Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer

Abstract

Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.

Key points

  • Growth hormone (GH) is important for growth and tissue remodelling, extracellular matrix formation and fibrosis.

  • Patients with acromegaly, which is characterized by excessive circulating levels of GH, have increased cardiovascular mortality that is associated with hypertension and heart failure.

  • Patients with GH deficiency have an increased risk of cardiovascular morbidity and mortality that is associated with cardiovascular risk factors and premature atherosclerosis.

  • GH actions in cancer are particularly implicated in mechanisms of therapy resistance; for example, active drug efflux, the epithelial-to-mesenchymal transition, apoptosis inhibition and development of a tumour-supportive microenvironment.

  • GH has a ‘Goldilocks effect’, where too little or too much can lead to poor clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GH overexpression in mice induces tissue fibrosis.
Fig. 2: The pleiotropic actions of GH–IGF1 on the cardiovascular system, and electrolyte and water balance in humans.
Fig. 3: Covert actions of GH in cancer.

Similar content being viewed by others

References

  1. Jorgensen, J. O. L., Johannsson, G. & Barkan, A. Should patients with adult GH deficiency receive GH replacement? Eur. J. Endocrinol. 186, D1–D15 (2021).

    Article  PubMed  Google Scholar 

  2. Ranke, M. B. & Wit, J. M. Growth hormone–past, present and future. Nat. Rev. Endocrinol. 14, 285–300 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Bernardo, A. & Houssay, M. D. The hypophysis and metabolism. N. Engl. J. Med. 214, 961–971 (1936).

    Article  Google Scholar 

  4. Guevara-Aguirre, J. et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl Med. 3, 70ra13 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Aguiar-Oliveira, M. H. & Bartke, A. Growth hormone deficiency: health and longevity. Endocr. Rev. 40, 575–601 (2019).

    Article  PubMed  Google Scholar 

  6. Milman, S., Huffman, D. M. & Barzilai, N. The somatotropic axis in human aging: framework for the current state of knowledge and future research. Cell Metab. 23, 980–989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wynn, T. A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Householder, L. A. et al. Increased fibrosis: a novel means by which GH influences white adipose tissue function. Growth Horm. IGF Res. 39, 45–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Fruchtman, S. et al. Suppressor of cytokine signaling-2 modulates the fibrogenic actions of GH and IGF-I in intestinal mesenchymal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G342–G350 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Ong, L. K. et al. Growth hormone improves cognitive function after experimental stroke. Stroke 49, 1257–1266 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, C. W., Striker, G. E., Chen, W. Y., Kopchick, J. J. & Striker, L. J. Differential expression of glomerular extracellular matrix and growth factor mRNA in rapid and slowly progressive glomerulosclerosis: studies in mice transgenic for native or mutated growth hormone. Lab. Invest. 76, 467–476 (1997).

    CAS  PubMed  Google Scholar 

  12. Nielsen, R. H. et al. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure. Matrix Biol. 34, 96–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Doessing, S. et al. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J. Physiol. 588, 341–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Gadelha, M. R., Kasuki, L., Lim, D. S. T. & Fleseriu, M. Systemic complications of acromegaly and the impact of the current treatment landscape: an update. Endocr. Rev. 40, 268–332 (2019).

    Article  PubMed  Google Scholar 

  15. Constantin, T. et al. Calcium and bone turnover markers in acromegaly: a prospective, controlled study. J. Clin. Endocrinol. Metab. 102, 2416–2424 (2017).

    Article  PubMed  Google Scholar 

  16. Arlien-Soborg, M. C. et al. Fibroblast activation protein is a GH target: a prospective study of patients with acromegaly before and after treatment. J. Clin. Endocrinol. Metab. 105, dgz033 (2020).

    Article  PubMed  Google Scholar 

  17. Nielsen, R. H. et al. GH receptor blocker administration and muscle-tendon collagen synthesis in humans. Growth Horm. IGF Res. 21, 140–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Holt, R. I. G. & Ho, K. K. Y. The use and abuse of growth hormone in sports. Endocr. Rev. 40, 1163–1185 (2019).

    Article  PubMed  Google Scholar 

  19. Coghlan, R. F. et al. A degradation fragment of type X collagen is a real-time marker for bone growth velocity. Sci. Transl Med. 9, eaan4669 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Antoniazzi, F. et al. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur. J. Endocrinol. 163, 479–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Randeva, H. S. et al. Growth hormone replacement decreases plasma levels of matrix metalloproteinases (2 and 9) and vascular endothelial growth factor in growth hormone-deficient individuals. Circulation 109, 2405–2410 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Karci, A. C., Canturk, Z., Tarkun, I. & Cetinarslan, B. Matrix metalloproteinase 2 (MMP-2) levels are increased in active acromegaly patients. Endocrine 57, 148–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Imanishi, R. et al. GH suppresses TGF-β-mediated fibrosis and retains cardiac diastolic function. Mol. Cell Endocrinol. 218, 137–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y. et al. TIMP3 modulates GHR abundance and GH sensitivity. Mol. Endocrinol. 30, 587–599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, R. M. & Liu, G. Cell senescence and fibrotic lung diseases. Exp. Gerontol. 132, 110836 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stout, M. B. et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging 6, 575–586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Matsumoto, R. et al. Accelerated telomere shortening in acromegaly; IGF-I induces telomere shortening and cellular senescence. PLoS ONE 10, e0140189 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tran, D. et al. Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell 13, 669–678 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chesnokova, V. & Melmed, S. GH and senescence: a new understanding of adult GH action. J. Endocr. Soc. 6, bvab177 (2022).

    Article  PubMed  CAS  Google Scholar 

  32. Thum, T. et al. Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1. Circ. Res. 100, 434–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Luo, X. et al. Insulin-like growth factor-1 attenuates oxidative stress-induced hepatocyte premature senescence in liver fibrogenesis via regulating nuclear p53-progerin interaction. Cell Death Dis. 10, 451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freeth, J. S. et al. Human skin fibroblasts as a model of growth hormone (GH) action in GH receptor-positive Laron’s syndrome. Endocrinology 138, 55–61 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Guller, S., Sonenberg, M., Wu, K. Y., Szabo, P. & Corin, R. E. Growth hormone-dependent events in the adipose differentiation of 3T3-F442A fibroblasts: modulation of macromolecular synthesis. Endocrinology 125, 2360–2367 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Thorey, I. S. et al. Transgenic mice reveal novel activities of growth hormone in wound repair, angiogenesis, and myofibroblast differentiation. J. Biol. Chem. 279, 26674–26684 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Fan, M. H. et al. Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice. J. Biol. Chem. 291, 8070–8089 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X. M. et al. Fibroblast activation protein and chronic liver disease. Front. Biosci. 13, 3168–3180 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Ben-Shlomo, A. & Melmed, S. Skin manifestations in acromegaly. Clin. Dermatol. 24, 256–259 (2006).

    Article  PubMed  Google Scholar 

  41. Lie, J. T. Pathology of the heart in acromegaly: anatomic findings in 27 autopsied patients. Am. Heart J. 100, 41–52 (1980).

    Article  CAS  PubMed  Google Scholar 

  42. dos Santos Silva, C. M. et al. Low frequency of cardiomyopathy using cardiac magnetic resonance imaging in an acromegaly contemporary cohort. J. Clin. Endocrinol. Metab. 100, 4447–4455 (2015).

    Article  PubMed  CAS  Google Scholar 

  43. Koutsou-Tassopoulou, A. et al. Hepatic steatosis in patients with acromegaly. Endocrinol. Diabetes Metab. 2, e00090 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Andrioli, M. et al. Thyroid nodules in acromegaly: the role of elastography. J. Ultrasound 13, 90–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lai, N. B., Garg, D., Heaney, A. P., Bergsneider, M. & Leung, A. M. No benefit of dedicated thyroid nodule screening in patients with acromegaly. Endocr. Pract. 26, 16–21 (2020).

    Article  PubMed  Google Scholar 

  46. Jara, A. et al. Elevated systolic blood pressure in male GH transgenic mice is age dependent. Endocrinology 155, 975–986 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Munoz, M. C. et al. Downregulation of the ACE2/Ang-(1-7)/Mas axis in transgenic mice overexpressing GH. J. Endocrinol. 221, 215–227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jensen, E. A. et al. Growth hormone alters gross anatomy and morphology of the small and large intestines in age- and sex-dependent manners. Pituitary 25, 116–130 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. List, E. O. et al. Adipocyte-specific GH receptor-null (AdGHRKO) mice have enhanced insulin sensitivity with reduced liver triglycerides. Endocrinology 160, 68–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. List, E. O. et al. GH knockout mice have increased subcutaneous adipose tissue with decreased fibrosis and enhanced insulin sensitivity. Endocrinology 160, 1743–1756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yakar, S. & Isaksson, O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: lessons from mouse models. Growth Horm. IGF Res. 28, 26–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Dichtel, L. E. et al. The association between IGF-1 levels and the histologic severity of nonalcoholic fatty liver disease. Clin. Transl Gastroenterol. 8, e217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Polyzos, S. A. et al. Targeted analysis of three hormonal systems identifies molecules associated with the presence and severity of NAFLD. J. Clin. Endocrinol. Metab. 105, e390–e400 (2020).

    Article  Google Scholar 

  54. Nishizawa, H. et al. Nonalcoholic fatty liver disease in adult hypopituitary patients with GH deficiency and the impact of GH replacement therapy. Eur. J. Endocrinol. 167, 67–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Theiss, A. L. et al. Growth hormone reduces the severity of fibrosis associated with chronic intestinal inflammation. Gastroenterology 129, 204–219 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. de Oliveira, G. V. et al. Growth hormone effects on hypertrophic scar formation: a randomized controlled trial of 62 burned children. Wound Repair Regen. 12, 404–411 (2004).

    Article  PubMed  Google Scholar 

  57. Breederveld, R. S. & Tuinebreijer, W. E. Recombinant human growth hormone for treating burns and donor sites. Cochrane Database Syst. Rev. 2014, CD008990 (2014).

    PubMed Central  Google Scholar 

  58. Hu, Z. C. et al. Expression of insulin-like growth factor-1 receptor in keloid and hypertrophic scar. Clin. Exp. Dermatol. 39, 822–828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Doi, T. et al. Progressive glomerulosclerosis develops in transgenic mice chronically expressing growth hormone and growth hormone releasing factor but not in those expressing insulinlike growth factor-1. Am. J. Pathol. 131, 398–403 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bengtsson, B. A., Eden, S., Ernest, I., Oden, A. & Sjogren, B. Epidemiology and long-term survival in acromegaly. A study of 166 cases diagnosed between 1955 and 1984. Acta Med. Scand. 223, 327–335 (1988).

    Article  CAS  PubMed  Google Scholar 

  61. Dal, J. et al. Acromegaly incidence, prevalence, complications and long-term prognosis: a nationwide cohort study. Eur. J. Endocrinol. 175, 181–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Colao, A., Grasso, L. F. S., Di Somma, C. & Pivonello, R. Acromegaly and heart failure. Heart Fail. Clin. 15, 399–408 (2019).

    Article  PubMed  Google Scholar 

  63. Thuesen, L. et al. Increased myocardial contractility following growth hormone administration in normal man. An echocardiographic study. Dan. Med. Bull. 35, 193–196 (1988).

    CAS  PubMed  Google Scholar 

  64. Thuesen, L. et al. Short and long-term cardiovascular effects of growth hormone therapy in growth hormone deficient adults. Clin. Endocrinol. 41, 615–620 (1994).

    Article  CAS  Google Scholar 

  65. Napoli, R. et al. Acute effects of growth hormone on vascular function in human subjects. J. Clin. Endocrinol. Metab. 88, 2817–2820 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Kamenicky, P., Mazziotti, G., Lombes, M., Giustina, A. & Chanson, P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocr. Rev. 35, 234–281 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Moller, J., Jorgensen, J. O., Frandsen, E., Laursen, T. & Christiansen, J. S. Body fluids, circadian blood pressure and plasma renin during growth hormone administration: a placebo-controlled study with two growth hormone doses in healthy adults. Scand. J. Clin. Lab. Invest. 55, 663–669 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Thuesen, L., Christensen, S. E., Weeke, J., Orskov, H. & Henningsen, P. A hyperkinetic heart in uncomplicated active acromegaly. Explanation of hypertension in acromegalic patients? Acta Med. Scand. 223, 337–343 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Ikkos, D., Luft, R. & Sjogren, B. Body water and sodium in patients with acromegaly. J. Clin. Invest. 33, 989–994 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moller, N. et al. Basal- and insulin-stimulated substrate metabolism in patients with active acromegaly before and after adenomectomy. J. Clin. Endocrinol. Metab. 74, 1012–1019 (1992).

    CAS  PubMed  Google Scholar 

  71. Bolfi, F., Neves, A. F., Boguszewski, C. L. & Nunes-Nogueira, V. S. Mortality in acromegaly decreased in the last decade: a systematic review and meta-analysis. Eur. J. Endocrinol. 181, L5–L6 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Jaffrain-Rea, M. L. et al. Impact of successful transsphenoidal surgery on cardiovascular risk factors in acromegaly. Eur. J. Endocrinol. 148, 193–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Maison, P., Tropeano, A. I., Macquin-Mavier, I., Giustina, A. & Chanson, P. Impact of somatostatin analogs on the heart in acromegaly: a metaanalysis. J. Clin. Endocrinol. Metab. 92, 1743–1747 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Yuen, K. C. J. et al. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of growth hormone deficiency in adults and patients transitioning from pediatric to adult care. Endocr. Pract. 25, 1191–1232 (2019).

    Article  PubMed  Google Scholar 

  75. Hammarstrand, C. et al. Higher glucocorticoid replacement doses are associated with increased mortality in patients with pituitary adenoma. Eur. J. Endocrinol. 177, 251–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Klose, M. et al. Central hypothyroidism and its replacement have a significant influence on cardiovascular risk factors in adult hypopituitary patients. J. Clin. Endocrinol. Metab. 98, 3802–3810 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Tomlinson, J. W. et al. Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 357, 425–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Abe, S. Y. et al. Metabolic syndrome and its components in adult hypopituitary patients. Pituitary 23, 409–416 (2020).

    Article  PubMed  Google Scholar 

  79. Rosen, T. & Bengtsson, B. A. Premature mortality due to cardiovascular disease in hypopituitarism. Lancet 336, 285–288 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Isgaard, J., Wahlander, H., Adams, M. A. & Friberg, P. Increased expression of growth hormone receptor mRNA and insulin-like growth factor-I mRNA in volume-overloaded hearts. Hypertension 23, 884–888 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Ratku, B. et al. Effects of adult growth hormone deficiency and replacement therapy on the cardiometabolic risk profile. Pituitary 25, 211–228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johannsson, G. & Ragnarsson, O. Growth hormone deficiency in adults with hypopituitarism — What are the risks and can they be eliminated by therapy? J. Intern. Med. 290, 1180–1193 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Moller, N. & Jorgensen, J. O. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr. Rev. 30, 152–177 (2009).

    Article  PubMed  CAS  Google Scholar 

  84. Zierler, K. L. & Rabinowitz, D. Roles of insulin and growth hormone, based on studies of forearm metabolism in man. Medicine 42, 385–402 (1963).

    Article  CAS  PubMed  Google Scholar 

  85. Press, M., Notarfrancesco, A. & Genel, M. Risk of hypoglycaemia with alternate-day growth hormone injections. Lancet 1, 1002–1004 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Johansson, J. O., Fowelin, J., Landin, K., Lager, I. & Bengtsson, B. A. Growth hormone-deficient adults are insulin-resistant. Metabolism 44, 1126–1129 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Hew, F. L. et al. Insulin resistance in growth hormone-deficient adults: defects in glucose utilization and glycogen synthase activity. J. Clin. Endocrinol. Metab. 81, 555–564 (1996).

    CAS  PubMed  Google Scholar 

  88. Berryman, D. E., Glad, C. A., List, E. O. & Johannsson, G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat. Rev. Endocrinol. 9, 346–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Boger, R. H. et al. Nitric oxide may mediate the hemodynamic effects of recombinant growth hormone in patients with acquired growth hormone deficiency. A double-blind, placebo-controlled study. J. Clin. Invest. 98, 2706–2713 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sverrisdottir, Y. B., Elam, M., Herlitz, H., Bengtsson, B. A. & Johannsson, G. Intense sympathetic nerve activity in adults with hypopituitarism and untreated growth hormone deficiency. J. Clin. Endocrinol. Metab. 83, 1881–1885 (1998).

    CAS  PubMed  Google Scholar 

  91. Moller, J., Frandsen, E., Fisker, S., Jorgensen, J. O. & Christiansen, J. S. Decreased plasma and extracellular volume in growth hormone deficient adults and the acute and prolonged effects of GH administration: a controlled experimental study. Clin. Endocrinol. 44, 533–539 (1996).

    Article  CAS  Google Scholar 

  92. Maison, P. et al. Impact of growth hormone (GH) treatment on cardiovascular risk factors in GH-deficient adults: a metaanalysis of blinded, randomized, placebo-controlled trials. J. Clin. Endocrinol. Metab. 89, 2192–2199 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Sverrisdottir, Y. B. et al. The effect of growth hormone (GH) replacement therapy on sympathetic nerve hyperactivity in hypopituitary adults: a double-blind, placebo-controlled, crossover, short-term trial followed by long-term open GH replacement in hypopituitary adults. J. Hypertens. 21, 1905–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Evans, L. M. et al. The effect of GH replacement therapy on endothelial function and oxidative stress in adult growth hormone deficiency. Eur. J. Endocrinol. 142, 254–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Aguiar-Oliveira, M. H. & Salvatori, R. Disruption of the GHRH receptor and its impact on children and adults: the Itabaianinha syndrome. Rev. Endocr. Metab. Disord. 22, 81–89 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Johannsson, G., Sverrisdottir, Y. B., Ellegard, L., Lundberg, P. A. & Herlitz, H. GH increases extracellular volume by stimulating sodium reabsorption in the distal nephron and preventing pressure natriuresis. J. Clin. Endocrinol. Metab. 87, 1743–1749 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Kamenicky, P. et al. Body fluid expansion in acromegaly is related to enhanced epithelial sodium channel (ENaC) activity. J. Clin. Endocrinol. Metab. 96, 2127–2135 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Moller, J. et al. Blockade of the renin-angiotensin-aldosterone system prevents growth hormone-induced fluid retention in humans. Am. J. Physiol. 272, E803–E808 (1997).

    CAS  PubMed  Google Scholar 

  99. Yokota, N., Bruneau, B. G., Kuroski de Bold, M. L. & de Bold, A. J. Atrial natriuretic factor significantly contributes to the mineralocorticoid escape phenomenon. Evidence for a guanylate cyclase-mediated pathway. J. Clin. Invest. 94, 1938–1946 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moller, J., Jorgensen, J. O., Marqversen, J., Frandsen, E. & Christiansen, J. S. Insulin-like growth factor I administration induces fluid and sodium retention in healthy adults: possible involvement of renin and atrial natriuretic factor. Clin. Endocrinol. 52, 181–186 (2000).

    Article  CAS  Google Scholar 

  101. Widdowson, W. M. & Gibney, J. The effect of growth hormone replacement on exercise capacity in patients with GH deficiency: a metaanalysis. J. Clin. Endocrinol. Metab. 93, 4413–4417 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Jorgensen, J. O. et al. Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet 1, 1221–1225 (1989).

    Article  CAS  PubMed  Google Scholar 

  103. Johannsson, G., Grimby, G., Sunnerhagen, K. S. & Bengtsson, B. A. Two years of growth hormone (GH) treatment increase isometric and isokinetic muscle strength in GH-deficient adults. J. Clin. Endocrinol. Metab. 82, 2877–2884 (1997).

    CAS  PubMed  Google Scholar 

  104. Amato, G. et al. Body composition, bone metabolism, and heart structure and function in growth hormone (GH)-deficient adults before and after GH replacement therapy at low doses. J. Clin. Endocrinol. Metab. 77, 1671–1676 (1993).

    CAS  PubMed  Google Scholar 

  105. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Rudling, M. et al. Importance of growth hormone for the induction of hepatic low density lipoprotein receptors. Proc. Natl Acad. Sci. USA 89, 6983–6987 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sharma, V. M. et al. Growth hormone acts along the PPARγ-FSP27 axis to stimulate lipolysis in human adipocytes. Am. J. Physiol. Endocrinol. Metab. 316, E34–E42 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Elam, M. B., Wilcox, H. G., Solomon, S. S. & Heimberg, M. In vivo growth hormone treatment stimulates secretion of very low density lipoproteins by the perfused rat liver. Endocrinology 131, 2717–2722 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Beentjes, J. A., van Tol, A., Sluiter, W. J. & Dullaart, R. P. Effect of growth hormone replacement therapy on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities in growth hormone-deficient adults. J. Lipid Res. 41, 925–932 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Rosén, T., Bosaeus, I., Tölli, J., Lindstedt, G. & Bengtsson, B.-Å. Increased body fat mass and decreased extracellular fluid volume in adults with growth hormone deficiency. Clin. Endocrinol. 38, 63–71 (1993).

    Article  Google Scholar 

  111. Cuneo, R. C., Salomon, F., Wiles, C. M., Hesp, R. & Sönksen, P. H. Growth hormone treatment in growth hormone-deficient adults. II. Effects on exercise performance. J. Appl. Physiol. 70, 695–700 (1991).

    Article  CAS  PubMed  Google Scholar 

  112. Olivecrona, H., Ericsson, S., Berglund, L. & Angelin, B. Increased concentrations of serum lipoprotein (a) in response to growth hormone treatment. BMJ 306, 1726–1727 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Leonsson, M. et al. Increased Interleukin-6 levels in pituitary-deficient patients are independently related to their carotid intima-media thickness. Clin. Endocrinol. 59, 242–250 (2003).

    Article  CAS  Google Scholar 

  115. Sesmilo, G. et al. Effects of growth hormone administration on inflammatory and other cardiovascular risk markers in men with growth hormone deficiency. A randomized, controlled clinical trial. Ann. Intern. Med. 133, 111–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Franco, C. et al. Growth hormone treatment reduces abdominal visceral fat in postmenopausal women with abdominal obesity: a 12-month placebo-controlled trial. J. Clin. Endocrinol. Metab. 90, 1466–1474 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Pappachan, J. M., Raskauskiene, D., Kutty, V. R. & Clayton, R. N. Excess mortality associated with hypopituitarism in adults: a meta-analysis of observational studies. J. Clin. Endocrinol. Metab. 100, 1405–1411 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Drake, C. J. Embryonic and adult vasculogenesis. Birth Defects Res. C. Embryo Today 69, 73–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Bouloumie, A., Schini-Kerth, V. B. & Busse, R. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc. Res. 41, 773–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Brunet-Dunand, S. E. et al. Autocrine human growth hormone promotes tumor angiogenesis in mammary carcinoma. Endocrinology 150, 1341–1352 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Walsh, M. F. et al. Insulin-like growth factor I diminishes in vivo and in vitro vascular contractility: role of vascular nitric oxide. Endocrinology 137, 1798–1803 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Setola, E. et al. Effects of growth hormone treatment on arginine to asymmetric dimethylarginine ratio and endothelial function in patients with growth hormone deficiency. Metabolism 57, 1685–1690 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Lilien, M. R., Schroder, C. H., Levtchenko, E. N. & Koomans, H. A. Growth hormone therapy influences endothelial function in children with renal failure. Pediatr. Nephrol. 19, 785–789 (2004).

    Article  PubMed  Google Scholar 

  124. Lanes, R. et al. Endothelial function, carotid artery intima-media thickness, epicardial adipose tissue, and left ventricular mass and function in growth hormone-deficient adolescents: apparent effects of growth hormone treatment on these parameters. J. Clin. Endocrinol. Metab. 90, 3978–3982 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Ishikawa, M. et al. Role of growth hormone signaling pathways in the development of atherosclerosis. Growth Horm. IGF Res. 53–54, 101334 (2020).

    Article  PubMed  CAS  Google Scholar 

  126. Maffei, P., Dassie, F., Wennberg, A., Parolin, M. & Vettor, R. The endothelium in acromegaly. Front. Endocrinol. 10, 437 (2019).

    Article  Google Scholar 

  127. Messias de Lima, C. F., Dos Santos Reis, M. D., da Silva Ramos, F. W., Ayres-Martins, S. & Smaniotto, S. Growth hormone modulates in vitro endothelial cell migration and formation of capillary-like structures. Cell Biol. Int. 41, 577–584 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Rymaszewski, Z., Cohen, R. M. & Chomczynski, P. Human growth hormone stimulates proliferation of human retinal microvascular endothelial cells in vitro. Proc. Natl Acad. Sci. USA 88, 617–621 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Speakman, J. S. et al. Pituitary ablation for diabetic retinopathy. Can. Med. Assoc. J. 94, 627–635 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Smith, L. E. et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 276, 1706–1709 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Steenfos, H. H. & Jansson, J. O. Growth hormone stimulates granulation tissue formation and insulin-like growth factor-I gene expression in wound chambers in the rat. J. Endocrinol. 132, 293–298 (1992).

    Article  CAS  PubMed  Google Scholar 

  132. Isgaard, J., Arcopinto, M., Karason, K. & Cittadini, A. GH and the cardiovascular system: an update on a topic at heart. Endocrine 48, 25–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Santini, M. P. et al. Enhancing repair of the mammalian heart. Circ. Res. 100, 1732–1740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jara, A. et al. Cardiac-specific disruption of GH receptor alters glucose homeostasis while maintaining normal cardiac performance in adult male mice. Endocrinology 157, 1929–1941 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim, J. et al. Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol. Endocrinol. 22, 2531–2543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Imrie, H. et al. Novel role of the IGF-1 receptor in endothelial function and repair: studies in endothelium-targeted IGF-1 receptor transgenic mice. Diabetes 61, 2359–2368 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Abbas, A. et al. The insulin-like growth factor-1 receptor is a negative regulator of nitric oxide bioavailability and insulin sensitivity in the endothelium. Diabetes 60, 2169–2178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liang, M. et al. Protective role of insulin-like growth factor-1 receptor in endothelial cells against unilateral ureteral obstruction-induced renal fibrosis. Am. J. Pathol. 185, 1234–1250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Higashi, Y. et al. Insulin-like growth factor-1 receptor deficiency in macrophages accelerates atherosclerosis and induces an unstable plaque phenotype in apolipoprotein E-deficient mice. Circulation 133, 2263–2278 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Spadaro, O. et al. Growth hormone receptor deficiency protects against age-related NLRP3 inflammasome activation and immune senescence. Cell Rep. 14, 1571–1580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nehra, S., Gumina, R. J. & Bansal, S. S. Immune cell dilemma in ischemic cardiomyopathy: to heal or not to heal. Curr. Opin. Physiol. 19, 39–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Moon, H. D., Simpson, M. E., Li, C. H. & Evans, H. M. Neoplasms in rats treated with pituitary growth hormone; pulmonary and lymphatic tissues. Cancer Res. 10, 297–308 (1950).

    CAS  PubMed  Google Scholar 

  143. Chesnokova, V. et al. Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage. Cell Rep. 37, 110068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Harvey, S., Aramburo, C. & Sanders, E. J. Extrapituitary production of anterior pituitary hormones: an overview. Endocrine 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Basu, R. & Kopchick, J. J. The effects of growth hormone on therapy resistance in cancer. Cancer Drug Resist. 2, 827–846 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Waters, M. J. & Conway-Campbell, B. L. The oncogenic potential of autocrine human growth hormone in breast cancer. Proc. Natl Acad. Sci. USA 101, 14992–14993 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chesnokova, V. & Melmed, S. Growth hormone in the tumor microenvironment. Arch. Endocrinol. Metab. 63, 568–575 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lincoln, D. T., Singal, P. K. & Al-Banaw, A. Growth hormone in vascular pathology: neovascularization and expression of receptors is associated with cellular proliferation. Anticancer Res. 27, 4201–4218 (2007).

    CAS  PubMed  Google Scholar 

  149. Dos Santos Reis, M. D., Dos Santos, Y. M. O., de Menezes, C. A., Borbely, K. S. C. & Smaniotto, S. Resident murine macrophage migration and phagocytosis are modulated by growth hormone. Cell Biol. Int. 42, 615–623 (2018).

    Article  PubMed  CAS  Google Scholar 

  150. Kopchick, J. J., Berryman, D. E., Puri, V., Lee, K. Y. & Jorgensen, J. O. L. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat. Rev. Endocrinol. 16, 135–146 (2020).

    Article  PubMed  Google Scholar 

  151. Lee, S. W., Kim, S. H., Kim, J. Y. & Lee, Y. The effect of growth hormone on fibroblast proliferation and keratinocyte migration. J. Plast. Reconstr. Aesthet. Surg. 63, e364–e369 (2010).

    Article  PubMed  Google Scholar 

  152. Hua, H., Kong, Q., Yin, J., Zhang, J. & Jiang, Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J. Hematol. Oncol. 13, 64 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Basu, R. et al. Growth hormone upregulates melanocyte-inducing transcription factor expression and activity via JAK2-STAT5 and SRC signaling in GH receptor-positive human melanoma. Cancers 11, 1352 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  155. Chesnokova, V. et al. Growth hormone is a cellular senescence target in pituitary and nonpituitary cells. Proc. Natl Acad. Sci. USA 110, E3331–E3339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ben-Shlomo, A. et al. DNA damage and growth hormone hypersecretion in pituitary somatotroph adenomas. J. Clin. Invest. 130, 5738–5755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chesnokova, V. et al. Excess growth hormone suppresses DNA damage repair in epithelial cells. JCI Insight 4, e125762 (2019).

    Article  PubMed Central  Google Scholar 

  158. Chesnokova, V. et al. Growth hormone is permissive for neoplastic colon growth. Proc. Natl Acad. Sci. USA 113, E3250–E3259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Podlutsky, A. et al. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. Geroscience 39, 147–160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dominick, G., Bowman, J., Li, X., Miller, R. A. & Garcia, G. G. mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. Aging Cell 16, 52–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Menashe, I. et al. Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade. Cancer Res. 70, 4453–4459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kleinberg, D. L. & Barcellos-Hoff, M. H. The pivotal role of insulin-like growth factor I in normal mammary development. Endocrinol. Metab. Clin. North Am. 40, 461–471 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Lombardi, S. et al. Growth hormone is secreted by normal breast epithelium upon progesterone stimulation and increases proliferation of stem/progenitor cells. Stem Cell Rep. 2, 780–793 (2014).

    Article  CAS  Google Scholar 

  164. Boulter, L., Bullock, E., Mabruk, Z. & Brunton, V. G. The fibrotic and immune microenvironments as targetable drivers of metastasis. Br. J. Cancer 124, 27–36 (2021).

    Article  PubMed  Google Scholar 

  165. Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chakraborty, D. et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat. Commun. 8, 1130 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Tandon, M. et al. Prolactin promotes fibrosis and pancreatic cancer progression. Cancer Res. 79, 5316–5327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sun, W. et al. Regulation of the IGF1 signaling pathway is involved in idiopathic pulmonary fibrosis induced by alveolar epithelial cell senescence and core fucosylation. Aging 13, 18852–18869 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Duran-Ortiz, S. et al. Growth hormone receptor gene disruption in mature-adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell 20, e13506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ikeno, Y. et al. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J. Gerontol. A Biol. Sci. Med. Sci. 64, 522–529 (2009).

    Article  PubMed  CAS  Google Scholar 

  171. Bougen, N. M. et al. Autocrine human GH promotes radioresistance in mammary and endometrial carcinoma cells. Endocr. Relat. Cancer 19, 625–644 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Basu, R., Baumgaertel, N., Wu, S. & Kopchick, J. J. Growth hormone receptor knockdown sensitizes human melanoma cells to chemotherapy by attenuating expression of ABC drug efflux pumps. Horm. Cancer 8, 143–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Qian, Y. et al. Growth hormone upregulates mediators of melanoma drug efflux and epithelial-to-mesenchymal transition in vitro and in vivo. Cancers 12, 3640 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  174. Arumugam, A. et al. Silencing growth hormone receptor inhibits estrogen receptor negative breast cancer through ATP-binding cassette sub-family G member 2. Exp. Mol. Med. 51, 1–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Lantvit, D. D. et al. Mammary tumors growing in the absence of growth hormone are more sensitive to doxorubicin than wild-type tumors. Endocrinology 162, bqab013 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Begicevic, R. R. & Falasca, M. ABC transporters in cancer stem cells: beyond chemoresistance. Int. J. Mol. Sci. 18, 2362 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  177. Chen, Y. J. et al. Autocrine human growth hormone promotes invasive and cancer stem cell-like behavior of hepatocellular carcinoma cells by STAT3 dependent inhibition of CLAUDIN-1 expression. Int. J. Mol. Sci. 18, 1274 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  178. Wang, J. J. et al. Autocrine hGH stimulates oncogenicity, epithelial-mesenchymal transition and cancer stem cell-like behavior in human colorectal carcinoma. Oncotarget 8, 103900–103918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Subramani, R., Nandy, S. B., Pedroza, D. A. & Lakshmanaswamy, R. Role of growth hormone in breast cancer. Endocrinology 158, 1543–1555 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Subramani, R. et al. Growth hormone receptor inhibition decreases the growth and metastasis of pancreatic ductal adenocarcinoma. Exp. Mol. Med. 46, e117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Basu, R., Wu, S. & Kopchick, J. J. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget 8, 21579–21598 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Yang, J. et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341–352 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Brittain, A. L., Basu, R., Qian, Y. & Kopchick, J. J. Growth hormone and the epithelial-to-mesenchymal transition. J. Clin. Endocrinol. Metab. 102, 3662–3673 (2017).

    Article  PubMed  Google Scholar 

  184. Mukhina, S. et al. Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone. Proc. Natl Acad. Sci. USA 101, 15166–15171 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Shafiei, F. et al. DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells. Oncogene 27, 2602–2612 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Zhang, W. et al. Autocrine/paracrine human growth hormone-stimulated microRNA 96-182-183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. J. Biol. Chem. 290, 13812–13829 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chien, C. H., Lee, M. J., Liou, H. C., Liou, H. H. & Fu, W. M. Growth hormone is increased in the lungs and enhances experimental lung metastasis of melanoma in DJ-1 KO mice. BMC Cancer 16, 871 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Chandler, C., Liu, T., Buckanovich, R. & Coffman, L. G. The double edge sword of fibrosis in cancer. Transl Res. 209, 55–67 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Leslie, M. Genetics and disease. Growth defect blocks cancer and diabetes. Science 331, 837 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Steuerman, R., Shevah, O. & Laron, Z. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur. J. Endocrinol. 164, 485–489 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Boguszewski, C. L. & Boguszewski, M. Growth hormone’s links to cancer. Endocr. Rev. 40, 558–574 (2019).

    Article  PubMed  Google Scholar 

  192. Lu, M., Flanagan, J. U., Langley, R. J., Hay, M. P. & Perry, J. K. Targeting growth hormone function: strategies and therapeutic applications. Signal Transduct. Target. Ther. 4, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Basu, R. et al. A novel peptide antagonist of the human growth hormone receptor. J. Biol. Chem. 296, 100588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, H. et al. Inhibition of experimental small-cell and non-small-cell lung cancers by novel antagonists of growth hormone-releasing hormone. Int. J. Cancer 142, 2394–2404 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Paisley, A. N., Trainer, P. & Drake, W. Pegvisomant: a novel pharmacotherapy for the treatment of acromegaly. Expert Opin. Biol. Ther. 4, 421–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Basu, R., Qian, Y. & Kopchick, J. J. Mechanisms in endocrinology: lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur. J. Endocrinol. 178, R155–R181 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Cohen, P., Clemmons, D. R. & Rosenfeld, R. G. Does the GH-IGF axis play a role in cancer pathogenesis? Growth Horm. IGF Res. 10, 297–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  198. Chesnokova, V., Zonis, S., Barrett, R. J., Gleeson, J. P. & Melmed, S. Growth hormone induces colon DNA damage independent of IGF-1. Endocrinology 160, 1439–1447 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00976508 (2013).

  200. Hermansen, K., Bengtsen, M., Kjaer, M., Vestergaard, P. & Jorgensen, J. O. L. Impact of GH administration on athletic performance in healthy young adults: a systematic review and meta-analysis of placebo-controlled trials. Growth Horm. IGF Res. 34, 38–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Lupu, F., Terwilliger, J. D., Lee, K., Segre, G. V. & Efstratiadis, A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev. Biol. 229, 141–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Wang, Z. et al. Disruption of growth hormone signaling retards early stages of prostate carcinogenesis in the C3(1)/T antigen mouse. Endocrinology 146, 5188–5196 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, X. et al. Inhibition of estrogen-independent mammary carcinogenesis by disruption of growth hormone signaling. Carcinogenesis 28, 143–150 (2007).

    Article  PubMed  Google Scholar 

  204. Swanson, S. M. & Unterman, T. G. The growth hormone-deficient Spontaneous Dwarf rat is resistant to chemically induced mammary carcinogenesis. Carcinogenesis 23, 977–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. Bugni, J. M., Poole, T. M. & Drinkwater, N. R. The little mutation suppresses DEN-induced hepatocarcinogenesis in mice and abrogates genetic and hormonal modulation of susceptibility. Carcinogenesis 22, 1853–1862 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Snibson, K. J., Bhathal, P. S. & Adams, T. E. Overexpressed growth hormone (GH) synergistically promotes carcinogen-initiated liver tumour growth by promoting cellular proliferation in emerging hepatocellular neoplasms in female and male GH-transgenic mice. Liver 21, 149–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  207. Emerald, B. S. et al. αCP1 mediates stabilization of hTERT mRNA by autocrine human growth hormone. J. Biol. Chem. 282, 680–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Snibson, K. J., Bhathal, P. S., Hardy, C. L., Brandon, M. R. & Adams, T. E. High, persistent hepatocellular proliferation and apoptosis precede hepatocarcinogenesis in growth hormone transgenic mice. Liver 19, 242–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  209. Zhang, X. et al. Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J. Biol. Chem. 278, 7580–7590 (2003).

    Article  CAS  PubMed  Google Scholar 

  210. Zhu, T. et al. Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res. 65, 317–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Ma, Y. et al. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget 7, 42805–42825 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Mertani, H. C. et al. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival. J. Biol. Chem. 276, 21464–21475 (2001).

    Article  CAS  PubMed  Google Scholar 

  213. Chen, Y. J. et al. Autocrine human growth hormone stimulates the tumor initiating capacity and metastasis of estrogen receptor-negative mammary carcinoma cells. Cancer Lett. 365, 182–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Divisova, J. et al. The growth hormone receptor antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth. Breast Cancer Res. Treat. 98, 315–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Kaulsay, K. K. et al. Autocrine stimulation of human mammary carcinoma cell proliferation by human growth hormone. Exp. Cell Res. 250, 35–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  216. Takahara, K. et al. Human prostate cancer xenografts in lit/lit mice exhibit reduced growth and androgen-independent progression. Prostate 71, 525–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Recouvreux, M. V. et al. Androgen receptor regulation of local growth hormone in prostate cancer cells. Endocrinology 158, 2255–2268 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Friend, K. E., Radinsky, R. & McCutcheon, I. E. Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J. Neurosurg. 91, 93–99 (1999).

    Article  CAS  PubMed  Google Scholar 

  219. McCutcheon, I. E. et al. Antitumor activity of the growth hormone receptor antagonist pegvisomant against human meningiomas in nude mice. J. Neurosurg. 94, 487–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Yan, H. Z. et al. GHR is involved in gastric cell growth and apoptosis via PI3K/AKT signalling. J. Cell Mol. Med. 25, 2450–2458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Evans, A., Jamieson, S. M., Liu, D. X., Wilson, W. R. & Perry, J. K. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model. Cancer Lett. 379, 117–123 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Wu, X. et al. Growth hormone receptor overexpression predicts response of rectal cancers to pre-operative radiotherapy. Eur. J. Cancer 42, 888–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  223. Wu, X. Y. et al. Growth hormone protects colorectal cancer cells from radiation by improving the ability of DNA damage repair. Mol. Med. Rep. 10, 486–490 (2014).

    Article  CAS  PubMed  Google Scholar 

  224. Minoia, M. et al. Growth hormone receptor blockade inhibits growth hormone-induced chemoresistance by restoring cytotoxic-induced apoptosis in breast cancer cells independently of estrogen receptor expression. J. Clin. Endocrinol. Metab. 97, E907–E916 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Zatelli, M. C. et al. Growth hormone excess promotes breast cancer chemoresistance. J. Clin. Endocrinol. Metab. 94, 3931–3938 (2009).

    Article  CAS  PubMed  Google Scholar 

  226. Bougen, N. M., Yang, T., Chen, H., Lobie, P. E. & Perry, J. K. Autocrine human growth hormone reduces mammary and endometrial carcinoma cell sensitivity to mitomycin C. Oncol. Rep. 26, 487–493 (2011).

    CAS  PubMed  Google Scholar 

  227. Gentilin, E. et al. Growth hormone differentially modulates chemoresistance in human endometrial adenocarcinoma cell lines. Endocrine 56, 621–632 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Bogazzi, F. et al. Growth hormone inhibits apoptosis in human colonic cancer cell lines: antagonistic effects of peroxisome proliferator activated receptor-gamma ligands. Endocrinology 145, 3353–3362 (2004).

    Article  CAS  PubMed  Google Scholar 

  229. Arnold, R. E. & Weigent, D. A. The inhibition of apoptosis in EL4 lymphoma cells overexpressing growth hormone. Neuroimmunomodulation 11, 149–159 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.J.K. acknowledges the support of the State of Ohio’s Eminent Scholar Program that includes a gift from Milton and Lawrence Goll, NIH-R01AG059779, the AMVETS and the Edison Biotechnology Institute at Ohio University. D.E.B. acknowledges the support of ASPIRE funding from Pfizer, NIH-R01AG059779 and the Heritage College of Osteopathic Medicine at Ohio University. V.P. acknowledges the support of funds from Osteopathic Heritage Foundation’s Vision 2020 to Heritage College of Osteopathic Medicine at Ohio University, R01HL140836, R01MD012579 and RO1DK124126. The authors acknowledge J. Young, L. Householder, S. Zhu and A. Jara (Ohio University) for their assistance with the original version of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to John J. Kopchick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks César Boguszewski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopchick, J.J., Basu, R., Berryman, D.E. et al. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 18, 558–573 (2022). https://doi.org/10.1038/s41574-022-00702-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-022-00702-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing