable and locally advanced pancreatic cancer. J. Clin. Med. 9, 1477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. van Veldhuisen, E. et al. Added value of CA19-9 response in predicting resectability of locally advanced pancreatic cancer following induction chemotherapy. HPB 20, 605–611 (2018).

    Article  PubMed  Google Scholar 

  155. Rose, J. B. et al. Sustained carbohydrate antigen 19-9 response to neoadjuvant chemotherapy in borderline resectable pancreatic cancer predicts progression and survival. Oncologist 25, 859–866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Reni, M. et al. Selecting patients for resection after primary chemotherapy for non-metastatic pancreatic adenocarcinoma. Ann. Oncol. 28, 2786–2792 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Diab, H. M. H., Smith, H. G., Jensen, K. K. & Jørgensen, L. N. The current role of blood-based biomarkers in surgical decision-making in patients with localised pancreatic cancer: a systematic review. Eur. J. Cancer 154, 73–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Yang, Y. et al. Guidelines for the diagnosis and treatment of pancreatic cancer in China (2021). J. Pancreatol. 4, 49–66 (2021).

    Article  Google Scholar 

  159. Luo, G. et al. Potential biomarkers in lewis negative patients with pancreatic cancer. Ann. Surg. 265, 800–805 (2017).

    Article  PubMed  Google Scholar 

  160. Omiya, K. et al. Serum DUPAN-2 could be an alternative biological marker for CA19-9 non-secretors with pancreatic cancer. Ann. Surg. https://doi.org/10.1097/SLA.0000000000005395 (2022).

  161. Meng, Q. et al. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: a systematic review and meta-analysis. OncoTargets Ther. 10, 4591–4598 (2017).

    Article  Google Scholar 

  162. Kato, H. et al. Role of serum carcinoma embryonic antigen (CEA) level in localized pancreatic adenocarcinoma: CEA level before operation is a significant prognostic indicator in patients with locally advanced pancreatic cancer treated with neoadjuvant therapy followed by surgical resection: a retrospective analysis. Ann. Surg. 275, e698–e707 (2022).

    Article  PubMed  Google Scholar 

  163. Wang, Z. J. et al. Therapeutic response assessment in pancreatic ductal adenocarcinoma: society of abdominal radiology review paper on the role of morphological and functional imaging techniques. Abdom. Radiol. 45, 4273–4289 (2020).

    Article  Google Scholar 

  164. Marchegiani, G. et al. Surgery after FOLFIRINOX treatment for locally advanced and borderline resectable pancreatic cancer: increase in tumour attenuation on CT correlates with R0 resection. Eur. Radiol. 28, 4265–4273 (2018).

    Article  PubMed  Google Scholar 

  165. Kim, S. S., Lee, S., Lee, H. S., Bang, S. & Park, M. S. Prognostic factors in patients with locally advanced or borderline resectable pancreatic ductal adenocarcinoma: chemotherapy vs. chemoradiotherapy. Abdom. Radiol. 46, 655–666 (2021).

    Article  Google Scholar 

  166. Okusaka, T. et al. Clinical practice guidelines for pancreatic cancer 2019 from the japan pancreas society: a synopsis. Pancreas 49, 326–335 (2020).

    Article  PubMed  Google Scholar 

  167. O’Reilly, D. et al. Diagnosis and management of pancreatic cancer in adults: a summary of guidelines from the UK National Institute for Health and Care Excellence. Pancreatology 18, 962–970 (2018).

    Article  PubMed  Google Scholar 

  168. Ghidini, M. et al. The role of positron emission tomography/computed tomography (PET/CT) for staging and disease response assessment in localized and locally advanced pancreatic cancer. Cancers 13, 4155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Evangelista, L. et al. The role of FDG PET/CT or PET/MRI in assessing response to neoadjuvant therapy for patients with borderline or resectable pancreatic cancer: a systematic literature review. Ann. Nucl. Med. 35, 767–776 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Abdelrahman, A. M. et al. FDG-PET predicts neoadjuvant therapy response and survival in borderline resectable/locally advanced pancreatic adenocarcinoma. J. Natl Compr. Canc. Netw. 20, 1023–1032 (2022).

    Article  PubMed  Google Scholar 

  171. Akita, H. et al. FDG-PET predicts treatment efficacy and surgical outcome of pre-operative chemoradiation therapy for resectable and borderline resectable pancreatic cancer. Eur. J. Surg. Oncol. 43, 1061–1067 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Akita, H. et al. Difference between carbohydrate antigen 19-9 and fluorine-18 fluorodeoxyglucose positron emission tomography in evaluating the treatment efficacy of neoadjuvant treatment in patients with resectable and borderline resectable pancreatic ductal adenocarcinoma: results of a dual-center study. Ann. Gastroenterol. Surg. 5, 381–389 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lee, W. et al. Metabolic activity by FDG-PET/CT after neoadjuvant chemotherapy in borderline resectable and locally advanced pancreatic cancer and association with survival. Br. J. Surg. 109, 61–70 (2021).

    Article  PubMed  Google Scholar 

  174. Barnes, C. A. et al. Value of pretreatment 18F-fluorodeoxyglucose positron emission tomography in patients with localized pancreatic cancer treated with neoadjuvant therapy. Front. Oncol. 10, 500 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Chang, J. S. et al. Clinical usefulness of 18F-fluorodeoxyglucose-positron emission tomography in patients with locally advanced pancreatic cancer planned to undergo concurrent chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 90, 126–133 (2014).

    Article  PubMed  Google Scholar 

  176. Padhani, A. R. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11, 102–125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Thoeny, H. C. & Ross, B. D. Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J. Magn. Reson. Imaging 32, 2–16 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  178. van Roessel, S. et al. Scoring of tumour response after neoadjuvant therapy in resected pancreatic cancer: systematic review. Br. J. Surg. 108, 119–127 (2021).

    Article  PubMed  Google Scholar 

  179. Murata, Y. et al. Clinical significance and predictors of complete or near-complete histological response to preoperative chemoradiotherapy in patients with localized pancreatic ductal adenocarcinoma. Pancreatology 21, 1482–1490 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Wittmann, D. et al. Impact of neoadjuvant chemoradiation on pathologic response in patients with localized pancreatic cancer. Front. Oncol. 10, 460 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Truty, M. J. et al. Factors predicting response, perioperative outcomes, and survival following total neoadjuvant therapy for borderline/locally advanced pancreatic cancer. Ann. Surg. 273, 341–349 (2021).

    Article  PubMed  Google Scholar 

  182. Sell, N. M. et al. Evaluation of pathologic response on overall survival after neoadjuvant therapy in pancreatic ductal adenocarcinoma. Pancreas 49, 897–903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Maeda, S. et al. Pathological treatment response has different prognostic implications for pancreatic cancer patients treated with neoadjuvant chemotherapy or chemoradiotherapy. Surgery 171, 1379–1387 (2022).

    Article  PubMed  Google Scholar 

  184. Antolino, L. et al. Is complete pathological response in pancreatic cancer overestimated? A systematic review of prospective studies. J. Gastrointest. Surg. 24, 2336–2348 (2020).

    Article  Google Scholar 

  185. Cloyd, J. M. et al. Pathological complete response following neoadjuvant therapy for pancreatic ductal adenocarcinoma: defining the incidence, predictors, and outcomes. HPB 22, 1569–1576 (2020).

    Article  PubMed  Google Scholar 

  186. Barrak, D. et al. Total neoadjuvant therapy for pancreatic adenocarcinoma increases probability for a complete pathologic response. Eur. J. Surg. Oncol. 48, 1356–1361 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. He, J. et al. Is a pathological complete response following neoadjuvant chemoradiation associated with prolonged survival in patients with pancreatic cancer. Ann. Surg. 268, 1–8 (2018).

    Article  PubMed  Google Scholar 

  188. Blair, A. B. et al. Recurrence in patients achieving pathological complete response after neoadjuvant treatment for advanced pancreatic cancer. Ann. Surg. 274, 162–169 (2021).

    Article  PubMed  Google Scholar 

  189. Janssen, B. V. et al. Histopathological tumour response scoring in resected pancreatic cancer following neoadjuvant therapy: international interobserver study (ISGPP-1). Br. J. Surg. 110, 67–75 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Janssen, B. V. et al. Amsterdam international consensus meeting: tumor response scoring in the pathology assessment of resected pancreatic cancer after neoadjuvant therapy. Mod. Pathol. 34, 4–12 (2021).

    Article  PubMed  Google Scholar 

  191. Janssen, B. V. et al. Artificial intelligence-based segmentation of residual tumor in histopathology of pancreatic cancer after neoadjuvant treatment. Cancers 13, 5089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sandini, M. et al. Association between changes in body composition and neoadjuvant tratment for pancreatic cancer. JAMA Surg. 153, 809–815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Griffin, O. M. et al. Characterising the impact of body composition change during neoadjuvant chemotherapy for pancreatic cancer. Pancreatology 19, 850–857 (2019).

    Article  PubMed  Google Scholar 

  194. Weniger, M. et al. Respect — a multicenter retrospective study on preoperative chemotherapy in locally advanced and borderline resectable pancreatic cancer. Pancreatology 20, 1131–1138 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Brada, L. J. H. et al. Survival benefit associated with resection of locally advanced pancreatic cancer after upfront FOLFIRINOX versus FOLFIRINOX only: multicenter propensity score-matched analysis. Ann. Surg. 274, 729–735 (2021).

    Article  PubMed  Google Scholar 

  196. Macedo, F. I. et al. Survival outcomes associated with clinical and pathological response following neoadjuvant FOLFIRINOX or gemcitabine/nab-paclitaxel chemotherapy in resected pancreatic cancer. Ann. Surg. 270, 400–413 (2019).

    Article  PubMed  Google Scholar 

  197. Rangelova, E. et al. Surgery improves survival after neoadjuvant therapy for borderline and locally advanced pancreatic cancer: a single institution experience. Ann. Surg. 273, 579–586 (2021).

    Article  PubMed  Google Scholar 

  198. Janssen, Q. P. et al. FOLFIRINOX as initial treatment for localized pancreatic adenocarcinoma: a retrospective analysis by the Trans-Atlantic Pancreatic Surgery Consortium. J. Natl Cancer Inst. 114, 695–703 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. De Rosa, A., Cameron, I. C. & Gomez, D. Indications for staging laparoscopy in pancreatic cancer. HPB 18, 13–20 (2016).

    Article  PubMed  Google Scholar 

  200. Takadate, T. et al. Staging laparoscopy is mandatory for the treatment of pancreatic cancer to avoid missing radiologically negative metastases. Surg. Today 51, 686–694 (2021).

    Article  PubMed  Google Scholar 

  201. Suker, M. et al. Yield of staging laparoscopy before treatment of locally advanced pancreatic cancer to detect occult metastases. Eur. J. Surg. Oncol. 45, 1906–1911 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Fong, Z. V. et al. Reappraisal of staging laparoscopy for patients with pancreatic adenocarcinoma: a contemporary analysis of 1001 patients. Ann. Surg. Oncol. 24, 3203–3211 (2017).

    Article  PubMed  Google Scholar 

  203. Gemenetzis, G. et al. Incidence and risk factors for abdominal occult metastatic disease in patients with pancreatic adenocarcinoma. J. Surg. Oncol. 118, 1277–1284 (2018).

    Article  PubMed  Google Scholar 

  204. Sakaguchi, T. et al. A simple risk score for detecting radiological occult metastasis in patients with resectable or borderline resectable pancreatic ductal adenocarcinoma. J. Hepatobiliary Pancreat. Sci. 29, 262–270 (2022).

    Article  PubMed  Google Scholar 

  205. Oba, A. et al. Staging laparoscopy for pancreatic cancer using intraoperative ultrasonography and fluoresence imaging: the SLING trial. Br. J. Surg. 108, 115–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Peng, J. S. et al. Diagnostic laparoscopy prior to neoadjuvant therapy in pancreatic cancer is high yield: an analysis of outcomes and costs. J. Gastrointest. Surg. 21, 1420–1427 (2017).

    Article  PubMed  Google Scholar 

  207. Paracha, M. et al. Opportunity lost? diagnostic laparoscopy in patients with pancreatic cancer in the national surgical quality improvement program database. World J. Surg. 43, 937–943 (2019).

    Article  PubMed  Google Scholar 

  208. van Veldhuisen, E. et al. Added value of intra-operative ultrasound to determine the resectability of locally advanced pancreatic cancer following FOLFIRINOX chemotherapy (IMAGE): a prospective multicenter study. HPB 21, 1385–1392 (2019).

    Article  PubMed  Google Scholar 

  209. Diener, M. K. et al. Periarterial divestment in pancreatic cancer surgery. Surgery 169, 1019–1025 (2021).

    Article  PubMed  Google Scholar 

  210. Walma, M. S. et al. Treatment strategies and clinical outcomes in consecutive patients with locally advanced pancreatic cancer: a multicenter prospective cohort. Eur. J. Surg. Oncol. 20, 699–707 (2021).

    Article  Google Scholar 

  211. Hackert, T. et al. Locally advanced pancreatic cancer: neoadjuvant therapy with folfirinox results in resectability in 60% of the patients. Ann. Surg. 264, 457–463 (2016).

    Article  PubMed  Google Scholar 

  212. Raptis, D. A. et al. Defining benchmark outcomes for pancreaticoduodenectomy with concomitant portomesenteric venous resection. Ann. Surg. 272, 731–737 (2020).

    Article  PubMed  Google Scholar 

  213. Bockhorn, M. et al. Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 155, 977–988 (2014).

    Article  PubMed  Google Scholar 

  214. Machairas, N. et al. The impact of neoadjuvant treatment on survival in patients undergoing pancreatoduodenectomy with concomitant portomesenteric venous resection: an international multicenter analysis. Ann. Surg. 274, 721–728 (2021).

    Article  PubMed  Google Scholar 

  215. Groen, J. V. et al. Venous wedge and segment resection during pancreatoduodenectomy for pancreatic cancer: impact on short- and long-term outcomes in a nationwide cohort analysis. Br. J. Surg. 109, 96–104 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Hackert, T. et al. Portal vein resection in pancreatic cancer surgery: risk of thrombosis and radicality determine survival. Ann. Surg. https://doi.org/10.1097/SLA.0000000000005444 (2022).

    Article  PubMed  Google Scholar 

  217. Kinny-Köster, B. et al. Mesoportal bypass, interposition graft, and mesocaval shunt: surgical strategies to overcome superior mesenteric vein involvement in pancreatic cancer. Surgery 168, 1048–1055 (2020).

    Article  PubMed  Google Scholar 

  218. Oba, A. et al. Extent of venous resection during pancreatectomy - finding the balance of technical possiblity and feasibility. J. Gastrointest. Oncol. 12, 2495–2502 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Schneider, M., Hackert, T., Strobel, O. & Büchler, M. W. Technical advances in surgery for pancreatic cancer. Br. J. Surg. 108, 777–785 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Inoue, Y. et al. Optimal extent of superior mesenteric artery dissection during pancreaticoduodenectomy for pancreatic cancer: balancing surgical and oncological safety. J. Gastrointest. Surg. 23, 1373–1383 (2019).

    Article  PubMed  Google Scholar 

  221. Loos, M. et al. Arterial resection in pancreatic cancer surgery: effective after a learning curve. Ann. Surg. 275, 759–768 (2022).

    Article  PubMed  Google Scholar 

  222. Del Chiaro, M. & Schulick, R. D. Commentary on: divestment or skeletonization of the SMA or the hepatic artery for locally advanced pancreatic ductal cancer after neoadjuvant therapy. Surgery 169, 1039–1040 (2020).

    Article  PubMed  Google Scholar 

  223. Stoop, T. F. et al. Pancreatectomy with arterial resection for periampullary cancer: outcomes after planned or unplanned events in a nationwide, multicentre cohort. Br. J. Surg. 110, 638–642 (2023).

    Article  PubMed  Google Scholar 

  224. Ferrone, C. R. Divestment/skeletonization of the arteries in patients with advanced pancreatic ductal cancer. Surgery 169, 1037–1038 (2021).

    Article  PubMed  Google Scholar 

  225. Mollberg, N. et al. Arterial resection during pancreatectomy for pancreatic cancer: a systematic review and meta-analysis. Ann. Surg. 254, 882–893 (2011).

    Article  PubMed  Google Scholar 

  226. Rebelo, A. et al. Systematic review and meta-analysis of contemporary pancreas surgery with arterial resection. Langenbecks Arch. Surg. 405, 903–919 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Tee, M. C. et al. Indications and perioperative outcomes for pancreatectomy with arterial resection. J. Am. Coll. Surg. 227, 255–269 (2018).

    Article  PubMed  Google Scholar 

  228. Sonohara, F. et al. Novel implications of combined arterial resection for locally advanced pancreatic cancer in the era of newer chemo-regimens. Eur. J. Surg. Oncol. 45, 1895–1900 (2019).

    Article  PubMed  Google Scholar 

  229. Del Chiaro, M. et al. Pancreatectomy with arterial resection is superior to palliation in patients with borderline resectable or locally advanced pancreatic cancer. HPB 21, 219–225 (2019).

    Article  PubMed  Google Scholar 

  230. Bachellier, P., Addeo, P., Faitot, F., Nappo, G. & Dufour, P. Pancreatectomy with arterial resection for pancreatic adenocarcinoma: how can it be done safely and with which outcomes?: a single institution’s experience with 118 patients. Ann. Surg. 271, 932–940 (2020).

    Article  PubMed  Google Scholar 

  231. Schmocker, R. K. et al. An aggressive approach to locally confined pancreatic cancer: defining surgical and oncological outcomes unique to pancreatectomy with celiac axis resection (DP-CAR). Ann. Surg. Oncol. 28, 3125–3134 (2021).

    Article  PubMed  Google Scholar 

  232. Boggi, U. et al. Pancreatectomy with resection and reconstruction of the superior mesenteric artery. Br. J. Surg. 110, 901–904 (2023).

    Article  PubMed  Google Scholar 

  233. Alva-Ruiz, R. et al. Patency rates of hepatic arterial resection and revascularization in locally advanced pancreatic cancer. HPB 24, 1957–1966 (2022).

    Article  PubMed  Google Scholar 

  234. Kinny-Koster, B. et al. Conduits in vascular pancreatic surgery: analysis of clinical outcomes, operative techniques and graft performance. Ann. Surg. 278, e94–e104 (2023).

    Article  PubMed  Google Scholar 

  235. Wiltberger, G. et al. Perioperative and long-term outcome of en-bloc arterial resection in pancreatic surgery. HPB 24, 1119–1128 (2022).

    Article  PubMed  Google Scholar 

  236. Klompmaker, S. et al. Outcomes after distal pancreatectomy with celiac axis resection for pancreatic cancer: a pan-european retrospective cohort study. Ann. Surg. Oncol. 25, 1440–1447 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Truty, M. J. et al. En bloc celiac axis resection for pancreatic cancer: classification of anatomical variants based on tumor extent. J. Am. Coll. Surg. 231, 8–29 (2020).

    Article  PubMed  Google Scholar 

  238. Addeo, P., Guerra, M. & Bachellier, P. Distal pancreatectomy with en bloc celiac axis resection (DP-CAR) and arterial reconstruction: techniques and outcomes. J. Surg. Oncol. 123, 1592–1598 (2021).

    Article  PubMed  Google Scholar 

  239. Napoli, N. et al. Factors predicting survival in patients with locally advanced pancreatic cancer undergoing pancreatectomy with arterial resection. Updates Surg. 73, 233–249 (2021).

    Article  PubMed  Google Scholar 

  240. Christians, K. K. et al. Arterial resection at the time of pancreatectomy for cancer. Surgery 155, 919–926 (2014).

    Article  PubMed  Google Scholar 

  241. Del Chiaro, M., Rangelova, E., Segersvard, R. & Arnelo, U. Are there still indications for total pancreatectomy? Updates Surg. 68, 257–263 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Stoop, T. F. et al. Total pancreatectomy as an alternative to high-risk pancreatojejunostomy after pancreatoduodenectomy: a propensity score analysis on surgical outcome and quality of life. HPB 24, 1261–1270 (2022).

    Article  PubMed  Google Scholar 

  243. Marchegiani, G. et al. High-risk pancreatic anastomosis vs. total pancreatectomy after pancreatoduodenectomy. Ann. Surg. 276, e905–e913 (2022).

    Article  PubMed  Google Scholar 

  244. Garnier, J. et al. Pancreatectomy with vascular resection after neoadjuvant FOLFIRINOX: who survives more than a year after surgery? Ann. Surg. Oncol. 28, 4625–4634 (2021).

    Article  PubMed  Google Scholar 

  245. de Geus, S. W. L. et al. Neoadjuvant therapy affects margins and margins affect all: perioperative and survival outcomes in resected pancreatic adenocarcinoma. HPB 20, 573–581 (2018).

    Article  PubMed  Google Scholar 

  246. Schmocker, R. K. et al. Impact of margin status on survival in patients with pancreatic ductal adenocarcinoma receiving neoadjuvant chemotherapy. J. Am. Coll. Surg. 232, 405–413 (2021).

    Article  PubMed  Google Scholar 

  247. Klaiber, U. et al. Prognostic factors of survival after neoadjuvant treatment and resection for initially unresectable pancreatic cancer. Ann. Surg. 273, 154–162 (2021).

    Article  PubMed  Google Scholar 

  248. Cai, B. et al. Sub-adventitial divestment technique for resecting artery-involved pancreatic cancer: a retrospective cohort study. Langenbecks Arch. Surg. 406, 691–701 (2021).

    Article  PubMed  Google Scholar 

  249. Mirkin, K. A., Hollenbeak, C. S., Gusani, N. J. & Wong, J. Trends in utilization of neoadjuvant therapy and short-term outcomes in resected pancreatic cancer. Am. J. Surg. 214, 80–88 (2017).

    Article  PubMed  Google Scholar 

  250. Kamarajah, S. K., Naffouje, S. A., Salti, G. I. & Dahdaleh, F. S. Neoadjuvant chemotherapy for pancreatic ductal adenocarcinoma is associated with lower post-pancreatctomy readmission rates: a population-based cohort study. Ann. Surg. Oncol. 28, 1896–1905 (2021).

    Article  PubMed  Google Scholar 

  251. Oba, A. et al. Comparing neoadjuvant chemotherapy with or without radiation therapy for pancreatic ductal adenocarcinoma: National Cancer Database cohort analysis. Br. J. Surg. 109, 450–454 (2022).

    Article  PubMed  Google Scholar 

  252. van Dongen, J. C. et al. The effect of preoperative chemotherapy and chemoradiotherapy on pancreatic fistula and other surgical complications after pancreatic resection: a systematic review and meta-analysis of comparative studies. HPB 23, 1321–1331 (2021).

    Article  PubMed  Google Scholar 

  253. Marchegiani, G. et al. Neoadjuvant therapy versus upfront resection for pancreatic cancer: the actual spectum and clinical burden of postoperative complications. Ann. Surg. Oncol. 25, 626–637 (2018).

    Article  PubMed  Google Scholar 

  254. Del Chiaro, M. & Schulick, R. D. Use of total pancreatectomy and preoperative radiotherapy in patients undergoing pancreatectomy with arterial resection. J. Am. Coll. Surg. 228, 131 (2019).

    Article  PubMed  Google Scholar 

  255. Blair, A. B. et al. Postoperative complications after resection of borderline resectable and locally advanced pancreatic cancer: the impact of neoadjuvant chemotherapy with conventional radiation or stereotactic body radiation therapy. Surgery 163, 1090–1096 (2018).

    Article  PubMed  Google Scholar 

  256. Iacobuzio-Donahue, C. A. et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J. Clin. Oncol. 27, 1806–1813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. White, R. R., Murphy, J. D. & Martin, R. C. G. The landmark series: locally advanced pancreatic cancer and ablative therapy options. Ann. Surg. Oncol. 28, 4173–4180 (2021).

    Article  PubMed  Google Scholar 

  258. Heger, U. & Hackert, T. Can local ablative techniques replace surgery for locally advanced pancreatic cancer? J. Gastrointest. Oncol. 12, 2536–2546 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Jolissaint, J. S. et al. Local control and survival after induction chemotherapy and ablative radiation versus resection for pancreatic ductal adenocarcinoma with vascular involvement. Ann. Surg. 274, 894–901 (2021).

    Article  PubMed  Google Scholar 

  260. Chuong, M. D. et al. Induction chemotherapy and ablative stereotactic magnetic resonance image-guided adaptive radiation therapy for inoperable pancreas cancer. Front. Oncol. 12, 888462 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Frigerio, I. et al. Open radiofrequency ablation as upfront treatment for locally advanced pancreatic cancre: requiem from a randomized controlled trial. Pancreatology 21, 1342–1348 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Lin, M. et al. Irreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer. Signal. Transduct. Target. Ther. 5, 215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Walma, M. S. et al. Radiofrequency ablation and chemotherapy versus chemotherapy alone for locally advanced pancreatic cancer (PELICAN): study protocol for a randomized controlled trial. Trials 22, 313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Academic Medical Center. Assessing Optimal Treatment Settings for the Ablation of Locally Advanced Pancreatic Cancer With Ct-Guided Percutaneous Irreversibl Electroporation (Antilope): A Randomized Feasibility Study. Academic Medical Centerhttps://www.trialregister.nl/trial/7015 (2018).

  265. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02791503 (2022).

  266. World Health Organization. A Comparison of Combined Eus-Guided Radiofrequency Ablation Using EUSRA RF Electrode and Chemotherapy vs. Chemotherapy Alone in Locally Advanced Pancreatic Cancer: A Phase II/III Randomized Controlled Trial. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=TCTR20201223001 (2020).

  267. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03899636?term=IRE&recrs=abdefgh&type=Intr&cond=Pancreatic+Cancer&age=1&draw=2&rank=10 (2022).

  268. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02343835?term=IRE&recrs=abdefgh&type=Intr&cond=Pancreatic+Cancer&age=1&draw=1&rank=7 (2021).

  269. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04699539?term=SBRT&recrs=abdefgh&type=Intr&cond=Pancreatic+Cancer&age=1&draw=3 (2023).

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04603586?term=SBRT&recrs=abdefgh&type=Intr&cond=Pancreatic+Cancer&age=1&draw=3&rank=41 (2020).

  271. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01921751?term=IMRT&recrs=abdefgh&type=Intr&cond=Pancreatic+Cancer&age=1&draw=2&rank=12 (2023).

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03673137 (2021).

  273. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02336672 (2023).

  274. World Health Organization. Treatment of Unresectable Locally Advanced Pancreas Cancer With Percutaneous Irreversible Electroporation Following Initial Systemic Chemotherapy (LAP-PIE): A Randomised Controlled Feasibility Trial. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=ISRCTN14986389 (2021).

  275. World Health Organization. A Prospective, Randomized, Phase 3 Trial of Carbon Ion Radiation Therapy Versus Standard Care for Locally Advanced Pancreatic Cancer. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=NCT04592861 (2020).

  276. Izzo, F. et al. A multicenter randomized controlled prospective study to assess efficacy of laparoscopic electrochemotherapy in the treatment of locally advanced pancreatic cancer. J. Clin. Med. 10, 4011 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. World Health Organization. Clinical Study of S-1 Chemotherapy Combined with TOMO Radiotherapy as the First-Line Therapy for Locally Advanced Pancreatic Cancer. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR-IPR-16009949 (2016).

  278. World Health Organization. The Efficacy and Safety of High Dose and Low Fractionated Radiation Therapy for Locally Advanced Pancreatic Cancer: A Prospective, Randomized, Controlled, Multicenter Clinical Trial. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR-IIR-16008875 (2016).

  279. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05466799 (2023).

  280. World Health Organization. Prospective Randomized Comparison of Endoscopic Ultrasound-Guided Radiofrequency Ablation (RFA) and mFOLFIRINOX Parallel Therapy And Chemotherapy Monotherapy In Patients With Pancreatic Cancer. WHO https://trialsearch.who.int/Trial2.aspx?TrialID=KCT0007349 (2022).

  281. Doppenberg, D. et al. Stereotactic ablative radiotherapy or best supportive care in patients with localized pancreatic cancer not receiving chemotherapy and surgery (PANCOSAR): a nationwide multicenter randomized controlled trial according to a TwiCs design. BMC Cancer 22, 1363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Molinari, M. et al. Patients’ treatment preferences for potentially resectable tumors of the head of the pancreas. HPB 22, 265–274 (2020).

    Article  PubMed  Google Scholar 

  283. Ziebland, S., Chapple, A. & Evans, J. Barriers to shared decisions in the most serious of cancers: a qualitative study of patients with pancreatic cancer treated in the UK. Health Expect. 18, 3302–3312 (2015).

    Article  PubMed  Google Scholar 

  284. Mihaljevic, A. L. et al. Not all Whipple procedures are equal: proposal for a classification of pancreatoduodenectomies. Surgery 169, 1456–1462 (2021).

    Article  PubMed  Google Scholar 

  285. Loos, M. et al. Categorization of different types of total pancreatectomy. JAMA Surg. 157, 120–128 (2022).

    Article  PubMed  Google Scholar 

  286. Scholten, L. et al. Systematic review of functional outcome and quality of life after total pancreatectomy. Br. J. Surg. 106, 1735–1746 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Kuroki, N. et al. Long-term outcome of patients with postoperative refractory diarrhea after tailored nerve plexus dissection around the major visceral arteries during pancreatoduodenectomy for pancreatic cancer. World J. Surg. 46, 1172–1182 (2022).

    Article  PubMed  Google Scholar 

  288. Scholten, L. et al. New-onset diabetes after pancreatoduodenectomy: a systematic review and meta-analysis. Surgery 164, 6–16 (2018).

    Article  Google Scholar 

  289. Yu, J., Sun, R., Han, X. & Liu, Z. New-onset diabetes mellitus after distal pancreatectomy: a systematic review and meta-analysis. J. Laparoendosc. Adv. Surg. Tech. A 30, 1215–1222 (2020).

    Article  PubMed  Google Scholar 

  290. Moore, J. V. et al. Exocrine pancreatic insufficiency after pancreatectomy for malignancy: systematic review and optimal management recommendations. J. Gastrointest. Surg. 25, 2317–2327 (2021).

    Article  PubMed  Google Scholar 

  291. Griffioen, I. P. M. et al. The bigger picture of shared decision making: a service design perspective using the care path of locally advanced pancreatic cancer as a case. Cancer Med. 10, 5907–5916 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Mackay, T. M. et al. Patient satisfaction and quality of life before and after treatment of pancreatic and periampully cancer: a prospective multicenter study. J. Natl Compr. Canc. Netw. 18, 704–711 (2020).

    Article  PubMed  Google Scholar 

  293. Connor, A. A. & Gallinger, S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat. Rev. Cancer 22, 131–142 (2022).

    Article  CAS  PubMed  Google Scholar 

  294. Hosein, A. N., Dougan, S. K., Aguirre, A. J. & Maitra, A. Translational advances in pancreatic ductal adenocarcinoma therapy. Nat. Cancer 3, 272–286 (2022).

    Article  PubMed  Google Scholar 

  295. Sivapalan, L., Kocher, H. M., Ross-Adams, H. & Chelala, C. The molecular landscape of pancreatic ductal adenocarcinoma. Pancreatology 22, 925–936 (2022).

    Article  CAS  PubMed  Google Scholar 

  296. Ecker, B. L. et al. Alterations in somatic driver genes are associated with response to neoadjuvant FOLFIRINOX in patients with localized pancreatic ductal adenocarcinoma. J. Am. Coll. Surg. 235, 342–349 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Suurmeijer, J. A. et al. Impact of classical and basal-like molecular subtypes on overall survival in resected pancreatic cancer in the SPACIOUS-2 multicentre study. Br. J. Surg. 109, 1150–1155 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Aung, K. L. et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial. Clin. Cancer Res. 24, 1344–1354 (2018).

    Article  CAS  PubMed  Google Scholar 

  299. Golan, T. et al. Increased rate of complete pathological response after neoadjuvant FOLFIRINOX for BRCA mutation carriers with borderline resectable pancreatic cancer. Ann. Surg. Oncol. 27, 3963–3970 (2020).

    Article  PubMed  Google Scholar 

  300. Tsai, S. et al. A phase II clinical trial of molecular profiled neoadjuvant therapy for localized pancreatic ductal adenocarcinoma. Ann. Surg. 268, 610–619 (2018).

    Article  PubMed  Google Scholar 

  301. Matsumoto, I. et al. FOLFIRINOX for locally advanced pancreatic cancer: results and prognostic factors of subset analysis from a nation-wide multicenter observational study in Japan. Pancreatology 19, 296–301 (2019).

    Article  CAS  PubMed  Google Scholar 

  302. Ueberroth, B. E., Jones, J. C. & Bekaii-Saab, T. S. Circulating tumor DNA (ctDNA) to evaluate minimal residual disease (MRD), treatment response, and posttreatment prognosis in pancreatic adenocarcinoma. Pancreatology 22, 741–748 (2022).

    Article  CAS  PubMed  Google Scholar 

  303. Janssen, B. V. et al. Imaging-based machine-learning models to predict clinical outcomes and identify biomarkers in pancreatic cancer: a scoping review. Ann. Surg. 275, 560–567 (2022).

    Article  PubMed  Google Scholar 

  304. van Eijck, C. W. F. et al. A multigene circulating biomarker to predict the lack of FOLFIRINOX response after a single cycle in patients with pancreatic ductal adenocarcinoma. Eur. J. Cancer 181, 119–134 (2022).

    Article  PubMed  Google Scholar 

  305. Farshadi, E. A. et al. Organoids derived from neoadjuvant FOLFIRINOX patients recapitulate therapy resistance in pancreatic ductal adenocarcinoma. Clin. Cancer Res. 27, 6602–6612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. van der Sijde, F. et al. Circulating TP53 mutations are associated with early tumor progression and poor survival in pancreatic cancer patients treated with FOLFIRINOX. Ther. Adv. Med. Oncol. 13, 17588359211033704 (2021).

    PubMed  PubMed Central  Google Scholar 

  307. van der Sijde, F. et al. Serum cytokine levels are associated with tumor progression during FOLFIRINOX chemotherapy and overall survival in pancreatic cancer patients. Front. Immunol. 13, 898498 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  308. van der Sijde, F. et al. Serum miR-373-3p and miR-194-5p are associated with early tumor progression during FOLFIRINOX treatment in pancreatic cancer patients: a prospective multicenter study. Int. J. Mol. Sci. 22, 10902 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Loehrer, P. J. Sr et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J. Clin. Oncol. 29, 4105–4112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Rich, T. A. et al. Weekly paclitaxel, gemcmitabine, and external irradiation followed by randomized farnesyl transferase inhibitor R115777 for locally advanced pancreatic cancer. Onco. Targets Ther. 5, 161–170 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Mukherjee, S. et al. Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): a multicentre, randomised, phase 2 trial. Lancet Oncol. 14, 317–326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Hurt, C. N. et al. Long-term results and recurrence patterns from SCALOP: a phase II randomised trial of gemcitabine- or capecitabine-based chemoradiation for locally advanced pancreatic cancer. Br. J. Cancer 116, 1264–1270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Khan, K. et al. miR-21 expression and clinical outcome in locally advanced pancreatic cancer: exploratory analysis of the pancreatic cancer Erbitux, radiotherapy and UFT (PERU) trial. Oncotarget 7, 12672–12681 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Evans, T. R. J. et al. Phase 2 placebo-controlled, double-blind trial of dasatinib added to gemcitabine for patients with locally-advanced pancreatic cancer. Ann. Oncol. 28, 354–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  315. Picozzi, V. et al. Gemcitabine/nab-paclitaxel with pamrevlumab: a novel drug combination and trial design for the treatment of locally advanced pancreatic cancer. ESMO Open. 5, e000668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Ioka, T. et al. Randomized phase II study of chemoradiotherapy with versus without induction chemotherapy for locally advanced pancreatic cancer: Japan Clinical Oncoogy Group trial, JCOG1106. Jpn J. Clin. Oncol. 51, 235–243 (2021).

    Article  PubMed  Google Scholar 

  317. Liermann, J. et al. Cetuximab, gemcitabine and radiotherapy in locally advanced pancreatic cancer: long-term results of the randomized controlled phase II PARC trial. Clin. Transl. Radiat. Oncol. 34, 15–22 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Landry, J. et al. Randomized phase II study of gemcitabine plus radiotherpay versus gemcitabine, 5-fluorouracil, and cisplatin followed by radiotherapy and 5-fluorouracil for patients with locally advanced, potentially resectable pancreatic adenocarcinoma. J. Surg. Oncol. 101, 587–592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Sahora, K. et al. A phase II trial of two durations of bevacizumab added to neoadjuvant gemcitabine for borderline and locally advanced pancreatic cancer. Anticancer. Res. 34, 2377–2384 (2014).

    CAS  PubMed  Google Scholar 

  320. Hewitt, D. B. et al. A phase 3 randomized clinical trial of chemotherapy with or without algenpantucel-L (HyperAcute-Pancreas) immunotherapy in subjects with borderline resectable or locally advanced unresectable pancreatic cancer. Ann. Surg. 275, 45–53 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Faridi S. van Etten-Jamaludin (Clinical Librarian, Amsterdam UMC, location University of Amsterdam) for her contribution to the construction of the literature search strategy.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.G.B. and T.F.S. researched data for the article, made a substantial contribution to the discussion of content, wrote the article, and reviewed/edited the manuscript before submission. R.T.T. and L.W.F.S. researched data for the article, made a substantial contribution to the discussion of content, and reviewed/edited the manuscript before submission. The other authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Marc G. Besselink.

Ethics declarations

Competing interests

M.D.C. received an industry grant (Haemonetics, Inc.) to conduct a multicentre study to evaluate the prognostic implications of TEG in pancreatic cancer. M.D.C. is co-principal investigator of a Boston Scientific-sponsored international multicentre study on the use of intraoperative pancreatoscopy of patients with intraductal papillary mucinous neoplasms. T.F.S. and M.G.B. received two grants from the Dutch Cancer Society (KWF) and Deltaplan Alvleesklierkanker for the Dutch PREOPANC-4 trial on the multidisciplinary management of locally advanced pancreatic cancer (NCT05524090).

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Helmut Friess and Giuseppe Malleo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

A systematic literature search on PubMed was performed (30 November 2022); see Supplementary Table 1 for the search strategy. Literature (n = 2,978 records) was screened by title and abstract (by T.F.S., L.W.F.S. and R.T.T.) and the preliminary articles included (n = 801) were subsequently screened by full-text (by L.W.F.S. and R.T.T.). Additional literature was identified via the references of included literature to further nuance certain topics. In addition, the WHO International Clinical Trials Registry Platform was searched (6 December 2022) for ongoing and completed randomized controlled trials. Trials about advanced pancreatic cancer were not included. On 6 February 2023, the status of included ongoing or completed trials was checked. Inclusion criteria concerned any type of original studies about preoperative chemotherapy or chemoradiotherapy for borderline resectable pancreatic cancer and/or locally advanced pancreatic cancer (LAPC; any definition), published in the period 2010(1) to 2022(11). Studies were included when they reported about (1) indications for preoperative chemotherapy or chemoradiotherapy or subsequent patient selection; and/or (2) (radical) resection rate and/or overall survival. Randomized controlled trials were included whereas primarily only observational studies with a sample size of ≥50 patients with borderline resectable pancreatic cancer and/or LAPC were selected. Single-centre studies with at least 200 patients with LAPC and multicentre studies with at least 100 patients were specifically included. Finally, smaller series were used to illustrate certain topics when larger series were not available.

Supplementary information

Glossary

5-Fluorouracil

(5-FU). A single-agent chemotherapy.

ABC

(Anatomical – Biological – Conditional). Multi-domain parameters that are used to (re)stage patients with pancreatic cancer before and after preoperative therapy. This includes, among others, vascular tumour involvement (anatomical), tumour markers (biological) and patient fitness (condition).

Adjuvant therapy

Adjuvant therapy for patients with pancreatic cancer often concerns systemic chemotherapy (with or without radiotherapy) that is given with a curative intention after surgery.

Adverse events

Adverse events can be classified following the Common Terminology Criteria for Adverse Events, ranging from grade 1 (mild) and grade 2 (moderate) to grade 3 (severe or medically significant), grade 4 (life-threatening) or grade 5 (death).

American Joint Committee on Cancer

(AJCC). The AJCC developed a staging system for pancreatic cancer, comprising the three-tier system T stage (tumour), N stage (lymph nodes) and M stage (distant metastases).

Arterial divestment

A surgical technique whereby the (tumour) tissue is peeled off from an artery, without the need for an arterial resection.

Borderline resectable pancreatic cancer

(BRPC). Resectability of a pancreatic tumour is often based on the presence and extent of vascular tumour involvement. Biological and conditional factors can also be part of resectability criteria. A borderline resectable pancreatic tumour means that the benefit of removing the tumour by surgery is uncertain or debatable.

BRPC-A

Borderline resectable pancreatic cancer (BRPC) due to the presence of arterial involvement (that is, superior mesenteric artery, coeliac axis and/or hepatic artery).

BRPC-PV

Borderline resectable pancreatic cancer (BRPC) due to the presence and extent of tumour involvement with the portomesenteric axis (that is, portal vein, confluence and superior mesenteric vein).

Capecitabine

A single-agent chemotherapy.

Carbohydrate antigen 19-9

(CA19-9). A serological tumour marker that is measurable in 80–85% of patients with pancreatic cancer. It is the most commonly used tumour marker in patients with pancreatic cancer.

Carbohydrate antigen 125

(CA125). A serological tumour marker that might be of clinical value in patients with pancreatic cancer.

Carcinoembryonic antigen

(CEA). A serological tumour marker that is elevated in 30–60% of patients with pancreatic cancer and could be of clinical value.

Coeliac axis

The arterial branch that originates from the aorta and trifurcates into the common hepatic artery, left gastric artery and splenic artery in case of normal arterial anatomy.

Complete pathological response

The absence of vital tumour cells in the resection specimen in response to therapy.

Computed tomography

(CT). A type of cross-sectional imaging.

Cross-sectional imaging

Advanced imaging modalities such as computed tomography and magnetic resonance imaging.

Diffusion-weighted MRI

A specific modality of magnetic resonance imaging (MRI).

Duke pancreatic monoclonal antigen type 2

(DUPAN2). A serological tumour marker that might be of clinical value in patients with pancreatic cancer.

Eastern Cooperative Oncology Group (ECOG) performance status

A classification to indicate the condition of a patient, ranging from grade 0 (fully active) to grade 5 (deceased).

External beam radiotherapy

(EBRT). A conventional radiation modality.

Extrapancreatic disease

(Suspected) pancreatic cancer located outside the pancreas (that is, lymphadenopathy and/or distant metastases).

FDG-PET

Fluorodeoxyglucose-positron emission tomography (PET) is combined with either computed tomography or magnetic resonance imaging.

FOLFIRINOX

Multi-agent chemotherapy, comprising a combination of 5-fluorouracil, leucovorin, irinotecan and oxaliplatin.

Gemcitabine

A single-agent chemotherapy.

Gemcitabine-capecitabine

A multi-agent chemotherapy, comprising gemcitabine and capecitabine.

Gemcitabine-oxaliplatin

A multi-agent chemotherapy, comprising gemcitabine and oxaliplatin.

Gemcitabine plus nab-paclitaxel

A multi-agent chemotherapy, comprising gemcitabine and albumin-bound paclitaxel.

Gemcitabine-S1

A multi-agent chemotherapy, comprising gemcitabine and S1.

Histopathological tumour response

The presence (and extent) of tumour response on preoperative therapy in the resected specimen can be assessed and graded.

Hypofractionated image-guided radiotherapy

A type of radiation therapy that enables higher and more precise dosage whereby surrounding health tissue is spared.

Induction therapy

Preoperative therapy for patients with locally advanced pancreatic cancer, using chemotherapy with or without radiation.

Intensity-modulated radiotherapy

(IMRT). A type of radiation therapy that enables higher and more precise dosage whereby surrounding health tissue is spared.

Irinotecan

A single-agent chemotherapeutic drug but often used as part of the multi-agent chemotherapy FOLFIRINOX.

Localized pancreatic cancer

Pancreatic cancer without signs of metastatic disease.

Locally advanced pancreatic cancer

(LAPC). Resectability of a pancreatic tumour is often based on the presence and extent of vascular tumour involvement. A locally advanced pancreatic tumour means that the tumour has sufficient contact with major peri-pancreatic vasculature that an upfront surgical resection is associated with significant risks.

Magnetic resonance imaging

(MRI). A type of cross-sectional imaging.

Maximum standard uptake value

(SUVmax). A measure of the highest metabolic activity on a fluorodeoxyglucose-positron emission tomography scan.

Neoadjuvant therapy

Preoperative therapy for patients with (borderline) resectable pancreatic cancer, using chemotherapy with or without radiation.

Pancreatic fistula

Leakage of anastomosis from the pancreas with stomach or jejunum, whereby pancreatic enzymes leak into the abdominal cavity.

Pancreatoduodenectomy

Resection of the pancreatic head, duodenum, gallbladder and proximal jejunum, eventually combined with resection of the distal stomach.

‘Pick-the-winner’ design

A method that can be used for randomized controlled trials in which the best treatment of choice is chosen, also weighing alongside the efficacy factors such as toxicity, quality of life and health-care costs.

Portomesenteric venous axis

The venous system that drains blood from the small bowel and colon to the liver. The main branches that are most relevant for the resectability from pancreatic cancer are the portal vein, confluence and superior mesenteric vein.

Primary resectable pancreatic cancer

(PRPC). Resectability of a pancreatic tumour is often based on the presence and extent of vascular tumour involvement. A primary resectable pancreatic tumour means that it seems beneficial to remove the tumour by surgery.

R0

R status indicates whether the resection margins are free from vital tumour cells: R0, margins are microscopically tumour-free.

R1

R status indicates whether the resection margins are free from vital tumour cells: R1, margins are microscopically (closely) involved by vital tumour.

R2

R status indicates whether the resection margins are free from vital tumour cells: R2, macroscopically tumour tissue is left after resection, examined intraoperatively.

Response Evaluation Criteria for Solid Tumors

(RECIST). A classification system used to classify disease response and/or progression over time or in disease response to treatment.

S1

A single-agent chemotherapy.

Stereotactic body radiotherapy

(SBRT). A type of radiation therapy that enables higher and more precise dosage whereby surrounding health tissue is spared.

Total pancreatectomy

Resection of the complete pancreas (that is, pancreatic head, body and tail), at least combined with resection of gallbladder, duodenum, proximal jejunum and, eventually, the distal stomach.

Upfront surgery

Immediate surgery without preoperative therapy with chemotherapy or chemoradiotherapy.

Volumetric modulated arc therapy

A type of radiation therapy that enables higher and more precise dosage whereby surrounding health tissue is spared.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoop, T.F., Theijse, R.T., Seelen, L.W.F. et al. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat Rev Gastroenterol Hepatol 21, 101–124 (2024). https://doi.org/10.1038/s41575-023-00856-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00856-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing