Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Luteal phase support in assisted reproductive technology

Abstract

Infertility affects one in six couples, with in vitro fertilization (IVF) offering many the chance of conception. Compared to the solitary oocyte produced during the natural menstrual cycle, the supraphysiological ovarian stimulation needed to produce multiple oocytes during IVF results in a dysfunctional luteal phase that can be insufficient to support implantation and maintain pregnancy. Consequently, hormonal supplementation with luteal phase support, principally exogenous progesterone, is used to optimize pregnancy rates; however, luteal phase support remains largely ‘black-box’ with insufficient clarity regarding the optimal timing, dosing, route and duration of treatment. Herein, we review the evidence on luteal phase support and highlight remaining uncertainties and future research directions. Specifically, we outline the physiological luteal phase, which is regulated by progesterone from the corpus luteum, and evaluate how it is altered by the supraphysiological ovarian stimulation used during IVF. Additionally, we describe the effects of the hormonal triggers used to mature oocytes on the degree of luteal phase support required. We explain the histological transformation of the endometrium during the luteal phase and evaluate markers of endometrial receptivity that attempt to identify the ‘window of implantation’. We also cover progesterone receptor signalling, circulating progesterone levels associated with implantation, and the pharmacokinetics of available progesterone formulations to inform the design of luteal phase support regimens.

Key points

  • During in vitro fertilization (IVF) treatment, supraphysiological ovarian stimulation and the resultant high sex steroid levels can disrupt the luteal phase via insufficient progesterone production from the corpora lutea, shortening the luteal phase.

  • Luteal phase support during IVF can support implantation and maintain pregnancy by increasing progesterone levels, which is achieved either by increasing endogenous sex steroid secretion or by directly supplementing with sex steroids.

  • The presence, or not, of the corpus luteum has implications for the degree of luteal phase support required to maintain pregnancy and for the risk of pregnancy complications.

  • A gonadotrophin-releasing hormone receptor agonist (GnRHa) trigger for ovarian maturation is not sufficient to support functional corpora lutea, resulting in a more disrupted luteal phase than a human chorionic gonadotrophin (hCG) trigger.

  • Frozen embryo transfer (FET) can mitigate the effect of the disrupted luteal phase after ovarian stimulation, and is favoured especially if a GnRHa is used to trigger oocyte maturation.

  • FET, especially via methods that do not result in the formation of a functional corpus luteum, can increase the risk of pregnancy complications such as pre-eclampsia compared with fresh embryo transfer cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The luteal phase in natural and IVF cycles, and serum progesterone levels in early pregnancy.
Fig. 2: The nuclear progesterone receptor.
Fig. 3: The luteal phase, endometrial receptivity and the window of implantation.

Similar content being viewed by others

References

  1. World Health Organization. Infertility prevalence estimates, 1990–2021. World Health Organization https://www.who.int/publications/i/item/978920068315 (2023).

  2. Munne, S. et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil. Steril. 112, 1071–1079.e7 (2019).

    CAS  PubMed  Google Scholar 

  3. Saadat, P. et al. Accelerated endometrial maturation in the luteal phase of cycles utilizing controlled ovarian hyperstimulation: impact of gonadotropin-releasing hormone agonists versus antagonists. Fertil. Steril. 82, 167–171 (2004).

    CAS  PubMed  Google Scholar 

  4. The ESHRE Guideline Group on Ovarian Stimulation et al. ESHRE guideline: ovarian stimulation for IVF/ICSI. Hum. Reprod. 2020, hoaa009 (2020).

    Google Scholar 

  5. van der Linden, M., Buckingham, K., Farquhar, C., Kremer, J. A. & Metwally, M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst. Rev. 2015, CD009154 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Artini, P. G. et al. A comparative, randomized study of three different progesterone support of the luteal phase following IVF/ET program. J. Endocrinol. Invest. 18, 51–56 (1995).

    CAS  PubMed  Google Scholar 

  7. Belaisch-Allart, J., De Mouzon, J., Lapousterle, C. & Mayer, M. The effect of HCG supplementation after combined GnRH agonist/HMG treatment in an IVF programme. Hum. Reprod. 5, 163–166 (1990).

    CAS  PubMed  Google Scholar 

  8. Kupferminc, M. J. et al. A prospective randomized trial of human chorionic gonadotrophin or dydrogesterone support following in-vitro fertilization and embryo transfer. Hum. Reprod. 5, 271–273 (1990).

    CAS  PubMed  Google Scholar 

  9. Torode, H., Porter, R., Vaughan, J. & Saunders, D. Luteal phase support after in vitro fertilisation: a trial and rationale for selective use. Clin. Reprod. Fertil. 5, 255–261 (1987).

    Google Scholar 

  10. Wu, H., Zhang, S., Lin, X., Wang, S. & Zhou, P. Luteal phase support for in vitro fertilization/intracytoplasmic sperm injection fresh cycles: a systematic review and network meta-analysis. Reprod. Biol. Endocrinol. 19, 103 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Practice Committees of the American Society for Reproductive Medicine and the Society for Reproductive Endocrinology and Infertility. Diagnosis and treatment of luteal phase deficiency: a committee opinion. Fertil. Steril. 115, 1416–1423 (2021).

    Google Scholar 

  12. Hoff, J. D., Quigley, M. E. & Yen, S. S. Hormonal dynamics at midcycle: a reevaluation. J. Clin. Endocrinol. Metab. 57, 792–796 (1983).

    CAS  PubMed  Google Scholar 

  13. Itskovitz, J. et al. Induction of preovulatory luteinizing hormone surge and prevention of ovarian hyperstimulation syndrome by gonadotropin-releasing hormone agonist. Fertil. Steril. 56, 213–220 (1991).

    CAS  PubMed  Google Scholar 

  14. Abbara, A., Clarke, S. A. & Dhillo, W. S. Novel concepts for inducing final oocyte maturation in in vitro fertilization treatment. Endocr. Rev. 39, 593–628 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Zelinski-Wooten, M. B., Lanzendorf, S. E., Wolf, D. P., Chandrasekher, Y. A. & Stouffer, R. L. Titrating luteinizing hormone surge requirements for ovulatory changes in primate follicles. I. Oocyte maturation and corpus luteum function. J. Clin. Endocrinol. Metab. 73, 577–583 (1991).

    CAS  PubMed  Google Scholar 

  16. Duncan, W. C. The inadequate corpus luteum. Reprod. Fertil. 2, C1–C7 (2021).

    PubMed  PubMed Central  Google Scholar 

  17. Nio-Kobayashi, J., Kudo, M., Sakuragi, N., Iwanaga, T. & Duncan, W. C. Loss of luteotropic prostaglandin E plays an important role in the regulation of luteolysis in women. Mol. Hum. Reprod. 23, 271–281 (2017).

    CAS  PubMed  Google Scholar 

  18. Anckaert, E. et al. Extensive monitoring of the natural menstrual cycle using the serum biomarkers estradiol, luteinizing hormone and progesterone. Pract. Lab. Med. 25, e00211 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Leiva, R., Bouchard, T., Boehringer, H., Abulla, S. & Ecochard, R. Random serum progesterone threshold to confirm ovulation. Steroids 101, 125–129 (2015).

    CAS  PubMed  Google Scholar 

  20. Filicori, M., Butler, J. P. & Crowley, W. F. Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsatile progesterone secretion. J. Clin. Invest. 73, 1638–1647 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hohmann, F. P., Laven, J. S., de Jong, F. H., Eijkemans, M. J. & Fauser, B. C. Low-dose exogenous FSH initiated during the early, mid or late follicular phase can induce multiple dominant follicle development. Hum. Reprod. 16, 846–854 (2001).

    CAS  PubMed  Google Scholar 

  22. Dreyer Holt, M. et al. The impact of suppressing estradiol during ovarian stimulation on the unsupported luteal phase: a randomized controlled trial. J. Clin. Endocrinol. Metab. 107, e3633–e3643 (2022).

    PubMed  Google Scholar 

  23. Beckers, N. G., Laven, J. S., Eijkemans, M. J. & Fauser, B. C. Follicular and luteal phase characteristics following early cessation of gonadotrophin-releasing hormone agonist during ovarian stimulation for in-vitro fertilization. Hum. Reprod. 15, 43–49 (2000).

    CAS  PubMed  Google Scholar 

  24. von Wolff, M. et al. Follicular flushing in natural cycle IVF does not affect the luteal phase – a prospective controlled study. Reprod. Biomed. Online 35, 37–41 (2017).

    Google Scholar 

  25. Bildik, G. et al. Luteal granulosa cells from natural cycles are more capable of maintaining their viability, steroidogenic activity and LH receptor expression than those of stimulated IVF cycles. Hum. Reprod. 34, 345–355 (2019).

    CAS  PubMed  Google Scholar 

  26. Morales, H. S. G. et al. Serum estradiol level on the day of trigger as a predictor of number of metaphase II oocytes from IVF antagonist cycles and subsequent impact on pregnancy rates. JBRA Assist. Reprod. 25, 447–452 (2021).

    PubMed  PubMed Central  Google Scholar 

  27. Xu, X. et al. The association between serum estradiol levels on hCG trigger day and live birth rates in non-PCOS patients: a retrospective cohort study. Front. Endocrinol. 13, 839773 (2022).

    Google Scholar 

  28. Bülow, N. S. et al. Impact of letrozole co-treatment during ovarian stimulation with gonadotrophins for IVF: a multicentre, randomized, double-blinded placebo-controlled trial. Hum. Reprod. 37, 309–321 (2022).

    PubMed  Google Scholar 

  29. Bulow, N. S. et al. Impact of letrozole co-treatment during ovarian stimulation on oocyte yield, embryo development, and live birth rate in women with normal ovarian reserve: secondary outcomes from the RIOT trial. Hum. Reprod. https://doi.org/10.1093/humrep/dead182 (2023).

    Article  PubMed  Google Scholar 

  30. Abbara, A. et al. Endocrine requirements for oocyte maturation following hCG, GnRH agonist, and kisspeptin during IVF treatment. Front. Endocrinol. 11, 537205 (2020).

    Google Scholar 

  31. Casarini, L. et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE 7, e46682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Svenstrup, L. et al. Does the HCG trigger dose used for IVF impact luteal progesterone concentrations? A randomized controlled trial. Reprod. Biomed. Online 45, 793–804 (2022).

    CAS  PubMed  Google Scholar 

  33. Vuong, T. N. et al. Gonadotropin-releasing hormone agonist trigger in oocyte donors co-treated with a gonadotropin-releasing hormone antagonist: a dose-finding study. Fertil. Steril. 105, 356–363 (2016).

    PubMed  Google Scholar 

  34. Beckers, N. G. et al. Nonsupplemented luteal phase characteristics after the administration of recombinant human chorionic gonadotropin, recombinant luteinizing hormone, or gonadotropin-releasing hormone (GnRH) agonist to induce final oocyte maturation in in vitro fertilization patients after ovarian stimulation with recombinant follicle-stimulating hormone and GnRH antagonist cotreatment. J. Clin. Endocrinol. Metab. 88, 4186–4192 (2003).

    CAS  PubMed  Google Scholar 

  35. Kol, S. & Humaidan, P. IVF and the exogenous progesterone-free luteal phase. Curr. Opin. Obstet. Gynecol. 33, 188–195 (2021).

    PubMed  Google Scholar 

  36. Vuong, L. N. et al. The early luteal hormonal profile in IVF patients triggered with hCG. Hum. Reprod. 35, 157–166 (2020).

    CAS  PubMed  Google Scholar 

  37. Human Fertilisation and Embryology Authority. Fertility treatment 2021: preliminary trends and figures. Human Fertilisation and Embryology Authority https://www.hfea.gov.uk/about-us/publications/research-and-data/fertility-treatment-2021-preliminary-trends-and-figures/#table-of-contents (2023).

  38. Centers for Disease Control and Prevention. 2020 national ART summary. Centers for Disease Control and Prevention https://www.cdc.gov/art/reports/2020/summary.html#table (2023).

  39. Ranisavljevic, N. et al. Low luteal serum progesterone levels are associated with lower ongoing pregnancy and live birth rates in ART: systematic review and meta-analyses. Front. Endocrinol. 13, 892753 (2022).

    Google Scholar 

  40. Zaat, T. et al. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst. Rev. 2, CD011184 (2021).

    PubMed  Google Scholar 

  41. Chen, Z. J. & Legro, R. S. Fresh versus frozen embryos in polycystic ovary syndrome. N. Engl. J. Med. 375, e42 (2016).

    PubMed  Google Scholar 

  42. Acharya, K. S. et al. Freezing of all embryos in in vitro fertilization is beneficial in high responders, but not intermediate and low responders: an analysis of 82,935 cycles from the Society for Assisted Reproductive Technology registry. Fertil. Steril. 110, 880–887 (2018).

    PubMed  Google Scholar 

  43. Vuong, L. N. et al. IVF transfer of fresh or frozen embryos in women without polycystic ovaries. N. Engl. J. Med. 378, 137–147 (2018).

    PubMed  Google Scholar 

  44. Mizrachi, Y. et al. Should women receive luteal support following natural cycle frozen embryo transfer? A systematic review and meta-analysis. Hum. Reprod. Update 27, 643–650 (2021).

    PubMed  Google Scholar 

  45. Bortoletto, P., Prabhu, M. & Baker, V. L. Association between programmed frozen embryo transfer and hypertensive disorders of pregnancy. Fertil. Steril. 118, 839–848 (2022).

    PubMed  Google Scholar 

  46. Shah, N. M., Lai, P. F., Imami, N. & Johnson, M. R. Progesterone-related immune modulation of pregnancy and labor. Front. Endocrinol. 10, 198 (2019).

    Google Scholar 

  47. Patel, B. et al. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum. Reprod. Update 21, 155–173 (2015).

    CAS  PubMed  Google Scholar 

  48. Samalecos, A. & Gellersen, B. Systematic expression analysis and antibody screening do not support the existence of naturally occurring progesterone receptor (PR)-C, PR-M, or other truncated PR isoforms. Endocrinology 149, 5872–5887 (2008).

    CAS  PubMed  Google Scholar 

  49. Gadkar-Sable, S., Shah, C., Rosario, G., Sachdeva, G. & Puri, C. Progesterone receptors: various forms and functions in reproductive tissues. Front. Biosci. 10, 2118–2130 (2005).

    CAS  PubMed  Google Scholar 

  50. Richer, J. K. et al. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J. Biol. Chem. 277, 5209–5218 (2002).

    CAS  PubMed  Google Scholar 

  51. Kaya, H. S. et al. Roles of progesterone receptor A and B isoforms during human endometrial decidualization. Mol. Endocrinol. 29, 882–895 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mangal, R. K., Wiehle, R. D., Poindexter, A. N. 3rd & Weigel, N. L. Differential expression of uterine progesterone receptor forms A and B during the menstrual cycle. J. Steroid Biochem. Mol. Biol. 63, 195–202 (1997).

    CAS  PubMed  Google Scholar 

  53. Tang, Y. T. et al. PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J. Mol. Evol. 61, 372–380 (2005).

    CAS  PubMed  Google Scholar 

  54. Krietsch, T. et al. Human homologs of the putative G protein-coupled membrane progestin receptors (mPRα, β, and γ) localize to the endoplasmic reticulum and are not activated by progesterone. Mol. Endocrinol. 20, 3146–3164 (2006).

    CAS  PubMed  Google Scholar 

  55. Su, M. T., Lee, I. W., Chen, Y. C. & Kuo, P. L. Association of progesterone receptor polymorphism with idiopathic recurrent pregnancy loss in Taiwanese Han population. J. Assist. Reprod. Genet. 28, 239–243 (2011).

    PubMed  Google Scholar 

  56. Pisarska, M. D. et al. A mutated progesterone receptor allele is more prevalent in unexplained infertility. Fertil. Steril. 80, 651–653 (2003).

    PubMed  Google Scholar 

  57. Bui, A. H., Timmons, D. B. & Young, S. L. Evaluation of endometrial receptivity and implantation failure. Curr. Opin. Obstet. Gynecol. 34, 107–113 (2022).

    PubMed  Google Scholar 

  58. Vasquez, Y. M. et al. FOXO1 regulates uterine epithelial integrity and progesterone receptor expression critical for embryo implantation. PLoS Genet. 14, e1007787 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Mukherjee, N., Sharma, R. & Modi, D. Immune alterations in recurrent implantation failure. Am. J. Reprod. Immunol. 89, e13563 (2023).

    CAS  PubMed  Google Scholar 

  60. Lissauer, D. et al. Progesterone promotes maternal-fetal tolerance by reducing human maternal T-cell polyfunctionality and inducing a specific cytokine profile. Eur. J. Immunol. 45, 2858–2872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, H. L. et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction 154, 815–825 (2017).

    CAS  PubMed  Google Scholar 

  62. Czyzyk, A., Podfigurna, A., Genazzani, A. R. & Meczekalski, B. The role of progesterone therapy in early pregnancy: from physiological role to therapeutic utility. Gynecol. Endocrinol. 33, 421–424 (2017).

    PubMed  Google Scholar 

  63. Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. 180, 5746–5753 (2008).

    CAS  PubMed  Google Scholar 

  64. Salamonsen, L. A., Evans, J., Nguyen, H. P. & Edgell, T. A. The microenvironment of human implantation: determinant of reproductive success. Am. J. Reprod. Immunol. 75, 218–225 (2016).

    PubMed  Google Scholar 

  65. Craciunas, L. et al. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis. Hum. Reprod. Update 25, 202–223 (2019).

    CAS  PubMed  Google Scholar 

  66. Sehring, J., Beltsos, A. & Jeelani, R. Human implantation: the complex interplay between endometrial receptivity, inflammation, and the microbiome. Placenta 117, 179–186 (2022).

    CAS  PubMed  Google Scholar 

  67. Enciso, M. et al. The precise determination of the window of implantation significantly improves ART outcomes. Sci. Rep. 11, 13420 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nikas, G. & Aghajanova, L. Endometrial pinopodes: some more understanding on human implantation. Reprod. Biomed. Online 4, 18–23 (2002).

    PubMed  Google Scholar 

  69. Noyes, R. W., Hertig, A. T. & Rock, J. Reprint of: dating the endometrial biopsy. Fertil. Steril. 112, e93–e115 (2019).

    CAS  PubMed  Google Scholar 

  70. Wentz, A. C. Endometrial biopsy in the evaluation of infertility. Fertil. Steril. 33, 121–124 (1980).

    CAS  PubMed  Google Scholar 

  71. Enciso, M. et al. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis. Hum. Reprod. 33, 220–228 (2018).

    CAS  PubMed  Google Scholar 

  72. Ruiz-Alonso, M., Valbuena, D., Gomez, C., Cuzzi, J. & Simon, C. Endometrial receptivity analysis (ERA): data versus opinions. Hum. Reprod. Open. 2021, hoab011 (2021).

    PubMed  PubMed Central  Google Scholar 

  73. Alsbjerg, B., Kesmodel, U. S. & Humaidan, P. Endometriosis patients benefit from high serum progesterone in hormone replacement therapy-frozen embryo transfer cycles: a cohort study. Reprod. Biomed. Online 46, 92–98 (2023).

    CAS  PubMed  Google Scholar 

  74. Simon, C. et al. A 5-year multicentre randomized controlled trial comparing personalized, frozen and fresh blastocyst transfer in IVF. Reprod. Biomed. Online 41, 402–415 (2020).

    CAS  PubMed  Google Scholar 

  75. Luo, R. et al. Personalized versus standard frozen-thawed embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis. J. Assist. Reprod. Genet. 40, 719–734 (2023).

    PubMed  Google Scholar 

  76. Doyle, N. et al. Effect of timing by endometrial receptivity testing vs standard timing of frozen embryo transfer on live birth in patients undergoing in vitro fertilization: a randomized clinical trial. JAMA 328, 2117–2125 (2022).

    PubMed  PubMed Central  Google Scholar 

  77. Vilella, F. et al. Endometrial fluid transcriptomics as a new non-invasive diagnostic method of uterine receptivity [abstract O-116]. Fertil. Steril. 108 (Suppl. 3), e48 (2017).

    Google Scholar 

  78. Wang, W. et al. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 26, 1644–1653 (2020).

    CAS  PubMed  Google Scholar 

  79. Labarta, E. et al. Analysis of serum and endometrial progesterone in determining endometrial receptivity. Hum. Reprod. 36, 2861–2870 (2021).

    CAS  PubMed  Google Scholar 

  80. Vargas, E. et al. The mid-secretory endometrial transcriptomic landscape in endometriosis: a meta-analysis. Hum. Reprod. Open. 2022, hoac016 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Likes, C. E. et al. Medical or surgical treatment before embryo transfer improves outcomes in women with abnormal endometrial BCL6 expression. J. Assist. Reprod. Genet. 36, 483–490 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. Bu, Z., Wang, K., Dai, W. & Sun, Y. Endometrial thickness significantly affects clinical pregnancy and live birth rates in frozen-thawed embryo transfer cycles. Gynecol. Endocrinol. 32, 524–528 (2016).

    PubMed  Google Scholar 

  83. Mahutte, N. et al. Optimal endometrial thickness in fresh and frozen-thaw in vitro fertilization cycles: an analysis of live birth rates from 96,000 autologous embryo transfers. Fertil. Steril. 117, 792–800 (2022).

    PubMed  Google Scholar 

  84. Liu, K. E., Hartman, M., Hartman, A., Luo, Z. C. & Mahutte, N. The impact of a thin endometrial lining on fresh and frozen-thaw IVF outcomes: an analysis of over 40 000 embryo transfers. Hum. Reprod. 33, 1883–1888 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Haas, J. et al. Endometrial compaction (decreased thickness) in response to progesterone results in optimal pregnancy outcome in frozen-thawed embryo transfers. Fertil. Steril. 112, 503–509.e1 (2019).

    CAS  PubMed  Google Scholar 

  86. Shah, J. S. et al. Endometrial compaction does not predict live birth in single euploid frozen embryo transfers: a prospective study. Hum. Reprod. 37, 980–987 (2022).

    CAS  PubMed  Google Scholar 

  87. Fanchin, R. et al. Uterine contractility decreases at the time of blastocyst transfers. Hum. Reprod. 16, 1115–1119 (2001).

    CAS  PubMed  Google Scholar 

  88. Melo, P. et al. The effect of frozen embryo transfer regimen on the association between serum progesterone and live birth: a multicentre prospective cohort study (ProFET). Hum. Reprod. Open. 2022, hoac054 (2022).

    PubMed  PubMed Central  Google Scholar 

  89. Gonzalez-Foruria, I. et al. Clinically significant intra-day variability of serum progesterone levels during the final day of oocyte maturation: a prospective study with repeated measurements. Hum. Reprod. 34, 1551–1558 (2019).

    CAS  PubMed  Google Scholar 

  90. Thomsen, L. H., Kesmodel, U. S., Andersen, C. Y. & Humaidan, P. Daytime variation in serum progesterone during the mid-luteal phase in women undergoing in vitro fertilization treatment. Front. Endocrinol. 9, 92 (2018).

    Google Scholar 

  91. Hull, M. G., Savage, P. E., Bromham, D. R., Ismail, A. A. & Morris, A. F. The value of a single serum progesterone measurement in the midluteal phase as a criterion of a potentially fertile cycle (“ovulation”) derived from treated and untreated conception cycles. Fertil. Steril. 37, 355–360 (1982).

    CAS  PubMed  Google Scholar 

  92. Nadji, P., Reyniak, J. V., Sedlis, A., Szarowski, D. H. & Bartosik, D. Endometrial dating correlated with progesterone levels. Obstet. Gynecol. 45, 193–194 (1975).

    CAS  PubMed  Google Scholar 

  93. Melo, P. et al. Serum luteal phase progesterone in women undergoing frozen embryo transfer in assisted conception: a systematic review and meta-analysis. Fertil. Steril. 116, 1534–1556 (2021).

    CAS  PubMed  Google Scholar 

  94. Jordan, J., Craig, K., Clifton, D. K. & Soules, M. R. Luteal phase defect: the sensitivity and specificity of diagnostic methods in common clinical use. Fertil. Steril. 62, 54–62 (1994).

    CAS  PubMed  Google Scholar 

  95. Schliep, K. C. et al. Luteal phase deficiency in regularly menstruating women: prevalence and overlap in identification based on clinical and biochemical diagnostic criteria. J. Clin. Endocrinol. Metab. 99, E1007–E1014 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Hinney, B., Henze, C., Kuhn, W. & Wuttke, W. The corpus luteum insufficiency: a multifactorial disease. J. Clin. Endocrinol. Metab. 81, 565–570 (1996).

    CAS  PubMed  Google Scholar 

  97. Salazar, E. L. & Calzada, L. The role of progesterone in endometrial estradiol- and progesterone-receptor synthesis in women with menstrual disorders and habitual abortion. Gynecol. Endocrinol. 23, 222–225 (2007).

    CAS  PubMed  Google Scholar 

  98. Check, J. H. & Adelson, H. G. The efficacy of progesterone in achieving successful pregnancy: II. In women with pure luteal phase defects. Int. J. Fertil. 32, 139–141 (1987).

    CAS  PubMed  Google Scholar 

  99. Check, J. H., Liss, J. R., DiAntonio, G. & Summers, D. Efficacy of a single injection of human chorionic gonadotropin at peak follicular maturation in natural cycles on pregnancy rate and mid-luteal hormonal and sonographic parameters. Clin. Exp. Obstet. Gynecol. 43, 328–329 (2016).

    CAS  PubMed  Google Scholar 

  100. Arce, J. C., Balen, A., Platteau, P., Pettersson, G. & Andersen, A. N. Mid-luteal progesterone concentrations are associated with live birth rates during ovulation induction. Reprod. Biomed. Online 22, 449–456 (2011).

    CAS  PubMed  Google Scholar 

  101. Uyanik, E. et al. A drop in serum progesterone from oocyte pick-up +3 days to +5 days in fresh blastocyst transfer, using hCG-trigger and standard luteal support, is associated with lower ongoing pregnancy rates. Hum. Reprod. 38, 225–236 (2023).

    CAS  PubMed  Google Scholar 

  102. Abbassi-Ghanavati, M., Greer, L. G. & Cunningham, F. G. Pregnancy and laboratory studies: a reference table for clinicians. Obstet. Gynecol. 114, 1326–1331 (2009).

    CAS  PubMed  Google Scholar 

  103. Ku, C. W. et al. Serum progesterone distribution in normal pregnancies compared to pregnancies complicated by threatened miscarriage from 5 to 13 weeks gestation: a prospective cohort study. BMC Pregnancy Childbirth 18, 360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ku, C. W. et al. Gestational age-specific normative values and determinants of serum progesterone through the first trimester of pregnancy. Sci. Rep. 11, 4161 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Andersen, A. N. et al. Ovarian and placental hormones during prolactin suppression and stimulation in early human pregnancy. Clin. Endocrinol. 13, 151–155 (1980).

    CAS  Google Scholar 

  106. Neumann, K., Depenbusch, M., Schultze-Mosgau, A. & Griesinger, G. Characterization of early pregnancy placental progesterone production by use of dydrogesterone in programmed frozen-thawed embryo transfer cycles. Reprod. Biomed. Online 40, 743–751 (2020).

    CAS  PubMed  Google Scholar 

  107. Coomarasamy, A. et al. A randomized trial of progesterone in women with bleeding in early pregnancy. N. Engl. J. Med. 9, 1815–1824 (2019).

    Google Scholar 

  108. McLindon, L. A. et al. Progesterone for women with threatened miscarriage (STOP trial): a placebo-controlled randomized clinical trial. Hum. Reprod. 38, 560–568 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Coomarasamy, A. et al. A randomized trial of progesterone in women with recurrent miscarriages. N. Engl. J. Med. 373, 2141–2148 (2015).

    CAS  PubMed  Google Scholar 

  110. Azuma, K., Calderon, I., Besanko, M., MacLachlan, V. & Healy, D. L. Is the luteo-placental shift a myth? Analysis of low progesterone levels in successful art pregnancies. J. Clin. Endocrinol. Metab. 77, 195–198 (1993).

    CAS  PubMed  Google Scholar 

  111. Labarta, E. et al. Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum. Reprod. 26, 1813–1825 (2011).

    CAS  PubMed  Google Scholar 

  112. Kolibianakis, E. M., Venetis, C. A., Bontis, J. & Tarlatzis, B. C. Significantly lower pregnancy rates in the presence of progesterone elevation in patients treated with GnRH antagonists and gonadotrophins: a systematic review and meta-analysis. Curr. Pharm. Biotechnol. 13, 464–470 (2012).

    CAS  PubMed  Google Scholar 

  113. Venetis, C. A., Kolibianakis, E. M., Bosdou, J. K. & Tarlatzis, B. C. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60 000 cycles. Hum. Reprod. Update 19, 433–457 (2013).

    CAS  PubMed  Google Scholar 

  114. Griesinger, G. et al. Progesterone elevation does not compromise pregnancy rates in high responders: a pooled analysis of in vitro fertilization patients treated with recombinant follicle-stimulating hormone/gonadotropin-releasing hormone antagonist in six trials. Fertil. Steril. 100, 1622–1628.e3 (2013).

    CAS  PubMed  Google Scholar 

  115. Requena, A., Cruz, M., Bosch, E., Meseguer, M. & Garcia-Velasco, J. A. High progesterone levels in women with high ovarian response do not affect clinical outcomes: a retrospective cohort study. Reprod. Biol. Endocrinol. 12, 69 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Xu, B. et al. Serum progesterone level effects on the outcome of in vitro fertilization in patients with different ovarian response: an analysis of more than 10,000 cycles. Fertil. Steril. 97, 1321–1327.e4 (2012).

    CAS  PubMed  Google Scholar 

  117. Bosch, E. et al. Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: analysis of over 4000 cycles. Hum. Reprod. 25, 2092–2100 (2010).

    CAS  PubMed  Google Scholar 

  118. Alvarez, M. et al. Individualised luteal phase support in artificially prepared frozen embryo transfer cycles based on serum progesterone levels: a prospective cohort study. Hum. Reprod. 36, 1552–1560 (2021).

    CAS  PubMed  Google Scholar 

  119. Labarta, E., Mariani, G., Rodriguez-Varela, C. & Bosch, E. Individualized luteal phase support normalizes live birth rate in women with low progesterone levels on the day of embryo transfer in artificial endometrial preparation cycles. Fertil. Steril. 117, 96–103 (2022).

    CAS  PubMed  Google Scholar 

  120. Burstein, R. & Wasserman, H. C. The effect of provera on the fetus. Obstet. Gynecol. 23, 931–934 (1964).

    CAS  PubMed  Google Scholar 

  121. Tournaye, H., Sukhikh, G. T., Kahler, E. & Griesinger, G. A phase III randomized controlled trial comparing the efficacy, safety and tolerability of oral dydrogesterone versus micronized vaginal progesterone for luteal support in in vitro fertilization. Hum. Reprod. 32, 2152 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Griesinger, G. et al. Oral dydrogesterone versus intravaginal micronized progesterone gel for luteal phase support in IVF: a randomized clinical trial. Hum. Reprod. 33, 2212–2221 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Katalinic, A., Shulman, L. P., Strauss, J. F., Garcia-Velasco, J. A. & van den Anker, J. N. A critical appraisal of safety data on dydrogesterone for the support of early pregnancy: a scoping review and meta-analysis. Reprod. Biomed. Online 45, 365–373 (2022).

    CAS  PubMed  Google Scholar 

  124. Cometti, B. Pharmaceutical and clinical development of a novel progesterone formulation. Acta Obstet. Gynecol. Scand. 94, 28–37 (2015).

    CAS  PubMed  Google Scholar 

  125. Zaman, A. Y., Coskun, S., Alsanie, A. A. & Awartani, K. A. Intramuscular progesterone (Gestone) versus vaginal progesterone suppository (Cyclogest) for luteal phase support in cycles of in vitro fertilization-embryo transfer: patient preference and drug efficacy. Fertil. Res. Pract. 3, 17 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Aghsa, M. M., Rahmanpour, H., Bagheri, M., Davari-Tanha, F. & Nasr, R. A randomized comparison of the efficacy, side effects and patient convenience between vaginal and rectal administration of Cyclogest((R)) when used for luteal phase support in ICSI treatment. Arch. Gynecol. Obstet. 286, 1049–1054 (2012).

    CAS  PubMed  Google Scholar 

  127. Miles, R. A. et al. Pharmacokinetics and endometrial tissue levels of progesterone after administration by intramuscular and vaginal routes: a comparative study. Fertil. Steril. 62, 485–490 (1994).

    CAS  PubMed  Google Scholar 

  128. de Ziegler, D., Pirtea, P., Andersen, C. Y. & Ayoubi, J. M. Role of gonadotropin-releasing hormone agonists, human chorionic gonadotropin (hCG), progesterone, and estrogen in luteal phase support after hCG triggering, and when in pregnancy hormonal support can be stopped. Fertil. Steril. 109, 749–755 (2018).

    PubMed  Google Scholar 

  129. Beltsos, A. N. et al. Patients’ administration preferences: progesterone vaginal insert (Endometrin(R)) compared to intramuscular progesterone for luteal phase support. Reprod. Health 11, 78 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Young, S. L. et al. Effect of randomized serum progesterone concentration on secretory endometrial histologic development and gene expression. Hum. Reprod. 32, 1903–1914 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Baker, V. L. et al. A randomized, controlled trial comparing the efficacy and safety of aqueous subcutaneous progesterone with vaginal progesterone for luteal phase support of in vitro fertilization. Hum. Reprod. 29, 2212–2220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sator, M. et al. Pharmacokinetics and safety profile of a novel progesterone aqueous formulation administered by the s.c. route. Gynecol. Endocrinol. 29, 205–208 (2013).

    CAS  PubMed  Google Scholar 

  133. Moini, A., Arabipoor, A., Zolfaghari, Z., Sadeghi, M. & Ramezanali, F. Subcutaneous progesterone (Prolutex) versus vaginal (Cyclogest) for luteal phase support in IVF/ICSI cycles: a randomized controlled clinical trial. Middle East. Fertil. Soc. J. 27, 16 (2022).

    Google Scholar 

  134. Zargar-Shoshtari, S., Wahhabaghei, H., Mehrsai, A., Wen, J. & Alany, R. Transdermal delivery of bioidentical progesterone using dutasteride (a 5α-reductase inhibitor): a pilot study. J. Pharm. Pharm. Sci. 13, 626–636 (2010).

    CAS  PubMed  Google Scholar 

  135. Schindler, A. E. et al. Classification and pharmacology of progestins. Maturitas 46, S7–S16 (2003).

    CAS  PubMed  Google Scholar 

  136. Thomsen, L. H. et al. The impact of luteal serum progesterone levels on live birth rates – a prospective study of 602 IVF/ICSI cycles. Hum. Reprod. 33, 1506–1516 (2018).

    CAS  PubMed  Google Scholar 

  137. Oztekin, D., Senkaya, A. R., Gunes, M. E., Keskin, O. & Dogdu, I. A. Early initiation and long-term use of vaginal progesterone may cause gestational diabetes mellitus. Z. Geburtshilfe Neonatol. 226, 173–177 (2022).

    PubMed  Google Scholar 

  138. Davidovitch, M. et al. Infertility treatments during pregnancy and the risk of autism spectrum disorder in the offspring. Prog. Neuropsychopharmacol. Biol. Psychiatry 86, 175–179 (2018).

    PubMed  Google Scholar 

  139. Eng, P. C. et al. Obesity-related hypogonadism in women. Endocr. Rev. https://doi.org/10.1210/endrev/bnad027 (2023).

    Article  PubMed  Google Scholar 

  140. van der Steeg, J. W. et al. Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women. Hum. Reprod. 23, 324–328 (2008).

    PubMed  Google Scholar 

  141. Goh, J. Y., He, S., Allen, J. C., Malhotra, R. & Tan, T. C. Maternal obesity is associated with a low serum progesterone level in early pregnancy. Horm. Mol. Biol. Clin. Investig. 27, 97–100 (2016).

    CAS  PubMed  Google Scholar 

  142. Bellver, J., Rodriguez-Varela, C., Brandao, P. & Labarta, E. Serum progesterone concentrations are reduced in obese women on the day of embryo transfer. Reprod. Biomed. Online 45, 679–687 (2022).

    CAS  PubMed  Google Scholar 

  143. Chi, H. et al. Vaginal progesterone gel is non-inferior to intramuscular progesterone in efficacy with acceptable tolerability for luteal phase support: a prospective, randomized, multicenter study in China. Eur. J. Obstet. Gynecol. Reprod. Biol. 237, 100–105 (2019).

    CAS  PubMed  Google Scholar 

  144. Dal Prato, L. et al. Vaginal gel versus intramuscular progesterone for luteal phase supplementation: a prospective randomized trial. Reprod. Biomed. Online 16, 361–367 (2008).

    CAS  PubMed  Google Scholar 

  145. Yanushpolsky, E., Hurwitz, S., Greenberg, L., Racowsky, C. & Hornstein, M. Crinone vaginal gel is equally effective and better tolerated than intramuscular progesterone for luteal phase support in in vitro fertilization-embryo transfer cycles: a prospective randomized study. Fertil. Steril. 94, 2596–2599 (2010).

    CAS  PubMed  Google Scholar 

  146. Zegers-Hochschild, F. et al. Prospective randomized trial to evaluate the efficacy of a vaginal ring releasing progesterone for IVF and oocyte donation. Hum. Reprod. 15, 2093–2097 (2000).

    CAS  PubMed  Google Scholar 

  147. Abate, A. et al. Intramuscular versus vaginal administration of progesterone for luteal phase support after in vitro fertilization and embryo transfer. A comparative randomized study. Clin. Exp. Obstet. Gynecol. 26, 203–206 (1999).

    CAS  PubMed  Google Scholar 

  148. Perino, M. et al. Intramuscular versus vaginal progesterone in assisted reproduction: a comparative study. Clin. Exp. Obstet. Gynecol. 24, 228–231 (1997).

    CAS  PubMed  Google Scholar 

  149. Propst, A. M. et al. A randomized study comparing Crinone 8% and intramuscular progesterone supplementation in in vitro fertilization-embryo transfer cycles. Fertil. Steril. 76, 1144–1149 (2001).

    CAS  PubMed  Google Scholar 

  150. Connell, M. T. et al. Timing luteal support in assisted reproductive technology: a systematic review. Fertil. Steril. 103, 939–946.e3 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Goudge, C. S., Nagel, T. C. & Damario, M. A. Duration of progesterone-in-oil support after in vitro fertilization and embryo transfer: a randomized, controlled trial. Fertil. Steril. 94, 946–951 (2010).

    CAS  PubMed  Google Scholar 

  152. Mochtar, M. H., Van Wely, M. & Van der Veen, F. Timing luteal phase support in GnRH agonist down-regulated IVF/embryo transfer cycles. Hum. Reprod. 21, 905–908 (2006).

    CAS  PubMed  Google Scholar 

  153. Nyboe Andersen, A. et al. Progesterone supplementation during early gestations after IVF or ICSI has no effect on the delivery rates: a randomized controlled trial. Hum. Reprod. 17, 357–361 (2002).

    CAS  PubMed  Google Scholar 

  154. Serour, A. G. Luteal phase support in fresh IVF/ICSI cycles. Int. J. Gynecol. Obstet. 119, S533 (2012).

    Google Scholar 

  155. Liu, X. R., Mu, H. Q., Shi, Q., Xiao, X. Q. & Qi, H. B. The optimal duration of progesterone supplementation in pregnant women after IVF/ICSI: a meta-analysis. Reprod. Biol. Endocrinol. 10, 107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Di Guardo, F. et al. Luteal phase support in IVF: comparison between evidence-based medicine and real-life practices. Front. Endocrinol. 11, 500 (2020).

    Google Scholar 

  157. Segal, L., Breyzman, T. & Kol, S. Luteal phase support post IVF: individualized early stop. Reprod. Biomed. Online 31, 633–637 (2015).

    CAS  PubMed  Google Scholar 

  158. Kim, C. H. et al. The effect of luteal phase progesterone supplementation on natural frozen-thawed embryo transfer cycles. Obstet. Gynecol. Sci. 57, 291–296 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Jiang, Y. et al. The effect of progesterone supplementation for luteal phase support in natural cycle frozen embryo transfer: a systematic review and meta-analysis based on randomized controlled trials. Fertil. Steril. 119, 597–605 (2023).

    CAS  PubMed  Google Scholar 

  160. Weissman, A. Results: frozen-thawed embryo transfer. IVF Worldwide https://ivf-worldwide.com/survey/frozen-thawed-embryo-transfer/results-frozen-thawed-embryo-transfer.html (2008).

  161. Wånggren, K., Dahlgren Granbom, M., Iliadis, S. I., Gudmundsson, J. & Stavreus-Evers, A. Progesterone supplementation in natural cycles improves live birth rates after embryo transfer of frozen-thawed embryos – a randomized controlled trial. Hum. Reprod. 37, 2366–2374 (2022).

    PubMed  PubMed Central  Google Scholar 

  162. Devine, K., Richter, K. S., Jahandideh, S., Widra, E. A. & McKeeby, J. L. Intramuscular progesterone optimizes live birth from programmed frozen embryo transfer: a randomized clinical trial. Fertil. Steril. 116, 633–643 (2021).

    CAS  PubMed  Google Scholar 

  163. Zarei, A. et al. Comparison of four protocols for luteal phase support in frozen-thawed embryo transfer cycles: a randomized clinical trial. Arch. Gynecol. Obstet. 295, 239–246 (2017).

    PubMed  Google Scholar 

  164. Neumann, K. et al. Dydrogesterone and 20α-dihydrodydrogesterone plasma levels on day of embryo transfer and clinical outcome in an anovulatory programmed frozen-thawed embryo transfer cycle: a prospective cohort study. Hum. Reprod. 37, 1183–1193 (2022).

    CAS  PubMed  Google Scholar 

  165. Humaidan, P. et al. The exogenous progesterone-free luteal phase: two pilot randomized controlled trials in IVF patients. Reprod. Biomed. Online 42, 1108–1118 (2021).

    CAS  PubMed  Google Scholar 

  166. Andersen, C. Y., Fischer, R., Giorgione, V. & Kelsey, T. W. Micro-dose hCG as luteal phase support without exogenous progesterone administration: mathematical modelling of the hCG concentration in circulation and initial clinical experience. J. Assist. Reprod. Genet. 33, 1311–1318 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. Andersen, C. Y. et al. Daily low-dose hCG stimulation during the luteal phase combined with GnRHa triggered IVF cycles without exogenous progesterone: a proof of concept trial. Hum. Reprod. 30, 2387–2395 (2015).

    CAS  PubMed  Google Scholar 

  168. Kayacik Gunday, Ö. et al. The effect of hCG day progesterone in 1318 cycles on pregnancy outcomes: ongoing discussion. Ginekol. Pol. https://doi.org/10.5603/GP.a2022.0114 (2023).

    Article  PubMed  Google Scholar 

  169. Lee, C. I. et al. Early progesterone change associated with pregnancy outcome after fresh embryo transfer in assisted reproduction technology cycles with progesterone level of >1.5 ng/ml on human chorionic gonadotropin trigger day. Front. Endocrinol. 11, 653 (2020).

    Google Scholar 

  170. Santos-Ribeiro, S. et al. Evaluating the benefit of measuring serum progesterone prior to the administration of HCG: effect of the duration of late-follicular elevated progesterone following ovarian stimulation on fresh embryo transfer live birth rates. Reprod. Biomed. Online 38, 647–654 (2019).

    CAS  PubMed  Google Scholar 

  171. Venetis, C. A. et al. Estimating the net effect of progesterone elevation on the day of hCG on live birth rates after IVF: a cohort analysis of 3296 IVF cycles. Hum. Reprod. 30, 684–691 (2015).

    CAS  PubMed  Google Scholar 

  172. Huang, Y. et al. Progesterone elevation on the day of human chorionic gonadotropin administration adversely affects the outcome of IVF with transferred embryos at different developmental stages. Reprod. Biol. Endocrinol. 13, 82 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Volovsky, M., Pakes, C., Rozen, G. & Polyakov, A. Do serum progesterone levels on day of embryo transfer influence pregnancy outcomes in artificial frozen-thaw cycles. J. Assist. Reprod. Genet. 37, 1129–1135 (2020).

    PubMed  PubMed Central  Google Scholar 

  174. Akaeda, S., Kobayashi, D., Shioda, K. & Mamoeda, M. Relationship between serum progesterone concentrations and pregnancy rates in hormone replacement treatment-frozen embryo transfer using progesterone vaginal tablets. Clin. Exp. Obstet. Gynecol. 46, 695–698 (2019).

    Google Scholar 

  175. Netter, A. et al. Do early luteal serum progesterone levels predict the reproductive outcomes in IVF with oral dydrogesterone for luteal phase support. PLoS ONE 14, e0220450 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Benmachiche, A., Benbouhedja, S., Zoghmar, A. & Al Humaidan, P. S. H. The impact of preovulatory versus midluteal serum progesterone level on live birth rates during fresh embryo transfer. PLoS ONE 16, e0246440 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Pouly, J. L. et al. Luteal support after in-vitro fertilization: crinone 8%, a sustained release vaginal progesterone gel, versus Utrogestan, an oral micronized progesterone. Hum. Reprod. 11, 2085–2089 (1996).

    CAS  PubMed  Google Scholar 

  178. Iwase, A. et al. Oral progestogen versus intramuscular progesterone for luteal support after assisted reproductive technology treatment: a prospective randomized study. Arch. Gynecol. Obstet. 277, 319–324 (2008).

    CAS  PubMed  Google Scholar 

  179. Lockwood, G., Griesinger, G. & Cometti, B., 13 European Centers. Subcutaneous progesterone versus vaginal progesterone gel for luteal phase support in in vitro fertilization: a noninferiority randomized controlled study. Fertil. Steril. 101, 112–119.e3 (2014).

    CAS  PubMed  Google Scholar 

  180. Tay, P. Y. & Lenton, E. A. The impact of luteal supplement on pregnancy outcome following stimulated IVF cycles. Med. J. Malays. 60, 151–157 (2005).

    CAS  Google Scholar 

  181. Bergh, C. & Lindenberg, S., Nordic Crinone Study Group A prospective randomized multicentre study comparing vaginal progesterone gel and vaginal micronized progesterone tablets for luteal support after in vitro fertilization/intracytoplasmic sperm injection. Hum. Reprod. 27, 3467–3473 (2012).

    CAS  PubMed  Google Scholar 

  182. Doody, K. J. et al. Endometrin for luteal phase support in a randomized, controlled, open-label, prospective in-vitro fertilization trial using a combination of Menopur and Bravelle for controlled ovarian hyperstimulation. Fertil. Steril. 91, 1012–1017 (2009).

    CAS  PubMed  Google Scholar 

  183. Gao, J. et al. Effect of the initiation of progesterone supplementation in in vitro fertilization-embryo transfer outcomes: a prospective randomized controlled trial. Fertil. Steril. 109, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  184. Bjuresten, K., Landgren, B. M., Hovatta, O. & Stavreus-Evers, A. Luteal phase progesterone increases live birth rate after frozen embryo transfer. Fertil. Steril. 95, 534–537 (2011).

    CAS  PubMed  Google Scholar 

  185. Seikkula, J. et al. Effect of mid-luteal phase GnRH agonist on frozen-thawed embryo transfers during natural menstrual cycles: a randomised clinical pilot study. Gynecol. Endocrinol. 32, 961–964 (2016).

    CAS  PubMed  Google Scholar 

  186. Lee, V. C. Y., Li, R. H. W., Yeung, W. S. B., Pak Chung, H. O. & Ng, E. H. Y. A randomized double-blinded controlled trial of hCG as luteal phase support in natural cycle frozen embryo transfer. Hum. Reprod. 32, 1130–1137 (2017).

    CAS  PubMed  Google Scholar 

  187. Horowitz, E. et al. A randomized controlled trial of vaginal progesterone for luteal phase support in modified natural cycle – frozen embryo transfer. Gynecol. Endocrinol. 37, 792–797 (2021).

    CAS  PubMed  Google Scholar 

  188. Pabuccu, E. et al. Oral, vaginal or intramuscular progesterone in programmed frozen embryo transfer cycles: a pilot randomized controlled trial. Reprod. Biomed. Online 45, 1145–1151 (2022).

    CAS  PubMed  Google Scholar 

  189. Ghaffari, F., Chekini, Z. & Vesali, S. Duration of estradiol supplementation in luteal phase support for frozen embryo transfer in hormone replacement treatment cycles: a randomized, controlled phase III trial. Arch. Gynecol. Obstet. 305, 767–775 (2022).

    CAS  PubMed  Google Scholar 

  190. Rashidi, B. H., Ghazizadeh, M., Nejad, E. S. T., Bagheri, M. & Gorginzadeh, M. Oral dydrogesterone for luteal support in frozen-thawed embryo transfer artificial cycles: a pilot randomized controlled trial. Asian Pac. J. Reprod. 5, 490–494 (2016).

    Google Scholar 

  191. Devine, K., Richter, K. S., Widra, E. A. & McKeeby, J. L. Vitrified blastocyst transfer cycles with the use of only vaginal progesterone replacement with endometrin have inferior ongoing pregnancy rates: results from the planned interim analysis of a three-arm randomized controlled noninferiority trial. Fertil. Steril. 109, 266–275 (2018).

    CAS  PubMed  Google Scholar 

  192. Stricker, R. et al. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin. Chem. Lab. Med. 44, 883–887 (2006).

    CAS  PubMed  Google Scholar 

  193. Chi, R. A. et al. Human endometrial transcriptome and progesterone receptor cistrome reveal important pathways and epithelial regulators. J. Clin. Endocrinol. Metab. 105, e1419–e1439 (2020).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.G., A.P.Z., A.C.Y., R.A., R.C., A.H. and A.I. researched data for the article. A.G., A.P.Z., A.C.Y., S.M.N., A.V.B. and A.A. contributed substantially to discussion of the content. A.G., A.P.Z., A.C.Y. and A.A. wrote the article. S.M.N., A.V.B., W.S.D. and A.A. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ali Abbara.

Ethics declarations

Competing interests

A.A. and W.S.D. have consulted for Myovant Sciences Ltd. S.M.N. has participated in Advisory Boards and received consultancy or speakers’ fees from Access Fertility, Beckman Coulter, Ferring, Finox, Merck, Modern Fertility, MSD, Roche Diagnostics, and The Fertility Partnership. The other authors report no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Diane M. Duffy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A., Zielinska, A.P., Yeung, A.C. et al. Luteal phase support in assisted reproductive technology. Nat Rev Endocrinol 20, 149–167 (2024). https://doi.org/10.1038/s41574-023-00921-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00921-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing