Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macrophage and T cell networks in adipose tissue

Abstract

The signals and structure of the tissues in which leukocytes reside critically mould leukocyte function and development and have challenged our fundamental understanding of how to define and categorize tissue-resident immune cells. One specialized tissue niche that has a powerful effect on immune cell function is adipose tissue. The field of adipose tissue leukocyte biology has expanded dramatically and has revealed how tissue niches can shape immune cell function and reshape them in a setting of metabolic stress, such as obesity. Most notably, adipose tissue macrophages and T cells are under intense investigation due to their contributions to adipose tissue in the lean and obese states. Both adipose tissue macrophages and T cells have features associated with the metabolic function of adipose tissue that are distinct from features of macrophages and T cells that are classically characterized in other tissues. This Review provides state-of-the-art understanding of adipose tissue macrophages and T cells and discusses how their unique niche can help us to better understand diversity in leukocyte responses.

Key points

  • Adipose tissue macrophages (ATMs) and adipose tissue T cells interact in the unique adipose microenvironment, and their functions change dynamically with obesity.

  • Crosstalk between adipocytes, ATMs and adipose tissue T cells during obesity has important roles in contributing to the development of metabolic disease.

  • Our view of ATM diversity has been expanded by transcriptomic and experimental evidence, which revealed how ATMs diverge from classic macrophages.

  • Adipose tissue T cells become exhausted during obesity owing to chronic antigen stimulation within the adipose tissue microenvironment, and the antigens that drive these responses are under investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two perspectives on immunometabolism.
Fig. 2: ATM diversity.
Fig. 3: Functions of ATMs.
Fig. 4: Induction and expansion of VAT Treg cells.
Fig. 5: Integration of adipocyte, ATM and adipose tissue T cell signalling during obesity.

Similar content being viewed by others

References

  1. Mathis, D. & Shoelson, S. E. Immunometabolism: an emerging frontier. Nat. Rev. Immunol. 11, 81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heintzman, D. R., Fisher, E. L. & Rathmell, J. C. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol. Immunol. 19, 316–326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karagiannis, F. et al. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature 609, 801–807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Rourke, R. W. & Lumeng, C. N. Pathways to severe COVID-19 for people with obesity. Obesity 29, 645–653 (2021).

    Article  PubMed  Google Scholar 

  7. Tanzi, R. E. TREM2 and risk of Alzheimer’s disease — friend or foe? N. Engl. J. Med. 372, 2564–2565 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75, 644–660 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Loft, A. et al. A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metab. 34, 473–486 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316, 552–554 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Patel, H. J. & Patel, B. M. TNF-α and cancer cachexia: molecular insights and clinical implications. Life Sci. 170, 56–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahlakõiv, T. et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. 4, eaax0416 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weinstock, A., Moura Silva, H., Moore, K. J., Schmidt, A. M. & Fisher, E. A. Leukocyte heterogeneity in adipose tissue, including in obesity. Circ. Res. 126, 1590–1612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang Loureiro, Z., Solivan-Rivera, J. & Corvera, S. Adipocyte heterogeneity underlying adipose tissue functions. Endocrinology 163, bqab138 (2022).

    Article  PubMed  Google Scholar 

  18. Wang, W. & Seale, P. Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 17, 691–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burl, R. B. et al. Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300–309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burl, R. B., Rondini, E. A., Wei, H., Pique-Regi, R. & Granneman, J. G. Deconstructing cold-induced brown adipocyte neogenesis in mice. eLife 11, e80167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosina, M. et al. Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metab. 34, 533–548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joffin, N. et al. Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations. Nat. Metab. 4, 1474–1494 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, Y. H., Kim, S. N., Kwon, H. J., Maddipati, K. R. & Granneman, J. G. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R55–R65 (2016).

    Article  PubMed  Google Scholar 

  25. Lee, Y. H., Petkova, A. P. & Granneman, J. G. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 18, 355–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, Y., Jun, H. & Wu, J. Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism. Trends Immunol. 43, 718–727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jun, H. et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat. Med. 24, 814–822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silva, H. M. et al. Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. J. Exp. Med. 216, 786–806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  PubMed  Google Scholar 

  30. Hassnain Waqas, S. F. et al. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J. Leukoc. Biol. 102, 845–855 (2017).

    Article  PubMed  Google Scholar 

  31. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muir, L. A. et al. Frontline science: rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages. J. Leukoc. Biol. 103, 615–628 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Chavakis, T., Alexaki, V. I. & Ferrante, A. W. Jr. Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat. Immunol. 24, 757–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Felix, I. et al. Single-cell proteomics reveals the defined heterogeneity of resident macrophages in white adipose tissue. Front. Immunol. 12, 719979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cox, N. et al. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 373, eabe9383 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magalhaes, M. S. et al. Role of Tim4 in the regulation of ABCA1+ adipose tissue macrophages and post-prandial cholesterol levels. Nat. Commun. 12, 4434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sárvári, A. K. et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 33, 437–453 (2021).

    Article  PubMed  Google Scholar 

  41. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Lumeng, C. N., Deyoung, S. M., Bodzin, J. L. & Saltiel, A. R. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Muir, L. A. et al. Human CD206+ macrophages associate with diabetes and adipose tissue lymphoid clusters. JCI Insight 7, e146563 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Chang, M. C., Eslami, Z., Ennis, M. & Goodwin, P. J. Crown-like structures in breast adipose tissue of breast cancer patients: associations with CD68 expression, obesity, metabolic factors and prognosis. npj Breast Cancer 7, 97 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hill, D. A. et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc. Natl Acad. Sci. USA 115, E5096–E5105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hata, M. et al. Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 379, 45–62 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Nash, M. J. et al. Maternal diet alters long-term innate immune cell memory in fetal and juvenile hematopoietic stem and progenitor cells in nonhuman primate offspring. Cell Rep. 42, 112393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bonnefond, A. et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat. Genet. 45, 1040–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Pasupuleti, S. K. et al. Obesity-induced inflammation exacerbates clonal hematopoiesis. J. Clin. Invest. 133, e163968 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fuster, J. J. et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep. 33, 108326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morris, D. L. et al. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes 62, 2762–2772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou, Z. et al. CX3CR1hi macrophages sustain metabolic adaptation by relieving adipose-derived stem cell senescence in visceral adipose tissue. Cell Rep. 42, 112424 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Flaherty, S. E. 3rd et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science 363, 989–993 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 34, 1499–1513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Domingo-Gonzalez, R. & Moore, B. B. Defective pulmonary innate immune responses post-stem cell transplantation; review and results from one model system. Front. Immunol. 4, 126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wu, H. et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115, 1029–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Raphael, I., Nalawade, S., Eagar, T. N. & Forsthuber, T. G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74, 5–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kondĕlková, K. et al. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Med. 53, 73–77 (2010).

    Google Scholar 

  67. Campbell, C. & Rudensky, A. Roles of regulatory T cells in tissue pathophysiology and metabolism. Cell Metab. 31, 18–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McLaughlin, T. et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler. Thromb. Vasc. Biol. 34, 2637–2643 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, B. et al. OX40 promotes obesity-induced adipose inflammation and insulin resistance. Cell. Mol. Life Sci. 74, 3827–3840 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Strissel, K. J. et al. T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity 18, 1918–1925 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Rocha, V. Z. et al. Interferon-γ, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ. Res. 103, 467–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy: CD4+ T cells control glucose homeostasis. Nat. Med. 15, 921–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    Article  CAS  PubMed  Google Scholar 

  75. Stolarczyk, E. et al. Improved insulin sensitivity despite increased visceral adiposity in mice deficient for the immune cell transcription factor T-bet. Cell Metab. 17, 520–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, N. & Bevan, M. J. CD8+ T cells: foot soldiers of the immune system. Immunity 35, 161–168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rausch, M. E., Weisberg, S., Vardhana, P. & Tortoriello, D. V. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int. J. Obes. 32, 451–463 (2008).

    Article  CAS  Google Scholar 

  78. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Kiran, S., Kumar, V., Murphy, E. A., Enos, R. T. & Singh, U. P. High fat diet-induced CD8+ T cells in adipose tissue mediate macrophages to sustain low-grade chronic inflammation. Front. Immunol. 12, 680944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maurice, N. J., McElrath, M. J., Andersen-Nissen, E., Frahm, N. & Prlic, M. CXCR3 enables recruitment and site-specific bystander activation of memory CD8+ T cells. Nat. Commun. 10, 4987 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bluestone, J. A. & Abbas, A. K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Kolodin, D. et al. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 21, 543–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, C. et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-treg phenotype. Cell 174, 285–299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, C. et al. Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab. 33, 1610–1623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vasanthakumar, A. et al. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579, 581–585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pennock, N. D. et al. T cell responses: naive to memory and everything in between. Adv. Physiol. Educ. 37, 273–283 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Han, S. J. et al. White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity 47, 1154–1168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Misumi, I. et al. Obesity expands a distinct population of T cells in adipose tissue and increases vulnerability to infection. Cell Rep. 27, 514–524 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McDonnell, W. J. et al. High CD8 T-cell receptor clonality and altered CDR3 properties are associated with elevated isolevuglandins in adipose tissue during diet-induced obesity. Diabetes 67, 2361–2376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Madi, A. et al. T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity. Genome Res. 24, 1603–1612 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Patrick, D. M. et al. Isolevuglandins disrupt PU.1-mediated C1q expression and promote autoimmunity and hypertension in systemic lupus erythematosus. JCI Insight 7, e136678 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Van Kaer, L. NKT cells: T lymphocytes with innate effector functions. Curr. Opin. Immunol. 19, 354–364 (2007).

    Article  PubMed  Google Scholar 

  95. Satoh, M. et al. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice. Sci. Rep. 6, 28473 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huh, J. Y. et al. Deletion of CD1d in adipocytes aggravates adipose tissue inflammation and insulin resistance in obesity. Diabetes 66, 835–847 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Porsche, C. E., Delproposto, J. B., Geletka, L., O’Rourke, R. & Lumeng, C. N. Obesity results in adipose tissue T cell exhaustion. JCI Insight 6, e139793 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shirakawa, K. et al. Negative legacy of obesity. PLoS ONE 12, e0186303 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cottam, M. A., Caslin, H. L., Winn, N. C. & Hasty, A. H. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat. Commun. 13, 2950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Macdougall, C. E. et al. Visceral adipose tissue immune homeostasis is regulated by the crosstalk between adipocytes and dendritic cell subsets. Cell Metab. 27, 588–601 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Blaszczak, A. M. et al. Loss of antigen presentation in adipose tissue macrophages or in adipocytes, but not both, improves glucose metabolism. J. Immunol. 202, 2451–2459 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Vijay, J. et al. Single-cell analysis of human adipose tissue identifies depot- and disease-specific cell types. Nat. Metab. 2, 97–109 (2020).

    Article  PubMed  Google Scholar 

  104. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deng, T. et al. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 17, 411–422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cho, K. W. et al. An MHC II-dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation. Cell Rep. 9, 605–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Onodera, T. et al. Adipose tissue macrophages induce PPARγ-high FOXP3+ regulatory T cells. Sci. Rep. 5, 16801 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abella, V. et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 13, 100–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. de Brito Monteiro, L. et al. Leptin signaling suppression in macrophages improves immunometabolic outcomes in obesity. Diabetes 71, 1546–1561 (2022).

    Article  CAS  Google Scholar 

  112. Gerriets, V. A. et al. Leptin directly promotes T‐cell glycolytic metabolism to drive effector T‐cell differentiation in a mouse model of autoimmunity. Eur. J. Immunol. 46, 1970–1983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kiernan, K., Nichols, A. G., Alwarawrah, Y. & MacIver, N. J. Effects of T cell leptin signaling on systemic glucose tolerance and T cell responses in obesity. PLoS ONE 18, e0286470 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xiao, L. et al. Large adipocytes function as antigen-presenting cells to activate CD4+ T cells via upregulating MHCII in obesity. Int. J. Obes. 40, 112–120 (2016).

    Article  CAS  Google Scholar 

  115. Bradley, D. et al. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat. Commun. 13, 5606 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Ratter-Rieck, J. M. et al. Leukocyte counts and T-cell frequencies differ between novel subgroups of diabetes and are associated with metabolic parameters and biomarkers of inflammation. Diabetes 70, 2652–2662 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Martinez-Colon, G. J. et al. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci. Transl Med. 14, eabm9151 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Carey N. Lumeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Daniel Winer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacks, R.D., Lumeng, C.N. Macrophage and T cell networks in adipose tissue. Nat Rev Endocrinol 20, 50–61 (2024). https://doi.org/10.1038/s41574-023-00908-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00908-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing